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Abstract. The majority of previous computational models of high-order human
cognition incorporate gradient descent algorithms for their learning mechanisms
and strict error minimization as the sole objective of learning. Recently, however,
the validity of gradient descent as a descriptive model of real human cognitive
processes has been criticized. In the present paper, we introduce a new framework
for descriptive models of human learning that offers qualitatively plausible inter-
pretations of cognitive behaviors. Specifically, we apply a simple multi-objective
evolutionary algorithm as a learning method for modeling human category learn-
ing, where the definition of the learning objective is not based solely on the ac-
curacy of knowledge, but also on the subjectively and contextually determined
utility of knowledge being acquired. In addition, unlike gradient descent, our
model assumes that humans entertain multiple hypotheses and learn not only by
modifying a single existing hypothesis but also by combining a set of hypotheses.
This learning-by-combination has been empirically supported, but largely over-
looked in computational modeling research. Simulation studies show that our new
modeling framework successfully replicated observed phenomena.

1 Introduction

The ability to categorize plays a central role in high-order human cognition. By com-
pressing the vast amount of available information, categorization allows humans (and
other intelligent agents) to process, understand, and communicate complex thoughts
and ideas by efficiently utilizing salient information while ignoring other types. Given
the importance of categories as the building units of human knowledge [1], researchers
in cognitive science and related fields have shown a great deal of interest in understand-
ing and explaining human category learning.

Human category learning research has been strongly associated with computational
modeling as a means to test various theories of how humans encode, organize, and
use knowledge. Previous modeling efforts, however, have limited emphases because
their principal focus was on describing categorization processes (i.e., forward algo-
rithm specifying how various types of information are integrated to classify items to
proper categories), largely overlooking the learning processes (i.e., backward algorithm
specifying how category representations are modified based on experiences). In fact, a
central debate in the categorization discourse is on how categories are represented (e.g.,
[2] [3]). The majority of modeling work employed a single learning method, namely
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gradient descent (e.g., [2] [3]) with strict (categorization) error minimization as the sole
objective of learning.

Recently, Matsuka [4] raised a concern that the lack of emphasis on learning
processes will lead to a limited understanding of the nature of human concept formation.
One limitation of using the traditional learning algorithms in human category learning
research is that it assumes that every human learner modifies his or her category knowl-
edge by local optimization to reduce misclassification irrespective of the contextual
factors (e.g., the learner’s goals). The result is little variability in learning among the
simulated learners. A typical gradient descent optimization method can be considered
a normative rather than descriptive account of human learning processes [4].

Unlike a typical gradient descent method, human learning is variable, not based ex-
clusively on error minimization. For example, humans tend to develop simpler category
representations instead of complex representations that are slightly more diagnostic in
discriminating members of different categories [5]. Moreover, given two stimulus di-
mensions or features (e.g., size and color) that are equally diagnostic in distinguishing
across categories, humans learn to attend to a single, randomly selected diagnostic di-
mension when making a classification judgment. They ignore the other dimension that
is redundant but equally diagnostic [5], leading to individual differences in learning. Un-
like human learning, which is often arbitrary and tends to be biased toward simplicity,
the gradient descent algorithm always “correctly” updates the category representations,
resulting in allocating attention to the two diagnostic dimensions.

The purpose of this work is to introduce a new framework for descriptive models
of human learning that offers qualitatively plausible interpretations of cognitive be-
haviors. We apply a simple evolutionary algorithm as a learning method for modeling
human category learning. Here, we show that the evolutionary algorithm can account
for variations in human attention allocation during category learning that existing gradi-
ent descent models cannot. We conclude with a discussion of how our new framework
might be extended to incorporate sensitivity to various contextual factors, such as learn-
ers’ goals, that humans display.

2 Modeling Category Learning with Evolutionary Algorithm

Our new framework is called CLEAR for Category Learning with Evolutionary Al-
goRithm. CLEAR models human learning processes by evolutionary processes where
multiple chromosomes compete with one another for survival (i.e., optimization). Each
chromosome, consisting of a set of genes, is a particular solution to a problem. The
interpretation of each gene is model specific. For example, as in the current modeling
approach, a gene may represent a coefficient that corresponds to an attention weight
allocated to a stimulus dimension.

CLEAR assumes that human learning involves consideration of multiple solutions
(i.e., chromosomes) according to their usefulness in a given task. Each of these solutions
determines which aspects of the categories are psychologically salient and which can be
ignored. The use of a population of solutions in CLEAR is an innovative contribution
to cognitive modeling as virtually all previous categorization models have optimized a
single solution using gradient descent on prediction errors (e.g. [2]).
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The assumption that humans entertain a range of solutions is consistent with the re-
sults from human laboratory experiments [6]. For example, Anderson and Pichert [6]
asked people to read a story about a house from the perspective of either a burglar or
home-buyer. The story contained pieces of information relevant to one perspective but
irrelevant to the other. For example, a color television set was relevant to the burglar
but not to the home-buyer. Alternatively, a leaking roof was relevant to the home-buyer
but not the burglar. In a free recall task conducted after learning about the story, people
recalled more information relevant to the perspective they took than irrelevant informa-
tion. More important, shifting people’s perspective after the initial recall allowed people
to recall information that they could not recall previously, suggesting that people indeed
have multiple solutions that activate different pieces of information.

Although CLEAR always has multiple solutions in its mind, CLEAR, like the par-
ticipants in Anderson and Pichert [6], opts for and applies a single solution with the
highest predicted utility (e.g., accuracy, score, etc.) to make one response at a time
(e.g., categorize an input instance). The functions for estimating the utility for each so-
lution is described in a later section. In the next section, we describe the processes that
evolve into solutions in CLEAR.

2.1 Learning Via Evolutionary Algorithm

CLEAR utilizes the Evolution Strategy (ES) method (e.g. [7]) for its learning processes.
CLEAR, as in a typical ES application, assumes three key processes in learning:
crossover, mutation, and (survivor) selection. In the crossover process, the randomly
selected chromosomes form a pair and exchange gene information, creating a new pair
of chromosomes. In human cognition, the crossover process can be interpreted as con-
ceptual combination, in which new solutions are created based on merging ideas from
existing solutions that are useful (e.g., creative discovery). In the mutation process, each
gene (i.e., coefficient) is randomly altered. A mutation can be considered as a modifi-
cation of a solution by randomly creating a new hypothesis. In the selection process, a
certain number of solutions are deterministically selected on the basis of their fitness in
relation to the environment for survival. Those selected solutions (i.e., chromosomes)
will be kept in CLEAR’s memory trace (i.e., population space), while non-selected so-
lutions become obsolete or are forgotten.

Unlike previous modeling approaches to category learning research which modify
a single solution (i.e., a single set of coefficients), CLEAR maintains, modifies, and
combines a set of solutions. The idea of having a population of solutions (as opposed
to having an individual solution) is important because it allows not only the selec-
tion and concept combination (i.e., crossover processes) in learning, but also the cre-
ation of diverse solutions, making learning more robust. Thus, unlike previous models,
CLEAR assumes that humans have the potential to maintain a range of solutions and
are able to apply a solution most suitable for a particular set of situational character-
istics. To our knowledge, these capabilities (i.e., using diverse solutions and learning-
by-combination) have not been addressed in the category learning modeling discourse.
This may warrant future research. The utility of having homogeneous versus heteroge-
neous solutions likely depends on situational factors (e.g., a motivation to test a range
of strategies) that will vary from one context to another [8].
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Another important feature of CLEAR is that it allows the hypothetical error sur-
face to be non-smooth or discontinuous. This characteristic has not been successfully
incorporated in cognitive modeling using the gradient descent optimization method.
CLEAR, because of the stochastic nature of its optimization method, can incorporate
multi-objective functions in learning that are consistent with the complexity of human
learning and the possibly discontinuous nature of knowledge utility hypersurface.

Finally, another significant contribution of CLEAR to cognitive modeling is adaptive
search strategies, which can be interpreted as analogous to learning rate. As in many re-
cent ES, CLEAR incorporates a self-adoption mechanism for modifying solutions (i.e.,
coefficient mutation), dynamically altering range of search areas. This mechanism al-
lows CLEAR to be sensitive to the topology of knowledge utility hypersurface (e.g.,
searching within a smaller area if solutions are close to an optimum). This, in turn,
makes CLEAR sensitive to changes in learning objectives. Virtually all previous cogni-
tive models incorporate either static or time-decreasing learning rate.

2.2 Categorization Processes in CLEAR

Rather than introducing new forward algorithms, we apply CLEAR’s learning processes
to ALCOVE’s [2] categorization processes. ALCOVE is a computational model of cat-
egory learning that assumes that humans store every studied instance or exemplar in
memory. We chose ALCOVE because of its popularity and demonstrated predictive
capability using relatively simple mechanisms in perceptual classification research.

In ALCOVE, categorization decision is based on the activations of stored exemplars.
As shown in Equation 1, each exemplar’s activation in ALCOVE, scaled by specificity,
c (which determines generalization gradient), is based on the inverse distance between
an input, x, and a stored exemplar, ψj , in multi-dimensional representational space,
scaled by dimensional selective attention weights, α. The exemplar activations are then
fed forward to the k-th output node (e.g., output for category k), Ok, weighted by w,
which determines the strength of association between each exemplar j and each output
node k:

Om
k (x) =

∑
j
wm

kj

[
exp

(
−c ·

∑
i
αm

i |ψji − xi|
)]

(1)

where superscript m indicates m-th solution being utilized.
The probability of categorizing input instance x to category C is based on the activa-

tion of output node C relative to the activations of all output nodes:

P (C) =
exp(φ · Oo

c(x))∑
k exp(φ · Oo

k(x))
. (2)

where φ controls decisiveness of classification response, and superscript o indicates the
solution adopted to make a categorization response.

In the traditional ALCOVE model, attention (α) and association weights (w) are
updated by gradient descent that minimizes the actual and the predicted value (i.e.,
Eq. 2). In the current work, a solution consists of these coefficients (i.e., attention and
association weights). CLEAR optimizes a set of these solutions. We now describe the
functions for estimating the utility of a solution (i.e., attention and association weights).
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2.3 Learning Process in CLEAR

Since CLEAR is based on Evolutionary Strategy, its genotype space is identical to
its phenotype space, except the genes (coefficients) for self-adapting strategy, σ. In
CLEAR, there are two coefficients for self-adaptation; σw for defining search area for w,
and σα for α. For the sake of simplicity, we use the following notation (wm, αm) ∈ θm.

Hypotheses Combinations. In CLEAR, randomly selected pairs of solutions are ex-
changing information to combine knowledge. In particular, CLEAR utilizes discrete
recombination of ALCOVE coefficients and intermediary recombination of the coeffi-
cient for self-adaptation. Thus, parent solutions θp1 and θp2 would produce a child so-
lution θc, where θc

i = θp1
i if UNI ≤ 0.5 or θp2

i otherwise, where UNI is a random number
drawn from the Uniform distribution. For self-adapting strategy, σc

i = 0.5 · (σp1
i +σp2

i ).
This combination process continues until the number of children solutions produced
reaches the memory capacity of CLEAR.

Hypotheses Modifications. After the recombination process, CLEAR randomly mod-
ifies its solutions, using a self-adapting strategy. Thus,

σm
w (t + 1) = σm

w (t) · exp(N(0, γ)) wm
kj(t + 1) = wm

kj(t) + N(0, σm
w (t + 1)) (3)

σm
α (t + 1) = σm

α (t) · exp(N(0, γ)) αm
i (t + 1) = αm

i (t) + N(0, σm
α (t + 1)) (4)

where t indicates time, γ defines search width (via σ’s), and N(0.σ) is a random number
drawn from the Normal distribution with the corresponding parameters.

Selection of Surviving Hypotheses. After creating new sets of solutions, CLEAR se-
lects a limited number of solutions to be maintained in its memory. In CLEAR, the
survivor selection is done deterministically, selecting best solutions on the basis of es-
timated utility of concepts or knowledge. The function defining utility of knowledge is
described in the next section.

2.4 Estimating Utility

The utility of each solution or a set of coefficients determines the selection process
in CLEAR, which takes place twice. During categorization, CLEAR selects a single
solution with the highest predicted utility to make a categorization response (referred
to as concept utility for response or UR hereafter). During learning, CLEAR selects
best fit solutions to update its knowledge (utility for learning or UL hereafter). In both
selection processes, the solution utility is subjectively and contextually defined, and a
general function is given as:

U(θm) = Υ (E(θm), Q1(θm), ..., QL(θm)) (5)

where Υ is a function that takes concept inaccuracy (i.e., E) and L contextual factors
(i.e., Q) and returns an estimated solution utility value (Note that CLEAR’s learning is
framed as a minimization problem). There are virtually infinite contextual functions ap-
propriately defined for Eq. 5 (e.g. concept abstraction, domain expertise and knowledge
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commonality). For example, in ordinary situations, humans prefer simpler solutions
(e.g. requiring a smaller amount of diagnostic information to be processed) to complex
ones, as long as both are sufficiently accurate, whereas in highly critical tasks (e.g. med-
ical diagnosis), many might choose a solution with the highest accuracy disregarding
complexity.

Note that functions for UR and UL do not have to be the same. For example, do-
main experts often know multiple approaches to categorize objects and such an ability
appears to be a very important characteristic and thus be a part of their UL. However,
”knowledge diversity” is only relevant for selecting a population of solutions (for sur-
vival), but not for selection of a particular solution to make a categorization response.
Thus, knowledge diversity should not be considered for UR.

In CLEAR, the predicted (in)accuracy of a solution during categorization is esti-
mated based on a retrospective verification function [9], which assumes that humans
estimate the accuracies of the solutions by applying the current solutions to previously
encountered instances with a memory decay mechanism. Thus,

E(θm) =
G∑

g=1

⎡

⎢⎣

⎛

⎜⎝

∑
∀i|x(i)=x(g)

(τ (i) + 1)−D

∑
g

∑
∀i|x(i)=x(g)

(τ (i) + 1)−D

⎞

⎟⎠
K∑

k

[
d
(g)
k − Om

k

(
x(g)

)]2

⎤

⎥⎦ (6)

where g indicates particular training exemplars, G is the number of unique training
exemplars, the last term is the sum of squared error with d being the desired output,
and the middle term within a parenthesis is the (training) exemplar retention function
defining the strength of the retaining training exemplar x(g). Memory decay parameter,
D, in the exemplar retention function controls speed of memory decay, and τ indicates
how many instances were presented since x(g) appeared, with the current training be-
ing represented with “0.” Thus, τ = 1 indicates x(g) appeared one instance before the
current trial. The denominator in the exemplar retaining function normalizes retention
strengths, and thus it controls the relative effect of training exemplar, x(g), in evaluating
the accuracy of knowledge or concept. E(θ) is strongly influenced by more recently
encountered training exemplars in early training trials, but it evenly accounts for vari-
ous exemplars in later training trials, simultaneously accounting for the Power Law of
Forgetting and the Power Law of Learning.

3 Simulations

In order to investigate the capability of CLEAR to replicate observed empirical data,
a simulation study was conducted. In particular, we simulated an empirical study that
suggests that human concept formation might be driven by more than minimization
of classification error [5]. Table 1 shows the schematic representation of the stimulus
used in the empirical study and the present simulation study. (Note: Dimensions 1 and
2 are redundant and are also perfectly correlated with the category membership, each
being a necessary and sufficient diagnostic dimension). The left column of Fig. 1 shows
the observed data. The majority of subjects in the empirical study [5] chose to pay
attention primarily if not exclusively to either one of them, as shown in Fig.1 (bottom
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Table 1. Schematic representation of stimulus set used in Simulation Study

Stimulus Set
Category Dim1 Dim2 Dim3 Dim4

A 1 1 3 4
A 1 1 4 1
A 1 1 1 2
B 2 2 2 1
B 2 2 3 2
B 2 2 4 3
C 3 3 1 3
C 3 3 2 4
C 3 3 3 1
D 4 4 4 2
D 4 4 2 3
D 4 4 1 4

left), where the amount of attention allocated to each feature was operationally defined
by the feature viewing time. Thus, the majority of subjects seemed to have at least two
learning objectives: (1) to minimize categorization error and (2) to minimize knowledge
complexity. In the present study we simulated this multi-objective learning phenomenon
with CLEAR.

Another interesting phenomenon reported in that study is that some subjects who
learned to pay attention to either dimension exclusively reported that they realized that
there was another diagnostic dimension, indicating the possibility of possessing multi-
ple concepts or solutions. Although it is uncertain whether these subjects were deliber-
ately acquiring multiple solutions or not, we simulated this type of learners as well.

Methods: There were two types of CLEAR learners involved in the present simulation
study, namely SA who tries to acquire simple accurate classes of knowledge, and MSA
whose learning objective is to acquire multiple simple accurate class of knowledge.
Equations 7 and 8 describe knowledge utility functions for learning (UL) for SA and
MSA, respectively. For both models, Eq.7 is used for their UR, as knowledge diversity
should have no effect in selecting a solution to make a response. The knowledge utility
for SA (and UR of MSA) is given as:

Ua+s(θm) = E(θm) + λw

∑
k

∑
j
w2

kj + λα

∑
i

[
1 + α−2

i ·
∑I

l
α2

l

]−1

(7)

where the first term is defined as in Eq.6, the second term is a weight decay function reg-
ularizing w, the third term is relative attention elimination function reducing the number
of dimensions attended, and λ’s are scalars weighting different contextual factors. The
knolwedge utility for learning (UL) for MSA is given as:

Ua+s+d(θm) = Ua+s(θm) ·
[
1 +

∑
n

ξ(δ(m, n))
]

(8)



570 T. Matsuka et al.

where the last term controls diversity (penalizing having ”similar” concepts), δ indicates
the distance between solution m and n, and ξ is defined as

ξ(δ(m, n)) =

{
1 −

(
r−1 ·

√∑
i(θ

m
i − θn

i )2
)2

, if
√∑

i(θ
m
i − θn

i )2 ≤ r

0, otherwise.
(9)

where r is a parameter defining the penalizing radius. The diversity controlling function
is an application of a modified version of the fitness sharing method [7].

Both models were run in a simulated training procedure to learn the correct classifi-
cation responses for the stimuli with corrective feedback. The basic training procedures
followed that of the original study [5]. There were a total of 8 training blocks, each
of which was organized as a random presentation of 12 unique exemplars. The model
parameters were selected arbitrarily; c = 1.25, φ = 5,D = 1,γ = 0.5, λw = 0.01, λα =
0.75, r = 1.5. Note that the same parameter values were used for SA and MSA, except
r, which was only applicable for MSA. The memory sizes for the two models were 10
(i.e., possessing 10 solutions at a time). There were a total of 500 simulated subjects for
both models.

Results & Discussion: Figure 1 shows the results of the simulation study. Both SA
and MSA successfully replicated the observed learning curve and aggregated attention
learning curves (Fig. 1 top row). In replicating individual attention allocation patterns,
SA seemed more consistent with the empirical data than MSA, indicating that (the
majority of) human subjects in that study might have had simplicity and accuracy as
their learning objectives, but not concept diversity.

To test if MSA had acquired diverse solutions, we investigated all solutions in MSA’s
memory trace and compared them with those of SA’s. Let us define the diagnostic fea-
ture dimension selected to be attended by the manifesting concept (i.e., concept or so-
lution whose UR value was the lowest) as a dominant dimension and the other as a
recessive dimension. For MSA, the average difference in the relative amount of at-
tention to be allocated to a recessive and dominant dimensions was 0.24 in the latent
concepts (i.e., solutions whose UR values are not lowest), whereas that for SA was 0.01.
The maximum differences were 0.67 and 0.21 for MSA and SA, respectively. While the
differences may not be great, MSA successfully acquired more diverse solutions than
SA. Although with different parameter configurations, we observed greater degrees of
differences, there were too much attentional shifts, exhibiting too much alternation of
the dominant and recessive dimensions than empirical data.

Possible reasons for the smaller degree of difference was that the solution diver-
sity in MSA took into account both association and attention weights. We might have
achieved a greater degree of diversity in attention allocation, if we only controlled atten-
tion distribution patterns. But, there was no clear empirical or theoretical justification
for embedding such a cognitive mechanism, and thus we did not test the possibility. Fur-
thermore, more explicit diversity control learning mechanisms, such as Pareto-optimal
search methods, would find more diverse effective solutions, we are uncertain about
their empirical or theoretical justification for such learning mechanisms as cognitive
processes.
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Fig. 1. Left column: Observed empirical results. Middle column: SA, Right Column MSA. The
graphs in the top row show classification accuracies and the amounts of relative attention allo-
cated to the four feature dimensions. The scatter plots compare relative attention allocated to
Dimensions 1 and 2 for the last 3 blocks for empirical data and the last block for SA and MSA.

4 Conclusion

We introduced a CLEAR framework, which used an evolutionary algorithm as a learn-
ing method for computational models of human category learning. CLEAR, unlike gra-
dient descent, uses multiple solutions (e.g., attention and association weights). Each so-
lution can be regarded as a filtering device that determines which aspects of the stored
information become salient and which should be ignored. The use of multiple solutions
allows CLEAR to have a diverse set of solutions. Because different solutions filter dif-
ferent pieces of information, CLEAR can account for variability across learners and
tasks that gradient descent method cannot.

As an initial step, we applied CLEAR to ALCOVE’s categorization processes. AL-
COVE is an exemplar model of category learning that assumes that humans store every
previously encountered example in memory. CLEAR optimized multiple solutions,
each of which highlighted different aspects of the stored exemplars. CLEAR was able
to correctly replicate observed category learning phenomena that were characterized as
multi-objective optimization. In addition, CLEAR was able to acquire diverse solutions
during such multi-objective learning processes.

Future Directions. Future research might address how different tasks and goals are
linked to different solutions in CLEAR. Research on this issue involves specifying the
contextual factor in CLEAR’s utility calculation. Human cognitive processing is greatly
affected by situational factors, such as goals and motivations, and thus the contextual
factor in CLEAR likely plays an important role in modeling human cognition. For ex-
ample, even when people are learning about the same categories, their knowledge about
the categories can vary when they engage in different tasks and have different goals
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(e.g., [8]). Specifying the contextual factor in CLEAR to incorporate sensitivity to dif-
ferent tasks and goals may allow CLEAR to form ad hoc categories to achieve tempo-
rary goals, such as things to sell at a garage sale to dispose of unwanted possessions,
like humans do [10].

Final Note. Most previous category learning models have used the gradient descent
optimization method, which can be regarded as a normative rather than a descriptive
account of human learning processes [4]. Unlike the gradient descent method, human
learning varies across individuals and contexts, and is based on factors other than mis-
classification. The present work is an initial attempt to develop a more descriptive ac-
count of human learning by applying a simple evolutionary algorithm. More rigorous
research in descriptive models of human learning is indispensable in the structural elu-
cidation of cognitive information flow and, more generally, in the advancement in cog-
nitive science.
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