Skip to main content

Modular Design of Irreducible Systems

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

Strategies of incremental evolution of artificial neural systems have been suggested over the last decade to overcome the scalability problem of evolutionary robotics. In this article two methods are introduced that support the evolution of neural couplings and extensions of recurrent neural networks of general type. These two methods are applied to combine and extend already evolved behavioral functionality of an autonomous robot in order to compare the structure-function relations of the resulting networks with those of the initial structures. The results of these investigations indicate that the emergent dynamics of the resulting networks turn these control structures into irreducible systems. We will argue that this leads to several consequences. One is, that the scalability problem of evolutionary robotics remains unsolved, no matter which type of incremental evolution is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Husbands, P., Harvey, I., Cliff, D., Miller, G.: Artificial Evolution: A New Path for Artifical Intelligence? Brain and Cognition 34, 130–159 (1997)

    Article  Google Scholar 

  2. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  3. Ziemke, T.: On ’Parts’ and ’Wholes’ of Adaptive Behavior: Functional Modularity Dichronic Structure in Recurrent Neural Robot Controllers. In: Proc. of the 6th Int. Conf. on Simulation of Adaptive Behavior, pp. 115–124 (2000)

    Google Scholar 

  4. Husbands, P., Harvey, I., Cliff, D.: Circle in the Round: State Space Attractors for Evolved Sighted Robots. Robotics and Autonomous Systems 20, 83–106 (1995)

    Article  Google Scholar 

  5. Nolfi, S.: Using emergent modularity to develop control systems for mobile robots. Adaptive Behavior 5, 343–363 (1997)

    Article  Google Scholar 

  6. Callebaut, W., Rasskin-Gutman, D.: Modularity. Bradford Book (2005)

    Google Scholar 

  7. Simon, H.: The Science of the Artificial. Cambridge University Press, Cambridge (1969)

    Google Scholar 

  8. Pasemann, F.: Neuromodules: A dynamical systems approach to brain modellling. In: Herrmann, H.J., Wolf, D.E., Pöppel, E. (eds.) Supercomputing in brain research: From tomography to neural networks. World Scientific, Singapore (1995)

    Google Scholar 

  9. Dieckmann, U.: Coevolution as an autonomous learning strategy for neuromodules. In: Herrmann, H.J., Wolf, D.E., Pöppel, E. (eds.) Supercomputing in brain research: From tomography to neural networks. World Scientific, Singapore (1995)

    Google Scholar 

  10. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Addison-Wesley, Reading (1994)

    Google Scholar 

  11. Pasemann, F.: Complex dynamics and the structure of small neural networks. Network: Computation in Neural Systems 13, 195–216 (2002)

    MATH  Google Scholar 

  12. Hopfield, J.J., Tank, D.W.: Computing with neural circuits: A model. Science 233, 625–633 (1986)

    Article  Google Scholar 

  13. Bäck, T., Schwefel, H.-P.: An overview on evolutionary algorithms for parameter optimization. Evolutionary Computation 1, 1–23 (1995)

    Article  Google Scholar 

  14. Hülse, M., Wischmann, S., Pasemann, F.: Structure and Function of Evolved Neuro-Controllers for Autonomous Robots. Connection Science 16, 249–266 (2004)

    Article  Google Scholar 

  15. Mondada, F., Franzi, E., Ienne, P.: Mobile robots miniturization: a tool for investigation in control algorithms. In: Proc. of ISER 1993, Kyoto (1993)

    Google Scholar 

  16. Michel, O.: Khepera Simulator, Package version 2.0. Freeware mobile robot simulator written at the University of Nice Sophia-Antipolis by Olivier Michel (1995), Downloadable from the World Wide Web at: http://wwwi3s.unice.fr/~om/khep-sim.html

  17. Pasemann, F.: Dynamics of a single model neuron. International Journal of Bifurcation and Chaos 3, 271–278 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Beer, R.D.: An dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72, 173–215 (1995)

    Article  Google Scholar 

  19. Bianco, R., Nolfi, M.: Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assamble and self-reproduce. Connection Science 16, 227–248 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hülse, M., Pasemann, F. (2006). Modular Design of Irreducible Systems. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_44

Download citation

  • DOI: https://doi.org/10.1007/11840541_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics