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Abstract. Device mismatch, charge leakage and nonlinear transfer func-
tions limit the resolution of analog-VLSI arithmetic circuits and degrade
the performance of neural networks and adaptive filters built with this
technology. We present an analysis of the impact of these issues on the
convergence time and residual error of a linear perceptron using the
Least-Mean-Square (LMS) algorithm. We also identify design tradeoffs
and derive guidelines to optimize system performance while minimizing
circuit die area and power dissipation.

1 Introduction

Modern embedded and portable electronic systems use adaptive signal process-
ing techniques to optimize their performance in the presence of noise, interfer-
ence, and unknown signal statistics. Moreover, these systems are also severely
constrained in size and power dissipation, making custom-VLSI neural network
implementations of these techniques attractive.

Analog VLSI circuits can compute using orders of magnitude less power and
die area than their digital counterparts, thus potentially enabling large-scale,
portable adaptive systems. Unfortunately, device mismatch, charge leakage, and
nonlinear behavior limit the resolution of analog arithmetic circuits so that the
learning performance of even small-scale analog-VLSI neural networks rarely
exceeds 5-6 bits. Traditional circuit-design techniques can reduce these effects,
but they increase power and area and render analog solutions less attractive.

We claim that it is possible to build large-scale neural networks in analog
VLSI with good learning performance at low power and area by combining on-
chip circuit calibration, design techniques, and the natural adaptation of the
algorithm to compensate for the limitations of analog hardware. In this paper,
we present an analysis of the performance of the well-known Least-Mean-Square
(LMS) algorithm under the constraints of analog VLSI arithmetic. Unlike pre-
vious work that uses mainly system simulations [2, 5, 1], we base our analysis
on the mathematical properties of the algorithm, obtaining more general results
that allow us to derive design guidelines and techniques to improve performance
at minimal cost. Using these techniques, we have built a 64-input perceptron
that adapts with 9-10 bits of accuracy, uses 0.25mm2 of die area and dissipates
200μW in a 0.35μm CMOS process [3].
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2 Convergence Properties of the LMS Algorithm

An adaptive linear combiner [8] computes the function yk = xT
k wk, where yk

is the output, and xk = [x1k · · · xnk]T and wk = [w1k · · · wnk]T are the n-
dimensional input and weight vectors at time k. The weights are chosen to
minimize a quadratic function of the error εk = dk − yk, where dk is an ex-
ternal reference. Both the inputs and the reference are taken from stationary
zero-mean random distributions. The Mean Square Error (MSE) is defined as:

ξ(w) = E[ε2k] = E[d2
k] − 2pTw + wTRw (1)

where p = E[dkxk] represents the correlation between the reference and the
input, and R = E[xkxT

k ] is the input correlation matrix. The MSE defines a
quadratic surface with a single global minimum at the point where its gradient
is equal to zero. The Wiener solution defines the optimal value of the weights as
w∗ = R−1p, which yields a minimal MSE of ξmin = E[d2

k] − pTw∗.
The LMS algorithm uses gradient descent to iteratively compute an approx-

imation of w∗. The algorithm uses an instantaneous estimation of the MSE
gradient ∇k as ∇̂k = 2εkwk = ∇k −Ψk, where Ψk is the zero-mean estimation
noise. An each iteration, the LMS algorithm updates the weights as:

wk+1 = wk − μ∇̂k = wk + 2μεkxk (2)

where the learning rate μ is a parameter which controls stability and convergence
time. Widrow shows [8] that E[∇̂k] = ∇, therefore LMS converges to the Wiener
solution w∗ in its mean value. However, the gradient estimation noise results
in an oscillation around the solution which depends on the learning rate and
the statistics of the input. For a small μ, the MSE at convergence is ξ∞ =
ξmin + E[v∞RvT

∞], where vk = wk − w∗. The misadjustment is defined as:

M =
excess MSE

ξmin
=

ξ∞ − ξmin

ξmin
≈ μ

n∑

p=1

λp = μ tr(R) (3)

where λp are the eigenvalues of R. Eqn. (3) shows that we can control the mis-
adjustment with the learning rate. The MSE decreases as a sum of exponentials,
where the time constant of each mode p is given by τp = 1/(4μλp). Therefore,
decreasing the learning rate also increases the convergence time of the algorithm.

Hardware implementations of LMS requires multiplication and addition to
compute the output (forward path) and weight updates (feedback path), and
memory cells to store the weights. Addition is performed by summing currents
on common wires and is not subject to device mismatch. The following sections
focus on the effects of nonlinear circuits and mismatch on the multipliers, and of
charge leakage and limited resolution on the memory cells and weight updates.

3 Effect of Analog Multipliers

We use the following general expression to model the analog multipliers [2]:

m(i1, i2) = [a1 f1(θ1, i1) + γ1] × [a2 f2(θ2, i2) + γ2] (4)
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Fig. 1. Effect of gain mismatch on LMS performance. (a) Mismatch in multiplier gains
do not affect the MSE at convergence, but do increase the convergence time. (b) As-
suming that the minimal gain lies within two standard deviations below the mean
provides a good bound for convergence time.

where i1 and i2 are the inputs to the multiplier, f1(·) and f2(·) are saturating,
monotonic, and odd nonlinear functions, and ap, γp and θp control the gain, off-
set, and linearity of the multiplier. When fp(θ, x) = tanh(θx)

tanh(θ) , Eqn. (4) models the
normalized transfer function of a Gilbert multiplier [6] operating in subthreshold
regime. Device mismatch results in variations in the values of ap, γp and θp for
different multipliers within the same chip. The rest of this section independently
analyzes the impact of each factor on the performance of the algorithm.

3.1 Gain Mismatch

Feedback Path: We first analyze the effect of gain mismatch between ideal
multipliers rewriting Eqn. (4) as mp(i1, i2) = ap i1i2, where ap is the gain as-
sociated with multiplier p. Mismatched gains in the feedback path modify the
gradient estimation implemented by Eqn. (2) to:

wk+1 = wk + 2μAεkxk = wk + 2U′εkxk (5)

where A = diag([a1 · · · an]) is the diagonal matrix that represents the multiplier
gains and U′ = μA represents a synapse-dependent learning rate. Gain mismatch
does not modify εk, therefore ξ′min = ξmin. The new misadjustment is:

M ′ = μ

n∑

p=1

λpap = μ tr(AR) (6)

We assume that the elements of A have a Gaussian distribution of unitary
mean and variance σ2

A, and are uncorrelated with the inputs [7]. In this case,
tr(AR) ≈ tr(R) for a sufficiently large number of inputs, and thus ξ′∞ ≈ ξ∞.

Fig. 1 shows results from a simulated 16-input linear perceptron with mis-
matched gains in the feedback path. Fig. 1(a) shows the evolution of the MSE
for different σA. The graph shows that the gain variation does not affect the
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MSE after convergence. However, the figure also shows that the convergence
time of the algorithm increases as a function of the gain variance. Indeed, the
time constant of each new mode p is given by τ ′

p = 1/(4μ′
pλp). If we assume that

the MSE follows the slowest mode, the slowdown in convergence time is:

τ ′
conv

τconv
=

maxp[τ ′
p]

maxp[τp]
=

4 minp[μλp]
4 minp[apμλp]

≤ 4μλmin

4μaminλmin
=

1
amin

(7)

The value of amin is unknown at design time, but we can derive a bound based on
the expected distribution of the gains, which in turn can be obtained from pre-
vious experimental data or from statistical models of device mismatch [7]. In a
Gaussian distribution, 95.4% and 99.7% of the gains will lie within 2σA and 3σA
from the mean, respectively. Fig. 1(b) depicts the simulated convergence time,
and the bounds estimated using 2σA and 3σA to estimate amin. In practice, it
is sufficient to assume 2σA, because the bound established in Eqn. (7) conserv-
atively assumes that the convergence time tightly follows the slowest mode, and
that the smallest gain is in turn associated with the smallest eigenvalue of R.

Notice that, if the designer has individual control over the learning rate of
each synapse after fabrication, then setting μp = μ/ap normalizes the effective
learning rate and achieves the same convergence time as the original network.

Forward Path: Gain mismatch in the forward-path multipliers modifies the
error as ε′k = dk − xT

k Aw, leading to the following expression for the MSE:

ξ′ = E[ε′2k ] = E[d2
k] − 2ApTw + wTARAw (8)

and the learning rule:

wk+1 = wk + 2μ(dk − xT
k Awk)xk = wk + 2U′(dk − x′T

k wk)x′
k (9)

where U′ = μA−1 and x′
k = Axk, Eqn. (9) has the same form as the original

LMS learning rule, but with nonuniform learning rates and a modified input
with correlation matrix R′ = ARAT. The learning rule of Eqn. (9) converges
in its mean to w′∗ = A−1w∗, and thus from Eqn. (8) ξ′min = ξmin.

In general, it is difficult to determine the misadjustment from the gains. If we
assume that the inputs are decorrelated (R is diagonal), then the eigenvalues of
R′ are λ′

p = a2
pλp, where λp are the eigenvalues of R. The misadjustment is:

M ′ =
n∑

p=1

μ

ap
λ′

p = μ

n∑

p=1

a2
pλp

ap
= μ

n∑

p=1

apλp = μ tr(AR) (10)

which is equivalent to Eqn. (6) for gain mismatch in the learning rules. Therefore,
mismatched gains in the forward path do not affect the MSE, but increase the
learning time as depicted in Eqn. (7). Multiplier gains also modify the Wiener
solution to w′∗ = A−1w∗, so they may also change the effect of initial conditions
on convergence time, although modeling this effect is difficult without knowledge
of the original solution [4].
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3.2 Multiplier Offsets

We rewrite Eqn. (4) as mp(i1, i2) = (i1+γ1p)(i2+γ2p), where γ1p and γ2p are the
offsets associated with the inputs to multiplier p. The remainder of this section
analyzes the effect of each offset separately.

Forward Path: Let γw = [γw1 · · · γwn] be the vector of weight offsets in the
multipliers of the forward path. The instantaneous error is ε′k = dk −xT

k w′
k and

the MSE is ξ′ = E[d2
k] − 2pTw′ + w′TRw′T, where w′ = w + γw. A simple

analysis shows that the LMS algorithm converges to the new Wiener solution
w′∗ = w∗ − γw, which compensates for the weight offsets and achieves the
same residual MSE as the original network. The eigenvalues of the input are
not modified, thus the weight variance is the same and M ′ = M . The weight
offsets modify the solution vector w∗, so they also affect convergence time [4].
However, because the distribution of the weight offsets is independent of w∗, it
is not possible to relate the convergence time to the offset variance.

Let now γx = [γx1 · · · γxn] be the input offsets in the multipliers of the forward
path. The error is ε′k = dk − x′T

k wk where x′
k = xk + γx, and ξ′ = ξ + γxγT

x .
Because the learning rule operates with a zero-mean x, E[∇̂′

k] = ∇ and the
mean value of the weight converges to the original solution w∗. The minimal
MSE and the misadjustment quadratically increase with the offset:

ξ′min = ξmin + w∗TγxγT
xw∗ (11)

M ′ = M + μ
n∑

p=1

γ2
xp (12)

The last term in the Eqn. (11) introduces a large increase in the error which
is not controllable with the learning rate. However, we can add bias synapse w0
with offset γ0 and a constant input c to cancel the accumulated offset at the
output. The synapse converges to:

w0 =
−γx

Tw
c + γ0

(13)

which compensates for the accumulated effect of the input offsets, allowing the
weights to converge to the Wiener solution and ξ′min = ξmin.

The bias synapse also affects the weight variance. It can be shown that if
xk has zero mean, then tr(R′) = tr(R) + c2. Therefore, from Eqn. (12) the
misadjustment is M ′ = M + μ(

∑n
p=0 γ2

xp + c2).
Fig. 2(a) shows simulation results for Mγ (which we define as the misadjust-

ment with respect to the original ξmin) as a function of the standard deviation
of the offsets in the forward-path multipliers. As the figure shows, offsets in the
weights do not affect the MSE. Input offsets quadratically increase the MSE,
but the addition of a bias synapse successfully compensates for this effect even
without the reducing learning rate.
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Fig. 2. Misadjustment versus random multiplier offsets taken from a Gaussian distrib-
ution variance σ2

γ . (a) Forward path: Weight offsets have no effect on the MSE. Input
offsets quadratically increase the MSE, but with a bias synapse the effect is almost
negligible. (b) Feedback path: input offsets have little effect on the MSE, while error
offsets quadratically increase its value. Using learning-rate correction fully compensates
for this effect.

Feedback Path: Adding an offset vector γx to xk in Eqn. (2) yields a new
estimated gradient ∇̂′

k = 2εk(xk + γx), which converges to the original Wiener
solution w∗. The covariance of the new gradient estimation noise is cov[Ψ′

k] =
4ξmin(R+γxγT

x ) [8]. For small μ and assuming uncorrelated inputs, the gradient
noise propagates directly into vk, leading to a new misadjustment:

M ′ = M + μ

n∑

p=1

γ2
xp (14)

Eqn. (14) shows that the MSE increases quadratically with the multiplier
offsets but this effect is small and can be compensated with the learning rate.

Adding offsets to the error signal εk at each synapse computing its weight
update results in a new estimated gradient ∇̂′

k = −2(εkI + Γε)xk, where Γε =
diag([γε1 · · · γεn]) is the diagonal matrix of error offsets. Assuming that x has
zero mean, it is easy to show that w′∗ = w∗, and therefore ξ′min = ξmin.

However, the new estimated gradient quadratically increases the covariance of
vk to cov[v′

k] = cov[vk] + μΓ2
ε , where for simplicity we assume that the inputs

are uncorrelated. The misadjustment is:

M ′ = M +
μ

∑n
p=1 λpγ

2
εp

ξmin
(15)

Eqn. (15) shows that M ′ depends quadratically of γεp and linearly of ξ−1
min, so

the effect of offsets is much larger than the previous case. We can define a new
learning rate that compensates for the misadjustment:

U′ = μξmin(ξminI + Γ2
ε )

−1 (16)

Note that Eqn. (16) defines a different learning rate for each synapse and re-
quires knowledge of the offset values. If the circuit does not support individually
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programmable learning rates, the following global rate assumes that most offsets
lie within one standard deviation from the mean and yields good results:

μ′ =
μξmin

(ξmin + σ2
γε)

(17)

The simulation results in Fig. 2(b) shows the effects of multiplier offsets in
the feedback path. As expected, the effect of input offsets is almost negligible,
even without modifying the learning rate. Error offsets have a dramatic impact
with the original learning rate. Using Eqns. (16) and (17) to set the learning
rate fully compensates for the effect on the MSE.

3.3 Nonlinear Multipliers

Eqn. (4) models an analog multiplier where the parameter θp, which varies among
multipliers because of device mismatch, modulates the linearity of an odd, satu-
rating, monotonic nonlinear function fp(·). For example, the normalized transfer
function of a Gilbert multiplier [6] is fp(θp, xp) = tanh(θpxp)/ tanh(θp).

Forward Path: Applying a nonlinear function to the weights in the forward
path results in a new error signal ε′k = dk − xT

k f(wk), which yields the MSE:

ξ′k = E[d2
k] − 2pTf(wk) + f(wT

k )Rf(wk) (18)

The LMS algorithm converges to the new Wiener solution w′∗ = f−1(w∗), and
the minimal MSE is ξ′min = ξmin.

Because the learning rate is small, it is possible to estimate the gradient by
linearizing around the Wiener solution:

∇̂′
=

[
dk − xT

k

(
f (w′∗) +

∂f

∂w

∣∣∣
w=w′∗

(wk − w′∗)
)]

xk (19)

Eqn. (19) shows that the estimation noise depends on the values of w′∗ and
[∂f/∂w](w′∗). The worst case occurs when the target weights are at the point
where the slope of fp(·) is maximal, which corresponds to w′∗ = 0 for common
functions such as tanh(·). In that case, the estimated gradient is

∇̂′
= (dk − xT

k Aθwk)xk (20)

where Aθ = diag(∂f/∂w|w=0) is a diagonal matrix representing the slope of
f(·) at the solution. Eqn. (20) reduces the analysis of nonlinear weights to a
problem of mismatched multiplier gains. For a normalized Gilbert multiplier,
[tanh(θx)/ tanh(θ)] > 1, which increases the MSE. We can achieve ξ′∞ = ξ∞ by
normalizing the learning rate to the mean gain:

μ′ =
μ

mean[Aθ]
(21)
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If the nonlinearity affects the inputs in the forward path, the new error signal
is ε′k = dk − f(xT

k ) wk, yielding the new MSE:

ξ′ = E[ε′2k ] = E[d2
k] − 2p′Tw + wTR′w (22)

where p′ = E[dkf(xk)] and R′ = E[f(xk)f(xT
k )]. The MSE at the Wiener solution

w′∗ = R′−1p′ is:

ξ′min = E[d2
k] − E[dkf(xT

k )]w′∗ (23)

which is always greater than ξmin when dk is generated by a linear function.
Furthermore, LMS converges to w∞ = (E[xkf(xT

k )])−1E[dkxT
k ], which differs

from w′∗ as a function of the nonlinearity of f .

Feedback Path: Applying a nonlinear function f to the inputs in the feedback
path yields the LMS rule wk+1 = wk + 2μεkx′

k with x′
k = f(xk), which still

converges to the Wiener solution in its mean value. Therefore, ξ′min = ξmin, but
the nonlinearity of f affects the variance of wk and increases the residual MSE.
The misadjustment is given by the modified correlation matrix:

M ′ = μ tr(E[f(xk)f(xk)T]) (24)

For nonlinear functions such as [tanh(θx)/ tanh(θ)], f(x) > x and larger values
of θ increase the difference between M ′ and M . In the limit, tanh(θx) saturates
and behaves like sign(x), and we obtain an upper bound for the misadjustment
as M ′ ≤ μn. Note that this also increases the robustness of the algorithm to
outliers.

Applying a nonlinear function to the error at each synapse modifies the learn-
ing rule to wk+1 = wk +2μE′

kxk, with E′
k = diag[f1(εk) · · · fn(εk)]. Because the

error converges to a small value, we can linearize around this point and rewrite
the rule as:

wk+1 = wk + 2μ(Aθεk)xk (25)

where Aθ = diag[∂f1/∂ε|ε=0 · · · ∂fn/∂ε|ε=0]. The expression above is equivalent
to Eqn. (5) for mismatched gains in the feedback path, therefore the misad-
justment increases quadratically with the variance of θp and can be controlled
with the learning rate using Eqn. (21). Also, for saturating functions such as
[tanh(θx)/ tanh(θ)], the nonlinearity also limits the effects of outliers in the per-
formance of the algorithm.

Fig. 3(a) shows the effect of nonlinear multipliers on the MSE. As predicted by
Eqn. (22), nonlinear inputs in the forward path increase the MSE independently
of the learning rate. The effect on the forward-path weights and the feedback-
path inputs and error is much lower and can be further controlled by reducing
the learning rate. Fig. 3(b) shows the effect that this rate reduction has on the
convergence time, which is similar to the case of mismatched multiplier gains.
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Fig. 3. Effects of nonlinear multipliers on the performance of LMS. (a) Nonlinear inputs
in the forward path increase the MSE when the reference is generated by a linear
process, while the effect on the rest of the signals is much lower. (b) It is possible to
control the learning rate to trade residual for convergence speed.

4 Effect of Signal Noise and Limited Resolution

Degradation of signal resolution can arise from system noise, charge leakage in
capacitor-based weight storage, or quantization effects in digital or mixed-mode
implementations. We model the noise ηk as a Gaussian process of zero mean and
variance σ2

η. The analysis is equivalent to Section 3.2 with uncorrelated inputs.

Forward Path: In the presence of zero-mean random noise in the weights and
inputs of the forward path, the LMS algorithm still converges in the mean to
the original Wiener solution w∗. From Section 3.2, we obtain:

ξ
ηw
min = ξmin + E[ηT

k xkxT
k ηk] (26)

ξ
ηx
min = ξmin + w∗T E[ηkηT

k ]w∗ = ξmin + σ2
ηw

∗T w∗ (27)
Mηw = M = μtr(R) (28)
Mηx = M + μtr(E[ηkηT

k ]) = M + μnσ2
η (29)

Only input-noise modifies M , but both input and weight noise modify ξmin.

Feedback Path: With random noise in the forward-path signals the algorithm
still converges to the Wiener solution and ξmin is not modified because the output
is not directly affected. The new misadjustments are:

Mηx = M + μtr(E[ηkηT
k ]) = M + μnσ2

η (30)

Mηε = M + (μ/ξmin)
n∑

p=1

λp var[ηkp] = M + (μ/ξmin)σ2
ηtr (R) (31)

The effect error noise on the misadjustment is large, but we can extend
Eqn. (17) to derive a new learning rate that guarantees that ξηε∞ ≤ ξ∞:

μ′ =
μξmin

(ξmin + σ2
η)

(32)
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Fig. 4. Simulated effect of signal noise and digital arithmetic. (a) Noise in the forward
path has a strong effect on ξmin and degrades the learning performance of LMS. The
effect of noise in the feedback path is much lower, and can be further reduced with the
learning rate. (b) The same analysis applies to the resolution of digital signals.

Fig. 4(a) shows the simulated misadjustment (with respect to the original
ξmin) versus the standard deviation of the noise, normalized to the signal range.
The simulated plots follow closely the results predicted by the expressions above.
Fig. 4(b) shows the misadjustment versus the resolution of digital arithmetic cir-
cuits. The bit-widths were chosen match the signal-to-noise ratio used in Fig. 4(a)
according to [bits] = log2

(
[signal range]

6ση

)
. The figure shows that the analysis pre-

sented in this section can also be used to predict the performance of digital
arithmetic circuits implementing parts of the algorithm.

5 Conclusions

We presented an analysis of the effects of analog and mixed-signal hardware on
the performance of the LMS algorithm. We derived bounds for the degradation
in MSE and convergence time caused by effects such as multiplier offsets, gain
mismatch, nonlinear transfer functions, noise, and charge leakage. We discussed
design techniques to compensate for these effects such as local and global learning
rate adjustment and bias synapses, and quantified their impact on the perfor-
mance of the algorithm. We are currently extending this work to the design of
dimensionality-reduction networks using Principal Components Analysis.
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