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Abstract. We introduce a new method for obtaining optimal architec-
tures that implement arbitrary Boolean functions using threshold func-
tions. The standard threshold circuits using threshold gates and weights
are replaced by nodes computing directly a threshold function of the
inputs. The method developed can be considered exhaustive as if a so-
lution exist the algorithm eventually will find it. At all stages different
optimization strategies are introduced in order to make the algorithm
as efficient as possible. The method is applied to the synthesis of cir-
cuits that implement a flip-flop circuit and a multi-configurable gate.
The advantages and disadvantages of the method are analyzed.

1 Introduction

In this paper we introduce an algorithm for finding a set of threshold functions
(also called linearly separable functions) that will compute a desired (target)
arbitrary Boolean function. This problem is known as the synthesis problem of
Boolean functions and has been much studied since the 60’s ([1,2,3]). The interest
in using threshold gates or linearly threshold functions instead of standard logical
AND, NOT and OR gates relies on the fact that threshold elements are more
powerful than standard gates and as a consequence, the size of the circuits that
can be constructed to compute the desired functions can be smaller. There is
an extra interest in the study of threshold circuits as they are very close related
to neural networks models, and thus some of the properties and characteristics
of the circuits also apply to neural networks architectures. Our main motivation
for the development of this method is the study of neural networks architectures
[4,5]. The standard practice for the architecture selection process within the
field of artificial neural networks is the trial-and-error method that is very time
consuming. Knowing and characterizing which architectures are best suited for a
given class (or set) of functions can much help to the development and refinement
of existing methods for constructing better neural architectures and also for
gaining further understanding on the learning process. The problem of finding
optimal architectures is relevant also for a more theoretical point of view within
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the area of circuit complexity, as different existing bounds can checked and/or
improved ([6]).

The method introduced in this paper permits the synthesis of Boolean func-
tions in terms of the set of threshold Boolean functions. The standard threshold
circuits, use threshold gates connected by weights that in the present formu-
lation are replaced by threshold functions. Obtaining the whole set of linear
separable functions is a complicate and computationally intensive problem and
the set functions of threshold functions have been only obtained up to N = 10
variables ([3]).

Research in threshold logic synthesis was done mostly in the 1960s ([1,2,3]).
Nowadays, different implementations of circuits by threshold gates are available,
and several theoretical results have been obtained [6,7,8,9] together with different
applications ([10]). The main difference with previous approaches is that the
present work is aimed to find optimal architectures.

2 Synthesis of Boolean Functions by Linearly Separable
Functions

We introduce in this work a new method for finding a set of linearly separate
functions that will compute a given desired Boolean function (the target func-
tion). The method use the linearly separable set of functions as basis functions
(or primitives) and thus assumes that whether a list of the functions is avail-
able or that a method for testing whether a given function is linearly separable
is provided (the first approach is used throughout this work). One important
difference with previous works is that our approach works straightforward with
the set of threshold functions as basis functions and not through their equivalent
representation by threshold gates and weights.

2.1 The Algorithm

Without loss of generality, we will analyze the case of architectures comprising
a single layer of hidden nodes. The algorithm can be straightforwardly extended
to the case of several layers of nodes. The algorithm is aimed to find a set of
linearly separable functions for the hidden nodes and for the output node that
implement a desired target function. The choice of the output function is crucial
for the procedure as once that an output function has been chosen, the algo-
rithm will test all possible solutions and then the choice of the output function
has a multiplicative computational effect. However, the search procedure of the
hidden node functions is the most intensive and complicated step, and different
optimization strategies can be implemented.

Selection procedure for the output function. From first principles, there
are two “logic” choices for the output function: the first one would be to se-
lect an output function as the most similar threshold function to the target
one. This procedure is not straightforward as a measure of similarity between
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the functions is needed, but a simple choice seems to select the closest linearly
separable function in terms of the Hamming distance (number of different bits)
between the outputs of the two functions. The second logic choice could be to
select the output function according to the success rate of the functions (or of
similar functions in lower dimensions) in previous cases. While the two men-
tioned approaches seems to merit consideration, there is also a computationally
effective oriented choice. In this case functions that will generate a shorter node
search procedure will be considered first. This was the approach used in this
work. It will be more clear later in the work after the node search algorithm is
introduced, but the general idea is that as the node search algorithm generate a
tree of possible solutions and as the number of branches at a ramification point
is proportional to the number of solutions, the more computational intensive
cases will occur for output functions with a balanced number of 0’s and 1’s.
Thus, functions with a non-balanced number of 1’ and 0’s will be considered
earlier as candidates for the output function. This choice, even if motivated by
computational efficiency, may be not the more efficient, specially if unbalanced
functions results to be not very good for the synthesis problem. On the contrary,
if almost all functions are more or less equivalent, or if unbalanced functions
are well suited for this task of generating non-threshold functions, then the ap-
proach taken might be the most computationally effective as it was intended.
Some preliminary experiments showed that the unbalanced functions seem to be
good as output functions.

Selection procedure of the hidden nodes function. Once the output func-
tion has been set to a given linearly separable function, the problem translates
into finding a set of linearly separable functions for the hidden nodes that would
make the circuit to implement the target function. The algorithm analyze the
different possibilities of mapping the inputs into a set of recoded inputs for the
output function, in way such that the output function might be able to map
them correctly onto the solution. To exemplify the procedure, we will analyze
the simple case of finding the optimal circuit for the NXOR function. The NXOR
function is a Boolean function of two input bits where the output of the function
is 0 if the sum of the two input bits is 1 and the output is 1 if the sum of the
input bits is even (inputs 0-0 and 1-1 ). The NXOR function is a classic example
of a non linearly separable function and thus an architecture with two hidden
nodes, at least, is needed for their implementation with threshold functions (it
is known that 2 hidden nodes are enough for implementing this function). For
exemplifying the procedure we use an architecture with two hidden nodes, both
connected to the two inputs. In Fig. 1 such an architecture is shown, where I0
and I1 indicate the input nodes that will feed their values into the hidden nodes.
The hidden nodes will compute two linearly separable functions named f0 and
f1 while the output function is indicated in the figure by fout.

For the example under consideration, we will analyze the situation in which
the output function has been already selected. We consider as output func-
tion the function AND, that produce an output 1 only for input values 1-1. The
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Fig. 1. A two hidden node architecture used for showing the procedure of finding
a solution for the NXOR function. The inputs to the network are indicated by I0

and I1. The hidden nodes will compute as a function of the input bits two linearly
separable functions indicated by f0 and f1 that will send their outputs to the output
node function indicated by fout.

functions will be designated according to the outputs that the function produce
in response to the inputs, with values ordered according to their binary value.
For the present case, in which input functions of two bits are considered the order
of the inputs and outputs is as follows: first, the output in response to the input
0-0, second to the input 0-1, third to 1-0 and finally the output corresponding
to the input 1-1. In this way, the AND function is indicated by 0001, while the
NXOR function would be coded as 1001. The procedure for finding the threshold
functions for the node functions f0 and f1 proceeds in a number of steps in which
the possible outputs for f0 and f1 are considered.

Now we consider the first output bit of the target function, that is equal to 1
(in response to the first input 0-0). As the function AND was selected as output
function (fout), and this function produce a 1 in response only to an input 1-1, it
is needed that both node functions, f0 and f1, produce an output 1 in response
to the input pattern 0-0. That is, the node functions have to recode the original
input of the network, the input 0-0, into the input 1-1 for the output node,
otherwise the output function would not coincide with the target one. Now the
procedure continues with the second input bit, 0-1, for which the target output
is 0. The selected output function produce a 0 in response to three input cases
and then there are three possible cases into which the input 0-1 can be recoded
by the node functions. The function fout gives a 0 in response to the inputs 0-0,
0-1 and 1-0 and then we obtain, putting together the results for the first and
second output bits the following tree of possibilities, shown in Fig. 2. The three
cases are indicated in the diagram as branches of the first case on the top, for
which there was a single possibility.

The procedure continues considering the rest of the cases corresponding to
the third and fourth input bits. The whole tree generated as the procedure is
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Fig. 2. The possible cases for the node functions f0 and f1 as the two first input bits
are considered for the case of choosing the NXOR as target function and the AND as
output function. Within the boxes, the 4 pairs of values correspond to the outputs of
the two functions in response to the 4 inputs. The question mark indicates that the
value is still undetermined.

applied is shown in Fig. 3. The nine boxes in the last two bottom rows contain
the nine function candidates for the node functions, but the only possible ones
are those boxes containing two threshold (linearly separable) functions (the two
boxes at the rightmost end of the bottom row containing functions with only
one output bit equal to 1, as all the other boxes contain the function 1001 that
is non-linearly separable).

1
1

?
?

?
?

?
?

1
1

0
0

?
?

?
?

1
1

1
0

?
?

?
?

1
1

0
1

?
?

?
?

1
1

0
0

0
0

?
?

1
1

0
0

1
0

?
?

1
1

0
0

0
1

?
?

1
1

1
0

0
0

?
?

1
1

1
0

1
0

?
?

1
1

1
0

0
1

?
?

1
1

0
1

0
0

?
?

1
1

0
1

1
0

?
?

1
1

0
1

0
1

?
?

1
1

0
0

0
0

1
1

1
1

0
0

1
0

1
1

1
1

0
0

0
1

1
1

1
1

1
0

0
0

1
1

1
1

1
0

1
0

1
1

1
1

1
0

0
1

1
1

1
1

0
1

0
0

1
1

1
1

0
1

1
0

1
1

1
1

0
1

0
1

1
1

Fig. 3. The whole tree of possibilities for the choices of the node functions for the case
of the NXOR target function. The nine boxes in the last two bottom rows are the
nine candidates for the functions but the only possible ones are those in which both
functions are linearly separable functions (See the text for details).

The node searching procedure ends if two linearly separable functions are
found, but if this is not the case, a different output function, fout, is chosen from
the set of threshold functions and the whole procedure is repeated until all the
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threshold functions with a number of variables equal to the number of nodes are
tested. If a solution is not found, the number of nodes is augmented by one and
the whole procedure repeated, and so on.

2.2 Optimization Steps: Order of Branching and Pruning by
Testing Linear Separability

Several optimization steps were introduced to speed up the computational process.
We will refer here to only the most important ones. The first optimization step
is about the order in which the input bits are considered for the node searching
process. If the output function is unbalanced, it is convenient to analyze first the
inputs of the output function that produce an output that occur less infrequently
as the degeneracy of the output values is related to the number of branches that
are created in the tree of possible choices for threshold functions. The second opti-
mization concern the test of linear separability for the partial defined functions. It
is possible to analyze by previously constructing a tree with all the linearly sepa-
rable functions, whether a partial defined Boolean function will end up producing
some threshold functions. If the partially defined function will not produce any
threshold function, the branching process is ended at that point, and the tree is
pruned. Alternatively, the checking for linear separability can be done by testing
the unateness of the variables, as all threshold functions are unate (but not con-
versely, so the test is a partial one).

3 Application of the Algorithm to the Construction of
Optimal Architectures for a Flip-Flop Circuit and a
Configurable Gate Circuits

We applied the algorithm developed in the previous section to the construction of
threshold circuits that implement in an optimal way (with a minimum number
of nodes in a single hidden layer) a flip-flop circuit and a configurable gate.
The flip-flop circuit (or bistable) is a standard digital circuit in electronics that
incorporates the storage of memory in its functioning.

The resulting architecture obtained by the algorithm has three nodes in the
unique hidden layer and is depicted in Fig. 4.

The three hidden functions receive input from the 4 inputs and then project
into the two outputs units. The “fan-in max” (maximum number of connections
that a node receives) is 4 and thus, the whole set of threshold functions of up to
4 variables was needed. The four inputs of the circuit are the Memory input bit
(M), the Enable bit (EN), the Input bit (IN) and the Read/Write bit (R/W).
The circuit has two output nodes, the first one (fM ) feedbacks into the memory
bit permitting the storage of memory and the second one is the true output of
the circuit, designated in the figure as (fout) . When the enable bit is OFF (value
0), the circuit outputs the value of the Input bit (I). When the Enable (EN) bit
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Fig. 4. The architecture designed to implement a flip-flop circuit. The architecture has
a single hidden layer containing three nodes and two outputs nodes. One of the output
nodes, indicated as fM , feedbacks the input value to the memory neuron, and the other
output, fout, can be considered as the real output of the network.

is ON the circuit works depending on the value of the R/W bit, reading the
value stored in memory and sending it to the output or by writing the value of
the input into the memory. The truth table for the flip-flop circuit implemented
is shown in Fig. 5.

In Table 1 the output values of the obtained functions that implement the
circuit are shown. The case shown is only one of the 120 cases obtained.

Table 1. The threshold functions obtained for one of the solutions found for the flip-
flop circuit. The node functions are functions of N=4 input bits and then 16 output
values exists, while the output functions have a fan-in of 3 and then 8 binary values
are needed to code them.

Function Output bits

f0 0000000111111111
f1 0011001100111011
f2 1011000011111010
fM 00000111
fout 00010001

Also a circuit to implement a multi-configurable gate was constructed. The
circuit can compute as desired a AND, OR, NXOR or NAND as a function of
the two inputs (IN0 and IN1). The function to be computed is selected by two
extra input bits (C0 and C1), and the truth table of this multi-configurable gate
is shown in Fig. 6.

The architecture implementing the multi-configurable gate is shown in Fig. 7
where it is also shown, close to the nodes, the functions obtained from the
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M EN IN R\W Out-M OUTPUT
0 0 0 0 0 0

0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 0 1 0 #
0 1 1 0 0 0
0 1 1 1 1 #
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 0 #
1 1 1 0 1 1
1 1 1 1 1 #

 

Fig. 5. Truth table of a flip-flop (bistable) circuit. The circuit, when the Enable (EN)
input is activated, can store a value in memory (Write procedure) or transmit the
stored value (Read procedure) depending of the value of the R/W input bit. If the
Enable bit is off, the network simply output the value of the single input (IN).

 
C0 C1 IN0 IN1 OUTPUT

0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

0 0 0 0 0

Fig. 6. Truth table of a multi-configurable circuit with N=2 inputs. The two selection
bits,(C0 and C1), indicate which function should be computed.

procedure coded by their outputs. It is also shown in the figure, the operation
of the circuit for two inputs, the first and the fourth, showing for the first input
how this is mapped by the node functions to the first bit of the output node
to produce a desired output of 0. For the fourth input, the output of the three
hidden nodes recoded it as 1-0-1 producing a desired output of 1 by the output
node.
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Fig. 7. The architecture of the circuit computing a multi-configurable gate that can
work depending of the value of the indicator bits (C0 and C1) as a AND, OR, NXOR
or NAND gate. Close to the nodes, the functions that make the circuit to work as
desired are indicated by the value of their outputs in response to the input patterns.
(See the text for more details)

4 Discussion

We have introduced a new method for finding the optimal circuit architecture
that computes an arbitrary Boolean function in terms of linear separable prim-
itives. Starting from different “smart” choices of the output function the algo-
rithm tries to find linearly separable functions for the hidden nodes according
to the values of the output and target function. Eventually if a solution has
not been found, the algorithm searches for all the possible solutions and in that
way does an exhaustive search. Different optimization steps were introduced to
improve the computational efficiency. The method was successfully applied to
the construction of threshold circuits for the flip-flop circuit and for a multi-
configurable gate. For both implementations the whole synthesis procedure took
less than half of a minute, but we are aware that they only involved nodes
with a fan-in max of 4. The worst case complexity of the algorithm is of order
O(2MN2

2M2
), where N is the number of input variables, M is the number of

hidden nodes and the factors of the type 2N2
arise because that is the order

of the number of threshold functions on N variables (It is worth noting, as a
reference value, that the total number of Boolean functions on N variables is
22N

). We are currently computing the average case complexity for the case of all
functions on 4 variables that can be treated exhaustively. We believe that the
algorithm can be of practical application for larger dimensions of up to 8 or 10 in
its present way and it seems also possible to develop from the current algorithm
non-optimal procedures for larger dimensions. We are currently analyzing all the
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optimal architectures for all the existing Boolean functions of 4 variables, mea-
suring the speed of the algorithm against standard benchmarks and studying
the properties of multi-layer and modular neural network architectures.

Acknowledgements

The authors acknowledge support from CICYT (Spain) through grant TIN2005-
02984 (including FEDER funds). Leonardo Franco acknowledges support from
the Spanish Ministry of Education and Science through a Ramón y Cajal fel-
lowship.

References

1. Winder, R.O. (1962). Threshold Logic, Ph.D. dissertation, Department of Mathe-
matics, Princeton University.

2. Dertouzos, M.L. (1965) Threshold Logic: A Synthesis Approach. Cambridge, MA:
The M.I.T. Press.

3. Muroga, S. (1971).Threshold Logic and its Applications, Wiley, New York
4. Franco, L. (2006). Generalization ability of Boolean functions implemented in feed-

forward neural networks. Neurocomputing. In Press.
5. Franco, L. and Anthony, M. (2006). The influence of oppositely classified exam-

ples on the generalization complexity of Boolean functions. IEEE Transactions on
Neural Networks. In Press.

6. Siu, K.Y., Roychowdhury, V.P., and Kailath, T. (1991). Depth-Size Tradeoffs for
Neural Computation IEEE Transactions on Computers, 40, 1402-1412.

7. Oliveira, A. L. and Sangiovanni-Vincentelli, A. (1991). LSAT: an algorithm for the
synthesis of two level threshold gate networks. In: Proceedings of the ACM/IEEE
International Conference on Computer Aided Design, Santa Clara, CA, IEEE
Computer Society Press, 130-133.

8. Noth, W., Hinsberger, U., and Kolla, R. (1996). TROY: A Tree-Based Approach to
Logic Synthesis and Technology Mapping, In: Proceedings of the 6th Great Lakes
Symposium on VLSI, p. 188.

9. Zhang, R., Gupta, P., Zhong, L. and Jha, N. K. (2005). Threshold Network Synthe-
sis and Optimization and Its Application to Nanotechnologies, IEEE Transactions
on computer-aided design of integrated circuits and systems, 24, 107-118.

10. Beiu, V., Quintana, J.M. and Avedillo, M.J. (2003). LSI implementations of thresh-
old logic - A comprehensive survey, IEEE Trans. Neural Networks, 14, 1217-1243.


	Introduction
	Synthesis of Boolean Functions by Linearly Separable Functions
	The Algorithm
	Optimization Steps: Order of Branching and Pruning by Testing Linear Separability

	Application of the Algorithm to the Construction of Optimal Architectures for a Flip-Flop Circuit and a Configurable Gate Circuits
	Discussion

