Skip to main content

An Environmental Adaptation Mechanism for a Biped Walking Robot Control Based on Elicitation of Sensorimotor Constraints

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

This paper proposes an environmental adaptation mechanism for a biped walking robot control on up/down slopes. In order to cope with a variety of environments, the proposed locomotion control system has dual adaptation loops. The first adaptation loop is a phase entrainment attribute of coupled nonlinear oscillators that directly encode the locomotion cycle, and it corresponds to a kind of feedback adaptation against perturbative changes. In contrast, the second one is elicitation of sensorimotor constraints, that is kinematic parameters constrain limbs trajectories (e.g. length of stride) according to the environmental state. Thus it can be considered as a kind of feedforward adaptation. In this paper, the validity of the proposed adaptation mechanisms can be evaluated through a physical simulations of a biped walking robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Honda Worldwide – ASIMO at: http://world.honda.com/ASIMO/

  2. McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9(2), 62–82 (1990)

    Article  Google Scholar 

  3. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient Bipedal Robots Based on Passive Dynamic Walkers. Science Magazine 307, 1082–1085 (2005)

    Google Scholar 

  4. Asano, F., Yamakita, M., Kamamichi, N., Luo, Z.-W.: A Novel Gait Generation for Biped Walking Robots Based on Mechanical Energy Constraint. IEEE Tran. on Robotics and Automation 20(3), 565–573 (2004)

    Article  Google Scholar 

  5. Ogino, M., Hosoda, K., Asada, M.: Learning Energy-Efficient Walking with Ballistic Walking. In: Adaptive Motion of Animals and Machines, pp. 155–164. Springer, Heidelberg (2005)

    Google Scholar 

  6. Taga, G.: A model of the neuro-musculo-skeletal system for human locomotion. Biological Cybernetics 73(1), 97–111 (1995)

    Article  MATH  Google Scholar 

  7. Ijspeert, A.J.: A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics 85, 331–348 (2001)

    Article  Google Scholar 

  8. Makino, Y., Akiyama, M., Yano, M.: Emergent mechanisms in multiple pattern generation of the lobster pyloric network. Biological Cybernetics 82, 443–454 (2000)

    Article  Google Scholar 

  9. Tsuchiya, K., Aoi, S., Tsujita, K.: Locomotion Control of a Biped Locomotion Robot using Nonlinear Oscillators. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1745–1750 (2003)

    Google Scholar 

  10. Kimura, H., Fukuoka, Y., Mimura, T.: Dynamics based integration of motion adaptation for quadruped robot “tekken”. In: Proc. of the second International Symposium on Adaptive Motion of Animals and Machines (2003)

    Google Scholar 

  11. Mori, F., Nakajima, K., Shigemi, M.: Control of Bipedal Walking in the Japanese Monkey, Reactive and Anticipatory Control Mechanisms. In: M. fuscata: Adaptive Motion of Animals and Machines, pp. 249–259. Springer, Heidelberg (2005)

    Google Scholar 

  12. Kuo, A.D.: The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 6, 129–145 (2002)

    Google Scholar 

  13. Ito, S., Kawasaki, H.: Regularity in an environment produces an internal torque pattern for biped balance control. Biological Cybernetics 92, 241–251 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kondo, T., Somei, T., Ito, K.: A predictive constraints selection model for periodic motion pattern generation. In: Proc. of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), pp. 975–980 (2004)

    Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  16. Smith, R.: Open dynamics engine v0.5 user guide (2004), http://ode.org/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iida, S., Kondo, T., Ito, K. (2006). An Environmental Adaptation Mechanism for a Biped Walking Robot Control Based on Elicitation of Sensorimotor Constraints. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_15

Download citation

  • DOI: https://doi.org/10.1007/11840541_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics