Skip to main content

Temporal Processing in a Spiking Model of the Visual System

  • Conference paper
  • 3181 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Abstract

Increasing amount of evidence suggests that the brain has the necessary mechanisms to and indeed does generate and process temporal information from the very early stages of sensory pathways. This paper presents a novel biologically motivated model of the visual system based on temporal encoding of the visual stimuli and temporally precise lateral geniculate nucleus (LGN) spikes. The work investigates whether such a network could be developed using an extended type of integrate-and-fire neurons (ADDS) and trained to recognise objects of different shapes using STDP learning. The experimental results contribute further support to the argument that temporal encoding can provide a mechanism for representing information in the visual system and has the potential to complement firing-rate-based architectures toward building more realistic and powerful models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reich, D.S., Mechler, F., Victor, J.D.: Temporal coding of contrast in primary visual cortex: When, what, and why. Journal of Neurophysiology 85(3), 1039–1050 (2001)

    Google Scholar 

  2. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., Aertsen, A.: Dynamics of neuronal interaction in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995)

    Article  Google Scholar 

  3. Mainen, Z.F., Sejnowski, T.: Reliability of spike timing in neocortical neurons. Science 268, 1503–1506 (1995)

    Article  Google Scholar 

  4. de Ruyter van Steveninck, R.R., Lewen, G., Strong, S., Koberle, R., Bialek, W.: Reproducibility and variability in neural spike trains. Science 275, 1805–1808 (1997)

    Article  Google Scholar 

  5. Adorján, P., Levitt, J.B., Lund, J.S., Obermayer, K.: A model for the intra-cortical origin of orientation preference and tuning in macaque striate cortex. Visual Neuroscience 16, 303–318 (1999)

    Article  Google Scholar 

  6. Hirsch, J.A., Alonso, J.M., Reid, R.C., Martinez, L.M.: Synaptic integration in striate cortical simple cells. Journal of Neuroscience 18(22), 9517–9528 (1998)

    Google Scholar 

  7. Bair, W., Koch, C.: Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation 8(6), 1185–1202 (1996)

    Article  Google Scholar 

  8. Buracas, G., Zador, A., DeWeese, M., Albright, T.: Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20(5), 959–969 (1998)

    Article  Google Scholar 

  9. Bair, W.: Spike timing in the mammalian visual system. Current Opinion in Neurobiology 9, 447–453 (1999)

    Article  Google Scholar 

  10. Reinagel, P., Reid, R.C.: Temporal coding of visual information in the thalamus. Journal of Neuroscience 20(14), 5392–5400 (2000)

    Google Scholar 

  11. Reinagel, P., Reid, R.: Precise firing events are conserved across neurons. Journal of Neuroscience 22(16), 6837–6841 (2002)

    Google Scholar 

  12. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Self-organisation, plasticity, and low-level visual phenomena in a laterally connected map model of the primary visual cortex. In: Goldstine, R., Schyns, P., Medin, D. (eds.) Perceptual Learning. Psychology of Learning and Motivation, vol. 36, pp. 257–308. Academic Press, San Diego (1997)

    Google Scholar 

  13. Sirosh, J., Miikkulainen, R.: Cooperative self-organisation of afferent and lateral connections in cortical maps. Biological Cybernetics 71(1), 65–78 (1994)

    Article  MATH  Google Scholar 

  14. Sirosh, J.: A Self-Organizing Neural Network Model of the Primary Visual Cortex. PhD thesis, The University of Texas, Austin, TX (1995)

    Google Scholar 

  15. Delorme, A., Thorpe, S.: Face identification using one spike per neuron: resistance to image degradations. Neural Networks 14(6-7), 795–803 (2000)

    Article  Google Scholar 

  16. Van Rullen, R., Delorme, A., Thorpe, S.J.: Feed-forward contour integration in primary visual cortex based on asynchronous spike propagation. Neurocomputing 38-40(1-4), 1003–1009 (2001)

    Article  Google Scholar 

  17. Delorme, A.: Early cortical orientation selectivity: How fast shunting inhibition decodes the order of spike latencies. Journal of Computational Neuroscience 15, 357–365 (2003)

    Article  Google Scholar 

  18. Jeffreys, D.: Evoked potential studies of face and object processing. Visual Cognition 3, 1–38 (1996)

    Article  Google Scholar 

  19. Perrinet, L., Delorme, A., Thorpe, S.: Network of integrate-and-fire neurons using rank order coding a: how to implement spike timing dependant plasticity. Neurocomputing 38-40(1-4), 817–822 (2001)

    Article  Google Scholar 

  20. Delorme, A., Thorpe, S.: Spikenet: An event-driven simulation package for modelling large networks of spiking neurons. Network: Computation. Neural Systems 14, 613–627 (2003)

    Article  Google Scholar 

  21. Rolls, E.T., Deco, G.: Computational neuroscience of vision. Oxford University Press, Oxford (2002)

    Google Scholar 

  22. Panchev, C., Wermter, S.: Spike-timing-dependent synaptic plasticity from single spikes to spike trains. Neurocomputing 58-60, 365–371 (2004)

    Article  Google Scholar 

  23. Panchev, C., Wermter, S., Chen, H.: Spike-timing dependent competitive learning of integrate-and-fire neurons with active dendrites. In: Proceedings of the International Conference on Artificial Neural Networks, Madrid, Spain. LNCS, pp. 896–901. Springer, Heidelberg (2002)

    Google Scholar 

  24. Panchev, C.: Spatio-Temporal and Multimodal Processing in a Spiking Neural Mind of a Robot. PhD thesis, University of Sunderland (2005)

    Google Scholar 

  25. Panchev, C., Wermter, S.: Temporal sequence detection with spiking neurons: towards recognizing robot language instructions. Connection Science 18(1), 1–22 (2006)

    Article  MATH  Google Scholar 

  26. Shapley, R.: A new view of the primary visual cortex. Neural Networks 17, 615–623 (2004)

    Article  Google Scholar 

  27. Ringach, D.L., Hawken, M.J., Shapley, R.: Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997)

    Article  Google Scholar 

  28. Albreght, D.G., Hamilton, D.B.: Striate cortex of monkey and cat: contrast response function. Journal of Neurophysiology 48, 217–237 (1982)

    Google Scholar 

  29. Gawne, T.J., Kjaer, T.W., Richmond, B.J.: Latency: another potential code for feature binding in striate cortex. Journal of Neurophysiology 76, 1356–1360 (1996)

    Google Scholar 

  30. Mechler, F., Victor, J.D., Purpura, K.P., Shapley, R.: Robust temporal coding of contrast by V1 neurons for transient but not steady-state stimuli. Journal of Neuroscience 18, 6583–6598 (1998)

    Google Scholar 

  31. Purpura, K., Chee-Orts, M.N., Optican, L.M.: Temporal encoding of texture properties in visual cortex of awake monkey. Society of Neuroscience Abstracts 19, 315 (1993)

    Google Scholar 

  32. Gallant, J.L., Shoup, R.E., Mazer, J.A.: A human extrastriate area functionally homologous to macaque V4. Neuron 27, 227–235 (2000)

    Article  Google Scholar 

  33. Pasupathy, A., Connor, C.E.: Shape representation in area V4: Position-specific tuning for boundary conformation. Journal of Neurophysiology 86(5), 2505–2519 (2001)

    Google Scholar 

  34. Ito, M., Tamura, H., Fujita, I., Tanaka, K.: Size and position invariance of neuronal responses in monkey inferotemporal cortex. Journal of Neurophysiology 173(1), 218–226 (1995)

    Google Scholar 

  35. Bruce, C., Desimone, R., Gross, C.G.: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46(2), 369–384 (1981)

    Google Scholar 

  36. Kobatake, E., Wang, G., Tanaka, K.: Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology 80(1), 324–330 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panchev, C. (2006). Temporal Processing in a Spiking Model of the Visual System. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_78

Download citation

  • DOI: https://doi.org/10.1007/11840817_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics