Skip to main content

Searching for Emergent Representations in Evolved Dynamical Systems

  • Conference paper
  • 1689 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Abstract

This paper reports an experiment in which artificial foraging agents with dynamic, recurrent neural network architectures, are "evolved" within a simulated ecosystem. The resultant agents can compare different food values to "go for more," and display similar comparison performance to that found in biological subjects. We propose and apply a novel methodology for analysing these networks, seeking to recover their quantity representations within an Approximationist framework. We focus on Localist representation, seeking to interpret single units as conveying representative information through their average activities. One unit is identified that passes our "representation test", representing quantity by inverse accumulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feyerabend, P.: Materialism and the mind-body problem. Review of Mataphysics 17, 49–66 (1963)

    Google Scholar 

  2. Feyerabend, P.: Mental events and the brain. Journal of Philosophy 60, 295–296 (1963)

    Article  Google Scholar 

  3. Stich, S., Ravenscroft, I.: What is Folk Psychology? Cognition 50, 447–468 (1994)

    Article  Google Scholar 

  4. Rorty, R.: Mind-Body Identity, Privacy, and Categories. Review of Metaphysics 19, 24–54 (1965)

    Google Scholar 

  5. Crowther-Heyk, H.: George Miller, language, and the computer metaphor. History of Psychology 2, 37–64 (1999)

    Article  Google Scholar 

  6. Bechtel, W., Richardson, R.C.: Discovering complexity: Decomposition and localization as strategies in scientific research, ch. 2. Princeton University Press, Princeton (1993)

    Google Scholar 

  7. Stoianov, I., Zorzi, M., Umiltà, C.: The role of semantic and symbolic representations in arithmetic processing: Insights from simulated discalculia in a connectionist model. Cortex 40, 194–196 (2004)

    Article  Google Scholar 

  8. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  9. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91–99 (2000)

    Article  MathSciNet  Google Scholar 

  10. van Gelder, T.J.: Dynamic approaches to cognition. In: Wilson, R., Keil, F. (eds.) The MIT Encyclopedia of Cognitive Sciences, pp. 244–246. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Harvey, I.: Untimed and misrepresented: Connectionism and the computer metaphor. Newsletter of the Society for the Study of Artificial Intelligence and Simulation of Behaviour (AISB Quarterly) 96, 20–27 (1996)

    Google Scholar 

  12. Cabeza, R., Nyberg, L.: Imaging cognition II: an empirical review of 275 PET and fMRI Studies. Journal of Cognitive Neuroscience 12, 1–47 (2000)

    Article  Google Scholar 

  13. Zorzi, M., Stoianov, I., Umiltà, C.: Computational modeling of numerical cognition. In: Campbell, J. (ed.) Handbook of mathematical cognition, ch. 5, pp. 67–83. Psychology Press, London (2005)

    Google Scholar 

  14. Dahaene, S., Cohen, L., Sigman, M., Vinckier, F.: The neural code for written words: a proposal. Trends in Cognitive Science 9(7), 335–341 (2005)

    Article  Google Scholar 

  15. Naccache, L., Dahaene, S.: The priming method: imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex 11, 966–974 (2001)

    Article  Google Scholar 

  16. Smolensky, P.: On Variable Binding and the Representation of Symbolic Structures in Connectionist Systems. Technical report CU-CS-355-87, Department of Computer Science, University of Colorado at Boulder (1987)

    Google Scholar 

  17. Beer, R.D.: Toward the evolution of dynamical neural networks for minimally cognitive behavior. In: Maes, P., Mataric, M., Meyer, J., Pollack, J., Wilson, S. (eds.) Proceedings of the 4th International Conference on Simulation of Adaptive Behavior, pp. 421–429. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Verguts, T., Fias, W.: Representation of number in animals and humans: a neural model. Journal of Cognitive Neuroscience 16(9) (2004)

    Google Scholar 

  19. Gelman, R., Gallistel, C.R.: Language and the origin of numerical concepts. Science 306(5695), 441–443 (2004)

    Article  Google Scholar 

  20. Butterworth, B.: What Counts, ch. 3, pp. 144–147. The Free Press, New York (1999)

    Google Scholar 

  21. Uller, C., Jaeger, R., Guidry, G., Martin, C.: Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal Cognition 6, 105–112 (2003)

    Google Scholar 

  22. Watson, R.A., Pollack, J.B.: Coevolutionary Dynamics in a Minimal Substrate. In: Spector, L., et al. (eds.) Proceedings of the 2001 Genetic and Evolutionary Computation Conference. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  23. Keinan, A., Sandbank, B., Hilgetag, C.C., Meilijson, I., Ruppin, E.: Fair attribution of functional contribution in artificial and biological networks. Neural Computation 16(9), 1887–1915 (2004)

    Article  MATH  Google Scholar 

  24. Aharanov, R., Segev, L., Meilijson, I., Ruppin, E.: Localization of function via lesion analysis. Neural Computation 14(4), 885–913 (2003)

    Article  Google Scholar 

  25. Nieder, A., Freedman, D.J., Miller, E.K.: Representation of the quantity of visual items in the primate prefrontal corext. Science 6, 1708–1711 (2002)

    Article  Google Scholar 

  26. Meck, W.H., Church, R.M.: A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behaviour Processes 9, 320–324 (1983)

    Article  Google Scholar 

  27. Tomko, G., Crapper, D.: Neuronal variability: non-stationary responses to identical visual stimuli. Brain Res. 79, 405–418 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hope, T., Stoianov, I., Zorzi, M. (2006). Searching for Emergent Representations in Evolved Dynamical Systems. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_43

Download citation

  • DOI: https://doi.org/10.1007/11840541_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics