
Using Electronic Institutions to secure Grid
environments

Ronald Ashri1 and Terry Payne1 and Michael Luck1 and Mike Surridge2 and Carles
Sierra3 and Juan Antonio Rodriguez Aguilar3 and Pablo Noriega3

1 University of Southampton, UK
{ra,trp,mml}@ecs.soton.ac.uk

2 IT Innovation, Southampton, UK
ms@it-innovation.soton.ac.uk

3 IIIA-CSIC, Spain
{sierra,jar,pablo}@iiia.csic.es

Abstract. As the technical infrastructure to support Grid environments matures,
attention must be focused on integrating such technical infrastructure with tech-
nologies to support more dynamic access to services, and ensuring that such ac-
cess is appropriately monitored and secured. Such capabilities will be key in pro-
viding a safe environment that allow the creation of virtualorganisations at run-
time. This paper addresses this issue by analysing how work from within the field
of Electronic Institutions (EIs) can be employed to providesecurity support for
Grid environments, and introduces the notion of a Semantic Firewall (SFW) re-
sponsible for mediating interactions with protected services given a set of access
policies. An overarching guideline is that such integration should be pragmatic,
taking into account the real-life lessons learned whilst developing, deploying and
using the GRIA infrastructure for Grid environments.

1 Introduction

The Grid Computing paradigm [8] is aimed at supporting access to a variety of com-
puting and data resources across geographical and organisational boundaries, to en-
able users to achieve (typically) complex and computationally intensive tasks. More
specifically, the “Grid Problem” has been articulated as providing the means to support
virtual organisations that can draw together different capabilities from across the Grid
domain, to deliver services that might not otherwise be possible [6]. In attempting to re-
alise this vision, research and development over recent years has focussed on directing
Grid environments towards establishing the fundamentals of the technical infrastruc-
ture required, as represented by infrastructure development efforts such as the Globus
toolkit [9], and standardisation efforts such as OGSA [16] and WS-Resource [2].

However, while such technical infrastructure is necessaryin providing an effective
platform to support robust and secure communication, this largely omits consideration
of the otherhigher-levelissues that need to be addressed before we can achieve the
goal of formation and operation of virtual organisations atrun-time based on a dynamic
selection of services [8]. In particular, whilst low-levelsecurity concerns (including
encryption, authentication, etc) are addressed, the problems of describing authorised

processes and the policies that are associated with those processes is largely ignored at
this level. The requirement here is to specify which services are allowed to participate
in the virtual organisation and what they are permitted to do.

If we consider virtual organisations in the context of agent-based computing, we can
regard this problem as analogous to that of defining anElectronic Institution (EI). Elec-
tronic Institutions, as defined in [3], can provide the necessary conceptual framework
for describing the allowed participants in a virtual organisation as well as the permitted
interactions in any given state. As such, they have proven useful in providing structured
regulatory environments for heterogeneous external agents or users (in a broader sense).
Furthermore, they are supported by tools such as ISLANDER [4], which can facilitated
the process of defining an institution.

In this paper, we present a way of making use of such technologies in response to
a specific set of needs for Grid applications, identified following practical experience
gained through the development of theGRIA (Grid Resources for Industrial Applica-
tions) infrastructure [14]. Unlike Globus, GRIA was designed to support business in-
teractions, and although it does not currently make explicit use of agent technologies,
some of its underlying concepts resonate well with an agent approach. As such, it pro-
vides an ideal and flexible framework that could exploit agent technology to provide
effective solutions for some of its current limitations.

In particular, we describe how EIs can be applied within the context of a Grid secu-
rity device, and introduce the notion of aSemantic Firewall. The purpose of the Seman-
tic Firewall is to protect Grid services by monitoring all external interactions with those
services. Its key functionality is to ensure that all interactions with protected services
fulfil the following criteria:

– The encountered interactions are thoseexpected, given the agreed aims of the in-
teraction and the current state of execution of a defined interaction protocol [1];

– The interactions must satisfy any security requirements associated with the interac-
tion protocol.

The application of EIs for describing and subsequently monitoring interactions
within the context of a Grid application represents one of the primary efforts in demon-
strating (in practical terms) how agent technologies can beused in Grid environments.
Whilst the perceived benefit of doing so has already been argued by Foster et al [7], this
work represents a tangible example that realises this vision. In addition, it also demon-
strates how such technologies can bepragmaticallyapplied without requiring a drastic
reconfiguration of existing Grid infrastructure, or the wayin which Grid-developers
design services. This is a significant issue since uptake of agent technologies is noto-
riously hard to achieve in new environments [17]. Thus, the ability to introduce agent-
based principles without a significant shift in the status quo, whilst adding value within
a Grid Infrastructure is a key contribution.

The paper is structured as follows. In the next section we briefly describe the GRIA
infrastructure and provide an example of its operation (section 3) that we use through-
out the paper. Subsequently, in sections 4 and 5 we introducethe notion of the Semantic
Firewall, and briefly describe Electronic Institutions. Wethen discuss in section 6 how
we map GRIA concepts on to EI concepts and provide a concrete example of that map-
ping (section 7). The paper concludes in section 8.

2 The GRIA Framework

The GRIA framework is a Grid infrastructure developed usingjust the basic web ser-
vice specifications, as part of the EC IST GRIA project [14]. It provides the necessary
infrastructure for exposing computationally intensive applications across the Grid, with
ancillary facilities for data staging and quality of service negotiation. A Grid service
within GRIA can be considered as acontextualisedweb service, which exposes its func-
tionality through a well-defined interface. It is contextualised since interactions with
the web service are based on a well-defined process, with a context that is maintained
throughout the lifetime of the process. It is the interaction protocols associated with
these long-lived processes that we aim to make explicit through an appropriate formal
description, so that they can be specified to an external access control and monitoring
system.

In GRIA, a number of services and systems, both external and internal, are used.
Internal systems and services include resource schedulers, accounting systems and data-
bases, while external services include data staging services, certification authorities, and
so forth. GRIA also provides features such as negotiation over the quality of service and
long-term accounts with service providers. We do not discuss these issues in detail here,
but the interested reader is referred to [14], in which a morecomplete description of the
GRIA system is available.

Rather, what we present here is a simplified example of the operation of GRIA, and a
description of how these concepts are mapped to an electronic institution. Our example
is based on a straightforward usage scenario for Grid applications that is supported by
GRIA. It involves aclient that submits a computation job (such as rendering a short,
animated video clip) to ajob service, where the computation job specifies a particular
application to execute, such as a renderer. Now, in order fora client to be able to submit
a computation job it must first have anaccountopen where the computation job is
able to bill for services. Furthermore, it must have the resources of the computation job
allocated to it via aresource allocator.

In typical Grid scenarios, accounts are opened byBudget Holders(e.g. the manager
of a research group), who then allowAccount Users(e.g. the individual researchers
planning and running jobs) access to the account so that theycan allocate resources and
run jobs charged to the account, etc.

The main limitations of the current GRIA implementation areas follows:

– Currently, the service interaction model is fixed as a staticfactory pattern. The busi-
ness processes linking theAccount Service, Resource AllocationandJob Service
cannot be changed to fit local policies or business models.

– The interactions between services are encoded through a shared state held within
the services themselves. This means that services cannot exist in different domains.
While it is entirely reasonable for theResource Allocationservice to be collocated
with theJob Servicethat uses its resources, it should not be necessary for theAc-
count Servicealso to be operated by the same domain.

– There is no explicit description of the service interactions. This means that one
cannot provide any external monitoring to detect any corruption of the services,
which might become evident through some change in the interaction with them.

3 A Desired Scenario

Consider the collection of services and service clients shown in Figure 1, which il-
lustrates the example described above. In this figure, we represent the different web
services involved, whereas the functional statements positioned above the arrows rep-
resent the methods that could be used to interact with the services on the right of the
organisational boundary.

Account

Service

Client

Budget
Holder

Resource

Allocation

Service

Job

Service

bill()

organisational

boundary

trust_biller()

untrust_biller()

request_resource()

get_request_status()

start_job()

get_status()

get_results()

open_account() get_status()

get_statement() trust_user()

untrust_user() trust_biller()

untrust_biller()

close_account()

41

2

6

3

5

Fig. 1.Grid Interaction Example

This scenario is based heavily on GRIA, but significantly simplified to make it clear
and tractable enough for our purposes. However, in one way, Figure 1 is more sophis-
ticated than the current GRIA implementation: some interactions that would be hidden
in the “back office” within a GRIA deployment have been included in the service inter-
faces, so that we can construct a scenario in which theAccount Serviceis not collocated
with theResource Allocation Serviceand theJob Service.

The interactions between clients and services are as follows:

– A Budget Holderis able to interact with theAccount Service(1). It first requests the
account to be opened and, once the account is active it can, amongst other actions,
delegate or revoke access to the account by account users andallow billers to charge
for their services to the account.

– A Client is able to interact with theResource Allocationservice (2) so as to request
access to a computation services.

– Once a resource has been allocated, theClientcan interact with theJob Service(3),
requesting the computation to be run.

– Before starting to run a job, theJob Servicemust be able to charge, or bill some
entity for performing the job. TheJob Servicedoes this by getting a contextualised
endpoint for theAccount Service(4) representing an Account, and billing the Ac-
count for the job using an operation of the specifiedAccount Servicein the specified
context.

– The contextualised endpoint for billing the Account must beobtained from the
Account Service. To get one, theClient must be authorised by theBudget Holder
(5), who must call an operation of theAccount Service(6) to inform it of theClient’s
trusted status.

– In the case where the account credit has run out, or the account has been closed, all
Account Usersshould not be allowed to initiate any further resource allocations or
jobs. However, it should still be possible forBillers to bill for any outstanding jobs
remaining until the account has been properly cleared.

In trying to describe these interactions, we must also take note of other more prac-
tical challenges.

– Some interactions, such as the opening of an account, are lengthy processes that
necessarily involve both online and offline actions. For example, anAccount Man-
agermay need to perform credit checks offline before approving aBudget Holder’s
account.

– It is likely that theBudget HolderandClientare behind opposed conventional fire-
walls. Bearing in mind that on the Grid, interactions may persist for a long time,
this means all interactions must be initiated by clients, because if the services try to
do so, their attempt may be blocked by the client-organisation’s firewall.

This second point means that the interactions are one-sided, with clients polling
services for the current status of the interaction where necessary. For example, aBudget
Holder should be able to poll theAccount Serviceto find out when their account has
been approved, and theClient must poll theJob Serviceto find out when a job starts or
terminates. In the context of an agent-oriented approach tomodelling this scenario, we
note that there are services that cannot initiate interactions. This is different to the more
general agent models, in which agents are both proactive andreactive.

4 Semantic Firewall

Our goal is to enhance security in a services-oriented environment whilst addressing
the challenges and limitations described above. We aim to decouple services by pro-
viding well-defined interaction protocols, and eliminating the need for the services to
deal with undesired messages by filtering out such messages at the organisational level.
Furthermore, we want to provide network administrators with the ability both to al-
low flexible interaction with Grid services (something not possible using conventional
firewall technologies) and to maintain careful control overthose interactions.

To achieve these goals, we introduce the notion of a securitydevice which is able
to reason about the current state of interaction between external services, and those
services protected by the security device, and also to ensure that all messages sent to

these services are consistent with the current state. We usethe termSemantic Firewall
(SFW)to describe the device since, as opposed to a normal firewall,it monitors traffic
at the level of messages exchanged between web services and takes into account the
context of interaction. It is important to emphasise that the SFW is only concerned
with, and protects, theinterestsof the protected service, and thus does not require a
global viewof all the interactions taking place within the context of a client attempting
to achieve a task in which the protected service is also involved. For example, in the
above example, the SFW does not need to be aware of the interactions between the
Budget Holderand theClient.

The requirements for the SFW are divided intodescription and reasoning, andin-
frastructure requirements. The former refers to what we should be able to describe
about the services and interactions between them and what type of reasoning we should
be able to perform, while the latter refers to what the infrastructure should be able to do
given the descriptions and reasoning over them.

1) Description and Reasoning Requirements
Allowed Participants: The first step is for the SFW to have an appropriate set of

descriptions of what entities are allowed to interact with protected services, and for
the SFW to be able to appropriately identify the services attempting to communicate
with protected services. In part, the solution involves theuse of “conventional” secu-
rity technologies such as PKI and X.509 for user authentication. However, beyond such
technologies we must also look at thecontextof interaction and the intent of the inter-
action, which is an issue that the SFW, rather than lower-level security technologies,
will handle.

Allowed Interactions: Subsequently, based on who is attempting to interact, we
require a description of a currently permissible interaction protocol. The possible in-
teractions in a web services environment are based on the methods described within
the WSDL (Web Services Definition Language)4 interfaces for each service. However,
WSDL interfaces do not provide any information about permitted processes for any
given instant. Instead, developers typically rely on documentation associated with the
services to determine the appropriate process through which methods in the WSDL
interface should be called. Our aim is to ensure that this process is adhered to, by pro-
viding the SFW with the descriptions of the process.

Dependencies between parties:The SFW must be aware of the dependencies be-
tween interaction protocols for different parties. This includes both the manner in which
actions from one party canlimit what another party can do, and how actions from one
party canenableanother to interact with a protected service.

2) Infrastructure Requirements
Transparent protection: The infrastructure should take into account the fact that

the SFW should be invisible to services outside the protected domain. Whilst we may
foresee a future situation in which several SFWs, each operating within a different or-
ganisational domain, play an active part in defining and supporting the context through

4 http://www.w3.org/TR/wsdl

which services from those domains can interact, we must begin with the assumption
that external services are not aware of the existence of sucha device.

Informing users on reasons for failure: In order for both system administrators
and users to accept any actions taken by the SFW (such as rejecting messages, etc), the
device should be able provide justifications about its actions, such as why an interaction
was accepted or rejected. A clear trace of the reasoning of the device is necessary to
achieve this requirement.

5 Electronic Institutions

Given the set of requirements described in the previous section, an essential component
is the existence of an interaction protocol and a means of defining the protocol and
its dependencies. Although there are a variety of technologies that enable us to define
interaction protocols (e.g. [11, 1]), as well as a significant amount of work on describing
appropriate policies [15], what we require is something that take a more integrated view
of the situation. In this regard, EIs are able to address several of the concerns raised
above. Below we provide a brief overview of this work before moving on to describe
how the concepts of Electronic Institutions can be mapped tothose in GRIA, so as to
provide appropriate descriptions that the SFW can use to monitor interactions.

To define an EI, it is necessary first to define a common languageto allow agents to
exchange information, the activities that agents may perform within the institution, and
the consequences of their actions. Our model of electronic institutions is thus based on
four principal elements: a dialogical framework, a set of scenes, a performative structure
and a set of normative rules [3, 10, 12].

The dialogical frameworkdefines the valid illocutions that agents can exchange,
and the participant roles and relationships. In the most general case, each agent that
exists within in a multi-agent environment is endowed with its own inner language and
ontology. In order to allow agents to successfully interactwith others we must address
the fundamental issue of relating their languages and ontologies to each other. EIs solve
this problem simply by establishing acceptable illocutions, communication primitives
and knowledge representation concepts through a common, well defined ontology (vo-
cabulary) — the common language to represent the “world” — that all the agents adhere
to. Moreover, the dialogical framework defines the participant roles within the EI and
the relationships among them. Each role defines a pattern of behaviour within the in-
stitution, and any agent within an institution is required to adopt a subset of them. In
the context of an EI, we distinguish between two types of roles, internal andexternal
roles. The internal roles can only be played by what we callstaff agents which are those
pertaining to the institution. These are analogous to workers within human institutions.
Since an institution delegates their services and duties tothe internal roles, an external
agent can never play an internal role. By sharing a dialogical framework, we enable the
heterogeneous community of agents to exchange knowledge with each other.

The set of possible activities within an electronic institution is defined by the com-
position of multiple, distinct, and possibly concurrent dialogic activities, where each
activity involves different groups of agents playing different roles. For each activity, in-
teractions between agents are articulated through agent-group meetings, which follow

well-defined communication protocols; we refer to such meetings asscenes. Thus, all
agent interactions that take place within an EI exist withinthe context of a scene. In
addition, the protocols for each scene model the possible dialogic interactions between
roles instead ofagents; thus, scene protocols define patterns of multi-role conversation,
and hence can be multiply instantiated by different groups of agents. A distinguishing
feature of scenes is that they allow agents either to enter orto leave a scene at certain
particular moments (states) of an ongoing conversation depending on their role.

A scene protocol is specified by a directed graph, where the nodes represent the
different states of the conversation, and the arcs are labelled with illocution schemes or
timeouts that allow the conversation state evolve. Thus, ateach point of the conversa-
tion, the EI defines what can be said, by whom and to whom. As we want the protocol to
be generic, state transitions cannot be labelled by grounded illocutions. Instead, illocu-
tion schemes have to be used where, at least, the terms referring to agents and time must
be variables, whilst other terms may be either variables or constants. Thus, the protocol
is independent of concrete agents and time instants. Moreover, arcs labelled with illo-
cution schemes can have some associated constraints which impose restrictions on the
valid illocutions, and on the paths that the conversation can follow.

While a scene models a particular multi-agent dialogic activity, more complex ac-
tivities can be specified by establishing relationships among scenes, captured in the
performative structure. In general, the activity represented by a performative structure
can be depicted as a collection of multiple, concurrent scenes. Agents navigate from
scene to scene, constrained by the rules defining the relationships among scenes. In or-
der to capture the relationships between scenes, we use a special type of scene, known
astransitions. Transitions allow the expression of agent synchronisation points (i.e. se-
lection points where agents can decide which path to follow), or parallelisation points
(i.e. where agents are sent to more than one scene). They can be seen as a type of router
in the context of a performative structure. Moreover, the very same agent can possi-
bly participate in multiple scenes at the same time. Likewise, there may be multiple
concurrent instantiations of a scene, so we must also consider: 1) whether the agents
following the arcs from one scene to another are allowed to start a new scene execu-
tion; 2) whether they can choose to join just one or a subset ofthe active scenes; or 3)
whether they can choose to join all active scenes.

A performative structure can be seen as a network of scenes inwhich their con-
nections are mediated by transitions that determine the role flow policy. Finally, from
the set of scenes, the initial and final scenes determine the entry and exit points of the
institution respectively.

In the context of an institution, agent actions have consequences, usually in the
shape of compromises which impose obligations or restrictions on dialogic actions of
agents in scenes in which they are acting (or will be acting inthe future). Normative
rules affect the behaviour of agents by imposing obligations or prohibitions.

Note that we are considering dialogic institutions, and theonly actions considered
are the utterance of illocutions. Therefore, we can refer tothe utterance of an illocution
within a scene or when a scene execution is at a concrete state. The intuitive meaning
of normative rules is that if illocutions are uttered in the corresponding scene states

(and some predefined expressions are satisfied), then other illocutions satisfying other
expressions must be uttered in the corresponding scene states.

To summarise, the notions presented above define the regulatory structure of an EI
as a “workflow” (i.e. performative structure) of multi-agent protocols (scenes) along
with a collection of (normative) rules that can be triggeredoff by an agent’s actions
(speech acts).

Note also that the formalisation of an EI focuses on macro-level (societal) aspects,
instead of on micro-level (internal) aspects of agents. This allows us to more easily
map the concepts between Grid environments and EIs. Since noassumptions are made
about internal aspects of agents, it is possible to define one-to-one mappings between
actions (or services) provided by each agent, and web services defined within a Grid
environment.

6 Using Electronic Institutions in GRIA

Given the descriptions of the requirements for the SemanticFirewall in section 4 and
the overview of the main Electronic Institution concepts insection 5, it is now possible
to investigate how such concepts can be applied within the SFW. This is achieved by
defining eachscenarioof interaction with the protected domain as an Electronic Insti-
tution. A scenario will typically be associated with a specific business model, such as
described in Section 3.

6.1 Mapping GRIA Models to Electronic Institutions

Services: Each service that is expected to interact in a well-defined scenario with a
protected service is associated with a role within the electronic institution.External
rolesare used to represent services that are not protected by the SFW, whereasinternal
rolesare used for the protected services. This allows us to clearly distinguish between
those services that perform institutional services and that the SFW has a responsibility
of protecting, and external services that may be providing the client with a service but do
not form part of the institution. In our running example, theAccount Service, Resource
AllocationandJob Serviceoccupy internal roles, whereas theBudget HolderandClient
occupy external roles.

Interactions and Business Process:The allowed interactions between services and
the entire business process can be encoded as individual scenes within an EI. The par-
ticipants in the scene are the relevant services, whilst theillocutions being uttered are
mapped to the corresponding WSDL methods. In addition, in those situations where
the SFW itself needs to be made aware of events that occur within protected services,
it appears as a participant within a scene. To illustrate this, consider the case where a
request is sent by aBudget Holderto close the account. In this case, theAccount Ser-
vice may still allow Billers to bill the account up to the point where the account has
been settled (which may involve offline actions). When the account is finally closed,
the SFW needs to informed about this closure explicitly by the Account Service, since

Protected

Services

Outside

 Services

GRIA Concepts EI Concepts

Internal

Roles

External

Roles

Service A

Client B

WSDL

Interface

Scene

Service C WSDL

Interface
* Allowed

Participants

* Illocutions

* Constraints

GRIA Business Process

+

Business Rules

EI Performative Structure

+

Normative Rules

EI OntologyApplication Domain Concepts

Fig. 2. Mapping GRIA concepts to EIs

there is no illocution that will enable it to understand that. In this case the SFW is an
active participant in the scene.

The wider business process, with regards to a particular task and the protected ser-
vices, is described by the performative structure of the electronic institution. This allows
us to define the appropriate flow of roles between scenes as well as impose a particular
process or workflow to the entire set of interactions with different parties.

Cross-party dependencies:We have already mentioned that an important goal of the
SFW is that of managing the dependencies between interacting parties. Returning to
the example mentioned above, once aBudget Holderhas requested that an account
should be closed, access should be restricted to all clientsassociated with the closed
account to prevent them from assigning other billers. Thus,an action within a scene
that involves both theBudget Holderand theAccount Servicealso has an implication
on the permissible actions within scenes involving theAccount Serviceand Clients.

Within an EI, this can be modelled by defining a set of norms, toensure that specific
actions can hold only as long as some constraints hold true.

Domain Ontology: The application domain concepts that are relevant to the interac-
tions between protected and external services are encoded within the EI ontology. The
ISLANDER editor supports the management of such ontologies, thereby facilitating
the creation of mappings between the datatypes used within the EI definition and the
datatypes used by the web service interface.

6.2 Semantic Firewall Core Modules

Given the discussion of the mapping between the EI concepts and SFW concepts in the
previous section, it is now proceed to address the structureof the SFW itself, illustrated
in Figure 3.

Semantic Firewall Modules

SFW Runtime

SFW Administration

Auditing

Institution Authoring Institution Verification

Institution Definition Store

Constraint

Evaluation

State Model

Execution

Action Processor

Message Enforcement

Event Processing

(AMELI)

(ISLANDER) (ISLANDER+SimDEI)

Fig. 3. Semantic Firewall Core Modules

The SFW has two main components: theAdministrationand theRuntime Environ-
ment. The SFW Administration deals tasks such as authoring, verification and storage
of electronic institutions, whereas the SFW Runtime Environment is responsible for the
verification of messages based on the electronic institution definitions. We discuss each
of these in more detail below.

Semantic Firewall Administration: SFW Administration is divided into three differ-
ent modules:

– Authoring:The ISLANDER tool provides a graphical interface to facilitate the def-
inition of an institution. It allows for the definition of a common ontology, the per-
formative structure and related scenes, as well as related norms.

– Verification:For verification of the electronic institution, ISLANDER can provide
verification of thestructural propertieswhile verification of the dynamic behaviour
can be achieved through simulation in the SIMDEI tool [13].

– Storage:A verified definition of the SWF is stored in theInstitution Definition Store
for use by the SFW Runtime.

Semantic Firewall Runtime: The SFW Runtime consists of several modules, and is
primarily concerned with the verification of each message passing to protected services.

– The Message Enforcement Module:This is responsible for receiving messages and
dealing with all lower level issues, such as parsing the SOAPstructure of messages
and providing the relevant part of the message to theAction Processor, which per-
forms the mapping between the WSDL message and the definitionwithin the elec-
tronic institution.

– The State Model Execution and Constraint Evaluation Modules: These modules
are queried to determine whether the message is a valid one based on the electronic
institution definition. This functionality can be providedby the AMELI run-time
engine [5] which can directly accept a definition of an EI and can reason about
what are the next allowable steps according to the definition.

– The Event Processing Module:At the same time as theState Model Executionand
Constraint Evaluationmodules are being queried, theEvent Processingmodule
collects information sent by the protected services to the SFW, whenever that is
appropriate as discussed earlier.

– The Auditing Module: This module is responsible for keepinga record of the vari-
ous actions so provide a trace as to why messages may have beenrejected.

7 Evaluation Case Study

In order to better illustrate the use of Electronic Institutions within the SFW, this sec-
tion presents a case study which includes a description of the performative structure,
followed by a simplified definition of the scene dealing with account management.

Figure 4 illustrates the GRIA business process as an electronic institution’s perfor-
mative structure. It contains a collection of scenes (represented as boxes) relating to
each of the GRIA services5. We differentiate betweeninternal rolesrepresenting the
GRIA protected services; in this case the services behind the organisation boundary as
depicted in Figure 1,Account Manager(AM), Job Manager(JM), Resource Manager
(RM), andSemantic firewall(SF); andexternal rolesrepresenting the GRIA external
users, which include theBudget Holder(BH), Account User(AU), andJob User(JU).
Agents playing these roles migrate from service to service after synchronising at tran-
sitions (represented by triangles).

Access to services is controlled through several scenes (see Table 1). All these
scenes are specified to realise a client-server model. Thus,for instance, when aJU agent

5 Note that the connections between scenes are labelled with the roles migrating from service to
service along with agent variables that are expected to be bound to actual agent identifiers at
run-time.

Fig. 4. GRIA Performative Structure

requires a job execution, it first synchronises with aJM agent that is continuously listen-
ing to agents’ requests at theJobServer scene. Thereafter, the two agents progress
together through the transition to create a new execution oftheJobExecution scene.
Note that the scenes offering the GRIA protected services are specified so that they can
be multiply instantiated, and thus serve multiple agents’ requests simultaneously. Note
also that there are scenes (JobServer,ResourceServer,AccountServer, and
AccUserServer particularly devoted to the listening functions of the agents playing
the internal roles.

Service Offered through Scene

Resource Allocation ServiceResourceAllocation Scene
Job Service JobExecution Scene
Accounting Service ServiceAccountCreation Scene

AccUserMgt Scene
AccManagement Scene

Table 1.Various services offered through different scenes

Next, we examine theAccManagement scene, illustrating how the specific inter-
actions with services are managed. There are three participant roles in this scene, the
Account Manager (AM)represented by theAccount Service, theBudget Holder (BH)
and theSemantic Firewall (SF). The boxes represent different states of the dialog, while
the arcs between them represent possible illocutions.

At W0 all roles are allowed to enter the scene. At this state theBH is allowed to re-
quest a statement of the account (arc 0), to which theAM can reply with a statement.
In addition, theBH can request for theAM to trust a biller (arc 1), which the AM can
either acknowledge positively (arc 2) or refuse (arc 5). If the request is accepted
this will enable aClient, matching the criteria of the user that should be trusted to enter
the institution and also assign billers to this account, as we discussed in Section 3. The
BH can also request for an account to be closed (arc 4). This lead the scene to a state

where the only thing theBH can do is request the status of the account and once the
account has been closed, which as we already mentioned may involve offline actions,
the SF is informed of this so that is can reflect this change on the allowed actions of
other interested parties such as billers.

Fig. 5. Account Management Scene

8 Conclusion

In this paper we proposed a method for enhancing security within Grid environments
by making use of Electronic Institutions to support the specification, verification and
monitoring of permissible interactions within a protected(i.e. firewalled) environment.
This is achieved though a dedicated device, theSemantic Firewall, which maintains a
set of mappings between entities within Electronic Institutions and Grid Services. The
Semantic Firewall facilitates the integration of agent technologies within a Grid envi-
ronment, without requiring radical changes to the infrastructure or the way developers
build Grid services. As such, this work represents a pragmatic example of how the
worlds of Grid infrastructure and agent research can come together to provide effective
solutions to the existing limitations for Grid infrastructure.

The work described in this paper provides several avenues for further development.
In the short-term, we can begin to define more flexible business models within GRIA,
since we can take advantage of the flexible description and monitoring capabilities to
ensure that they are adhered to. Subsequently, we can begin to examine how such in-
stitutions can be agreed upon at run-time between differentorganisations, where each
protected by a Semantic Firewall. Finally, we must also begin to investigate the pos-
sibility of makingdeploymentof services within a Grid environment more flexible by
providing high-level definition of allowed processes (as EIs) which developers can then
ensure they adhere to.

9 Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC) Semantic Firewall project (ref. GR/S45744/01).

References

1. R. Ashri, G. Denker, D. Marvin, M. Surrdige, and T. R. Payne. Semantic Web Service
Interaction Protocols: An Ontological Approach. In S. A. McIlraith, D. Plexousakis, and
F. van Harmelen, editors,Int. Semantic Web Conference, volume 3298 ofLNCS, pages 304–
319. Springer, 2004.

2. K. Czajkowski, D. F. Ferguson, Foster I, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke, and W. Vambenepe. The WS-Resource Framework. Technical report, The Globus
Alliance, 2004.

3. M. Estena.Electronic Institutions: from specification to development. PhD thesis, Technical
University of Catalonia, 2003.

4. M. Esteva, D. de la Cruz, and C. Sierra. ISLANDER: an electronic institutions editor. In
The First Int. Joint Conf. on Autonomous Agents and Multiagent Systems, pages 1045–1052.
ACM Press, 2002.

5. M. Esteva, J. A. Rodriguez-Aguilar, B. Rosell, and J. L. Arcos. AMELI: An agent-based mid-
dleware for electronic institutions pages 236-243, new york, usa, july 19-23 2004. In N. R.
Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors,3rd Int. Conf. on Autonomous
Agents and Multi-Agent Systems, pages 236–243. ACM Press, 2004.

6. I. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organisations. In R. Sakel-
lariou, J. Keane, J.R. Gurd, and L. Freeman, editors,7th International Euro-Par Conference,
volume 2150 ofLNCS. Springer, 2001.

7. I. Foster, N. R. Jennings, and C. Kesselman. Brain meets Brawn: Why Grid and Agents need
each other. In N. R. Jennings, C. Sierra, L. Sonenberg, and M.Tambe, editors,3rd Int. Conf.
on Autonomous Agents and Multi-Agent Systems, pages 8–15. ACM Press, 2004.

8. I. Foster and C. Kesselman.The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 2003.

9. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Services for Distributed System
Integration.IEEE Computer, 35(6):37–46, June 2002.

10. P. Noriega.Agent Mediated Auctions: The Fishmarket Metaphor. PhD thesis, Technical
University of Catalonia, 1997.

11. S. Paurobally, J. Cunningham, and N. R. Jennings. Developing Agent Interaction Proto-
cols Using Graphical and Logical Methodologies. In M. Dastani, J. Dix, and A. El Fallah-
Segrouchni, editors,PROMAS, volume 3067 ofLNCS, pages 149–168. Springer, 2003.

12. J. A. Rodriguez-Aguilar.Towards a Test-bed for Trading Agents in Electronic AuctionMar-
kets. PhD thesis, Technical University of Catalonia, 2001.

13. C. Sierra, J. A. Rodriguez-Aguilar, P. Noriega, M. Esteva, and J. L. Arcos. Engineering multi-
agent systems as electronic institutions.European Journal for the Informatics Professionall,
4, 2004.

14. S. Taylor, M. Surridge, and D. Marvin. Grid Resources forIndustrial Applications. In2004
IEEE Int. Conf. on Web Services (ICWS’2004), 2004.

15. G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and A. Uszok. Semantic web
languages for polic representation and reasoning: A comparison of kaos, rei and ponder.
In D. Fensel, K. Sycara, and J. Mylopoulos, editors,Proceedings of the 2nd International
Semantic Web Conference, volume 2870 ofLNCS, pages 419–437. Springer, 2003.

16. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sand-
holm, D. Snelling, and P. Vanderbilt. Open grid services infrastructure. Technical report,
Global Grid Forum, 2003.

17. M. J. Wooldridge and N. R. Jennigns. Software engineering with agents: Pitfalls and prat-
falls. IEEE Internet Computing, 3(3):20–27, 1999.

