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Abstract. In this paper, we introduce an enhancement to the Neurosolver, a neu
romorphic planner and a problem solving system. The enhanced architecture en
ables contextual learning. The Neurosolver was designed and tested on several
problem solving and planning tasks such as re-arranging blocks and controlling 
a software-simulated artificial rat running in a maze. In these tasks, the Neuro
solver learned temporal patterns independent of the context. However in the real 
world no skill is acquired in vacuum; Contextual cues are a part of every situa
tion, and the brain can incorporate such stimuli as evidenced through experi
ments with live rats. Rats use cues from the environment to navigate inside 
mazes. The enhanced architecture of the Neurosolver accommodates similar 
learning. 

1 Introduction 

The goal of the research that led to the original introduction of Neurosolver, as re
ported in [1], was to design a neuromorphic device that would be able to tackle prob
lems in the framework of the state space paradigm [2]. The research was inspired by 
Burnod’s monograph on the 
workings of the human brain [3]. 
The class of systems that employ 
state spaces to present and solve 
problems has its roots in the early
stages of AI research that derived 
many ideas from the studies of 
human information processing; e.g.,
on General Problem Solver [2]. This
pioneering work led to very interest
ing problem solving (e.g. SOAR 
[4]) and planning systems (e.g. 
STRIPS [5]). 

Fig. 1. An artificial cortical column. 
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1.1 Architecture of the Neurosolver 

The Neurosolver is a network of interconnected nodes. Each node is associated 
with a state in a problem space. A problem is presented to the Neurosolver by two sig
nals: a goal associated with the desired state and a sensory signal associated with the 
current state. The goal is delivered through the limbic input to the upper division of
the node, and the percept, through the thalamic input to the lower division of the node. 
A sequence of firing nodes represents a trajectory in the state space. A solution to a 
problem is a succession of firing nodes starting with the current node and ending with 
the goal node.

The node used in the Neurosolver is based on a biological cortical column (refer
ences to the relevant neurobiological literature can be found in [1]). It consists of two 
divisions: the upper and the lower, as illustrated in Fig. 1. The upper division is a unit 
integrating internal signals from other upper divisions and from the control center
providing the limbic input (i.e., a goal or - using more psychological terms - a drive or 
desire). The activity of the upper division is transmitted to the lower division where it 
is subsequently integrated with signals from other lower divisions and the thalamic in
put. The upper divisions constitute a network of units that propagate search activity
from the goal, while the lower divisions constitute a network of threshold units that in
tegrate search and sensory signals, and generate sequences of firing nodes. The output
of the lower division is the output of the whole node. An inhibition mechanism pre
vents cycles and similar chaotic behavior. 
Simply, a node stays desensitized for a certain 
time after firing. 

1.2 Learning in the Neurosolver 

The Neurosolver learns by receiving 
instructional input. Teaching samples repre
senting state transitions are translated into 
sequences of firing nodes corresponding to 
subsequent states in the samples. For each state 
transition, two connections are strengthened: 
one, in the direction of the transition, between the lower divisions of the two nodes, 
and another, in the opposite direction, between the upper divisions (Fig. 2). The 
strength of all inter-nodal connections is computed as a function of two probabilities: 

Fig. 3. Statistics collected for 
computing connection strengths. 

the probability that a firing source node will gen
erate an action potential in this particular connec
tion and the probability that the target node will
fire upon receiving an action potential from the 
connection. 

To compute the probabilities, each division
and each connection collects statistics (Fig. 3).
The number of transmissions of an action poten
tial Tout is recorded for each connection. The to
tal number of cases when a division positively 

Fig. 2. Learning in the Neuro-
solver is probabilistic. 



influenced other nodes Sout is collected for each division. A positive influence means 
that an action potential sent from a division of a firing node to another node caused 
that node to fire in the next cycle. In addition, we also collect statistical data that relate 
to incoming signals. Tin is the number of times when an action potential transmitted 
over the connection contributed to the firing of the target node and is collected for 
each connection. Sin, collected for each division, is the total number of times when 
any node positively influenced the node. With such statistical data, we can calculate
the probability that an incoming action potential will indeed cause the target node to 
fire. The final formula that is used for computing the strength of a connection (shown 
in Eq. 1) is the likelihood that a firing source node will induce an action potential in 
the outgoing connection, mulitplied by the likelihood that the target node will fire due 
to an incoming signal from the connection: 

P = Pout ⋅Pin = (Tout/Sout)⋅(Tin/ Sin) (1) 

1.3 Learning sequences 

As we already mentioned, the
function of the network of upper
divisions is to spread the search
activity along upper-to-upper 
connections (Fig. 4) starting at the 
original source of activity, the 
node associated with the goal state
that receives the limbic input,. 
This is a search network, because 
the activity spreads in hope that at
some node it will be integrated within the activity of the same lower division that re
ceives a thalamic input. If the activity exceeds the output threshold, then the node will 
fire triggering a resolution. The thalamic input is applied to the node corresponding to 

the current state. The process 
of spreading activity in a 
search tree is called goal re
gression [5]. 

The purpose of the net
work composed of lower di
visions and their connections 
is to generate a sequence of
output signals from firing
nodes (along the connections
shown in Fig. 5). Such a se
quence corresponds to a path
between the current state and 
the goal state, so it can be 
considered a solution to the 
problem. As we said, a firing 

Fig. 5. The Neurosolver learn temporal pat-
terns. 

Fig. 4. A search (upper) and an execution (lower) in 
the Neurosolver. 
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of the node representing the current state triggers a solution. Each firing node sends
actions potentials through the outgoing connections of its lower division. These sig
nals may cause another node to fire if its attention (i.e., the activity in the upper divi
sion) is sufficiently high. In a way, the process of selecting the successor in the resolu
tion path is a form of selecting the node that is activated the most. The purpose of
inhibiting a node for some time after firing is to avoid oscillations. The length of the
inhibition determines the length of cycles that can be prevented. The Neurosolver ex
hibits goal-oriented behavior similar to that introduced in [6]. 

Simulated Rat Maze 

We tested the Neurosolver capabilities on several abstract data sets of various sizes 
and have successfully applied the Neurosolver as a planner for rearranging blocks in a 
block world. Our analysis of the Neurosolver capabilities in the context of symbolic 
planners proves that it is a promising adaptive mechanism for general planning and
problem solving. We collected these and many other ideas from several earlier publi
cations in a summary article published as [1].

Currently, to explore Neurosolver’s cognitive capabilities, we apply it to control a 
rat running in a maze. The Neuroscience and Cognitive Science community com
monly use rats to gain insight into brain processes. One area of research is concerned 
with rats running in several types of mazes (e.g., an excellent Web site on rat behavior 
[7]). Evidently, rats are good learners in this domain (e.g., [8]). In one type of maze, a 
rat is allowed to explore the maze with food placed in constant locations. In subse
quent runs, the rat improves its ability to locate the food faster. One of the currently 
supported hypotheses says that the rat builds a topology of the maze in its brain (cog
nitive map) encoded by place cells in hippocampus ([9]). 

Rats evidently use topological maps of the maze to construct best possible paths to 
food locations. Neurosolver has been constructed on the premise that temporary asso
ciations are made in cortex. Some researchers hypothesize that the entorhinal cortex is 
a link between labile 
episodic storage in the 
hippocampus to more 
permanent and se
mantic storage in the 
cortex ([11]). 

To conduct 
experiments, we built a
simulated rat maze. 
The user interface is 
illustrated in Fig. 6. 
The simulator consists 
of the maze area (left
side of the frame1) and Fig. 6. The rat maze simulator. 

1 We will use just this area in the subsequent illustrations. 



the control area. The maze area consists of a number of locations separated by walls.
Mazes of various shapes can be built by modifying the walls. The rat can be posi
tioned by dragging its image to a desired location. Food (illustrated by a piece of
cheese) can be placed in multiple locations also by dragging the image from the loca
tion in which it is posted when the More Food button is pressed. Clicking on the Run
button activates the metabolic system that gradually increases the sensation of hunger. 
If the motivation to find food exceeds a certain threshold, the rat's limbic system is ac
tivated. The rat starts to run. The Run button changes to Pause, so the simulator can be 
stopped and restarted at will.

The Change Context button changes the color of the floor that is used in experi
ments on contextual learning. We will discuss the details later in this paper.

The rat is capable of moving in four directions: up, right, down and left. It can
move only if there is no wall between two neighboring locations. The simulated rat
uses an instance of Neurosolver to determine the next move in the maze. Other search 
modes such as random, constrained, and depth-first search are implemented to control 
the rat if the Neurosolver cannot find a solution . 

When the rat finds food its motivation level decreases to below threshold, another 
parameter controlled and the rat may stop running. The threshold for this is one of the
parameters that can be controlled during experiments. 

Rats use cues from the environment to activate a specific place cell in the brain 
([12]). A similar associative mechanism allows a rat to learn and remember where the 
food was found ([11]). Similarly, in the simulator, the rat remembers the locations of 
successful feedings, so it can use them as goals in the future runs. If the rat finds food 
again in the location of a goal, the strength of that goal increases, so the rat is more 
likely to pursue this goal in the future. Conversely, if the rat gets to a location that had
food in the past, but the food is not there, the strength of the goal is lowered. If such
negative experience is consistent, the goal will be completely inhibited, a behavioral 
process called extinction ([13]). We are planning to examine the goal management 
theories to a greater extent in the future. 

Using our simulator, we performed a number of tests with the artificial rat running 
in various mazes. A T-maze is the simplest type of maze used in experiments with 
rats. A passage in a shape of the letter T forces the rat to choose the direction, left or 
right, at the crossing as shown in Fig. 6. If food is placed consistently in one arm of
the T, then this is the arm that will be selected by the rats in the subsequent runs. If the 
rat obtained food from both arms then it will choose the one that has a better trace in 
memory. 

In another experi
ment shown in Fig. 7
(a), there are three 
paths leading from 
the original position
of the rat to the food. 
The rat selects the 
shortest path if the 
uniform learning is 
selected. If 
probabilistic learning 

(a) (b) (c) 

Fig. 7. The rat selecting best path (a), the rat pursuing multi-
ple goals (b) and a rat faced with multiple-T maze (c). 
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is chosen, then the path most often followed in the past and therefore the most prob
able, will be taken. This behavior comes from the fundamental characteristics of the 
Neurosolver. If a wall is created along the shortest path, then the rat reconsiders the 
plan and selects an alternate path backtracking as necessary. The rate of degradation
can be controlled from the simulator. Live rats may exhibit abberant behaviors during 
such stressful situations that may lower the motivation induced by hunger. As long as 
the threshold to search for food is met, the rat will try to get to the goal by any means 
putting more effort in recollections of past passages and food locations. Fig. 7 (b) 
shows a rat in a maze with four branches (“star-shaped”). The simulated rat trying to
get all food again performs similarly to live rats. If food is removed from certain loca
tions, then the rat will tend to move to the branches that pr

Fig. 8. The rat selecting best path (left), the rat pur-
suing multiple goals (center) and a rat faced with multi-
ple-T maze. 

ovided consistent food-
reward. There is a more 
complex T-maze used in 
tests with rats as shown in 
Fig. 7 (c). The rat is faced 
with multiple choices (T’s) 
on their path to the food. 
This is a more challenging
task to live rats. It also takes 
a longer training session for 
the artificial rat to build a 
map, and higher motivation 
to find a path to the food. 

Applying Context 

In spite of these successful experiments, a problem arises if the probability of find
ing food is the same in both arms of T-maze as shown in Fig. 8. For example, if the 
number of successful feeding in both arms of T-maze is the same, then the rat is con
fused. Where should the rat go left or right?

Figure 9 illustrates a top view of the Neurosolver trying to solve the rat’s problem. 
The activity spreads from the cells corresponding to both goals (food locations) along

the learned paths. The 
common segment of 
the search path is ac
tivated a bit more, be
cause the search activ
ity from the left goal
is integrated with the 
activity coming from 
the right goal. That 
does not have much of 
an impact on the trig
ger in the cell corre
sponding to the cur-

Fig. 9. The rat selecting best path (left), the rat pursuing 
multiple goals (center) and a rat faced with multiple-T maze. 
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rent position of the rat in the maze. The columns fire along the common segment, but
then there is no clear-cut choice whether the next firing column should be to the left or 
to the right from the fork location. The Neurosolver tries to increase the activity from
the goals, but it is increased by the same amount on both sides. The current version of
the Neurosolver has a mechanism that arbitrarily selects one of such alternative col
umns and forces it to fire. The mechanism is not biologically plausible. Animals – as 
well as humans – make choices, and the choices are made using context. 

Neuroscientists working with rats routinely incorporate context in the learning 
process (e.g., [7]). The Morris water maze is used as evidence for spatial contextual 
learning. In such a maze, the rat cannot see a hidden platform submerged in white, 
opaque water, but it nevertheless learns its position by using visual cues from the envi
ronment. The results (e.g., [16], [17) indicate that rats navigate using direct cues to the 
goal (taxon navigation) or memories based on places activated by the environment 
clues (praxic navigation), although the true nature of rats’ maze running skills is still 
under discussion (e.g., [18]). When the environment changes, or obstacles like walls 
are used to obstruct the view, the appropriate place cells do not fire, implying that the 
rat is unaware of its true location and needs to re-discover the platform through more
explorations. As we mentioned earlier, our simulator already includes such a discov
ery mechanism. 

At this stage, we are interested in praxic navigation, because at the moment we do 
not experiment with 
real-time visual 
information that could 
be used to guide move
ments (like in hand-eye 
coordination). To 
introduce a context, the
color of the maze floor 
or the color of the light
illuminating the maze 
might be changed (let’s 
say yellow and red)
depending on the food location. This is of course inspired by experiments with live
rats, as they tend to follow the paths leading to goals associated with the color of the 
floor or the color of the light. 

Fig. 10. Yellow floor (left; in here it’s white) and red floor 
(right; in here it’s grey) might be used for contextual learning. 

We have extended the maze simulator, so a colored floor can be used in the rat 
maze simulator as illustrated in Fig. 10. Through the addition of the color cue, we can
conduct experiments involving contextual learning. 

Architecture for Contextual Reasoning 

The new capabilities of the simulated maze amount to just one element of the re
quired modifications. More fundamentally, the Neurosolver needs new functionality to 
accommodate context. One way to do this would be to incorporate the contextual in
formation as one of the dimensions that determine the place cell – in our jargon, a hy



Fig. 11. Contextual association with red floor (left) 
and yellow floor (right). 

percolumn that corresponds to the location of the rat. In that way, the identical path
learned with red floor would be represented in the Neurosolver separately from the
same path that was learned with yellow light, because the place cells would be differ
ent2. That solution would be a 
waste of the Neurosolver 
resources, because each new 
cue would lead to yet another 
space. Therefore, we propose 
a different architecture that 
uses auxiliary contextual cells
instead. A context cell is acti
vated by contextual cues3. It 
is debatable which solution is 
more biologically plausible,
but the use of contextual (or 
snapshot as some researchers call them) cells makes sense from a pragmatic perspec
tive, because the storage requirements are drastically lower in the approach that we 
have taken. 

As illustrated in Fig. 11, the color of the floor results in activation of the context 
cell corresponding to that color. At times, the contextual cells will be co-activated 
with the firing nodes of the Neurosolver corresponding to the movements of the rat.

Fig. 12. Computing con-
nection strength between the
context cell and the upper di-
vision of a node. 

As described earlier, the Neurosolver columns fire in
response to the thalamic input reflecting changes in 
the rat’s location. Through the use of Hebbian learn
ing rules, each node in the temporal pattern becomes
gradually associated with the co-activated context 
cell as shown in Fig. 12. Similarly to the connection
strengths in the Neurosolver, we apply statistical 
learning here. The strength of a connection is based
on the co-activation statistics. If any given hypercol
umn fired S times, and a specific context cell was co
activated T times, then the strength of the connection 
is the co-activation probability Pc: 

Pc = T/S (2) 

After the learning, during Neurosolver’s operation, any activity in the context cell
is modulated by that probability and projected into the upper division of the hypercol
umn. 

With such associations in place, certain nodes of the Neurosolver are activated even 
in absence of any search activity (see Fig. 13, upper left). The nodes in the search 

2 They would be two different points in the state space that includes a color axis, and the projec
tions on this axis (“red” or “yellow”) would be different for both paths. 

3 For example, it can be selected through a competitive, winner-takes-all network. Creating such a
network is not the objective of the work reported in this paper. Instead, we assume that a recog
nizing mechanism is in place, and red color activates one cell, while yellow activates the other 
one. 



consuming the reward after making the 

Fig. 13. Search and resolution 
with contextual cues. 

path corresponding to a particular learned se
quence will now be activated not only by the
activity coming from the source of the search,
but also by the activity coming from the con
text cell. When two competing goals are ap
plied, the search progresses as described ear
lier, but the nodes in the path associated with
the current context are activated at a higher 
level, because the search activity integrates 
with the contextual activity. When the trigger 
activates a resolution path, the firing nodes
will follow the highest activity in the neigh
borhood, so when the node corresponding to 
the fork in the T-maze fires, the next node to 
fire will more likely be the one on the path
whose nodes are associated with the currently 
active context. 

Figure 14 illustrates the corresponding be
havior of the rat in the maze with two differ
ent contexts. With the yellow floor, the rat 

turns right and is shown just before 

correct choice. In the second run, with
the red floor, the rats turns to the left,
and again is shown just before feeding. 

5 Conclusions and 
future work 

In spite of the obvious 
simplifications, the Neurosolver used 
as a brain of the artificial rat performs
analogously to live rats when tested on
similar tasks. We use the analysis of 
any discrepancies between the 
behavior of the Neurosolver and live 
rats to evolve the architecture of the Neurosolver. One difficulty with that arises from 
the variety of behavioral patterns identified in lab animals. The problem of studying 
learning and memory in animals is that we can only infer memories from their behav
ior. Careful analysis of the enhanced architecture of the Neurosolver leads us to the 
conclusion that it indeed provides the capabilities for contextual learning. The prag
matic aspect of the new mechanism is evident, so from the engineering perspective it 
is a significant improvement. Nevertheless, an interesting generic question to ask is 
whether the behavioral patterns observed on animals can be replicated by simulated 

Fig. 14. Two different resolution paths in 
two runs. A path is selected dependent on
the context – the color of the floor. 



creatures controlled by Neurosolver to the same degree as the more basic alignment of 
behaviors reported in our previous papers.

There are plenty of other interesting venues worth pursuing in research with Neuro
solver, and in more general terms in computational architectures inspired by progress 
in neuroscience. For example, we plan to further analyze the fundamental simplifica
tion that we consciously made in the Neurosolver that is the integration of the func
tionalities of the prefrontal cortex (where logical sequencing and executive function 
takes place) and hippocampus (where place cells are located). A related decision to 
map every possible location as a place cell affects the scalability of the Neurosolver,
so we are exploring ideas to reduce the state space. For example, only the important 
places could be mapped (e.g., forks, turns, etc.), but how to modulate such a mapping 
is an open question. 

Another idea that is very interesting for a computer scientist is “programmability” 
in the hippocampus. When an animal learns a new environment, he creates a map of 
that space that is encoded by the hippocampus. When he is out of that environment,
the map, the “code”, is transferred elsewhere for “storage”, and the hippocampus is 
available for the “encoding” of a new environment. When he returns to the first envi
ronment, the “code” is “loaded” back into the hippocampus and the place cells are
once again engaged. The idea that there are “grandmother cells” in the hippocampus is 
generally not applied in neuroscience circles. 

At this moment, the searches that the Neurosolver performs are conducted off-line 
with locked knowledge. Allowing for real-time dynamic modifications that may alter
the search or execution process is both appealing and biologically plausible. The ca
pability to accomplish taxon navigation could be one result of such work. That in turn, 
could be the basis for Neurosolver-based controllers (for example, for hand-eye navi
gation). Another alluring idea is to explore learning by analogy that would require an
association and generalization mechanism. That would allow knowledge re-use in 
context that engages concepts similar to those with which the current knowledge was 
acquired.

The path optimization capability of the Neurosolver can be viewed both positively
and negatively. At its current incarnation, the Neurosolver cannot store higher order
sequences. That is, for example, a sequence 1-2-3-2-4 is optimized to 1-2-4. Some ap
plications may need such capability, so we are looking into designing an appropriate 
mechanism that can provide that.

Numerous technical aspects of the implementation are also worth pursuing. For ex
ample an alternative to software implementation could accommodate much larger state 
spaces. To provide required granularity in finding best paths and simulate analog 
workings of the brain, the propagation of activity is very inefficient as implemented in
software. Furthermore, the Neurosolver uses statistical learning, so each of the con
nected elements is a little processor churning numbers. We plan to experiment with 
other types of weight management, perhaps more aligned with the mainstream re
search on Neural Networks. 

Goal management is another interesting research area. How do rats choose where to
go? Do they ever forget the associations between the pleasures of feeding and the lo
cation? Neuroscientists have been feeding us with new data in this area (somewhere 
between the amygdala, hippocampus and the cortex), and we are eager to explore the 
new findings. 
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