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Abstract. For stationary systems, efficient techniques for adaptio®mncontrol
exist which learn the system’s inverse dynamics online aadthis single model
for control. However, in realistic domains the system dyitanoften change de-
pending on an external unobserved context, for instancevtitk& load of the
system or contact conditions with other objects. A solutmoontext-dependent
control is to learn multiple inverse models for differenntexts and to infer the
current context by analyzing the experienced dynamicsiéus multiple model
approaches have only been tested on linear systems. Thés pagsents an ef-
ficient multiple model approach for non-linear dynamics,ckhcan bootstrap
context separation from context-unlabeled data and esammultaneous online
context estimation, control, and training of multiple irse models. The approach
formulates a consistent probabilistic model used to irtierunobserved context
and uses Locally Weighted Projection Regression as aneeffionline regressor
which provides local confidence bounds estimates used fiareince.

1 Introduction

Learning dynamics for control is essential in situationsvenanalytical derivation of
the plant dynamics is not feasible. This can be either dugtedmplexity of the system
or due to lack of or inaccurate knowledge of the physical proes of the system being
controlled. Adaptive control is an established researeh #rat has offered a multitude
of methods that can be used in such cases. However, the dymafithe environment
that the system has to interact with or even of the systeri &se often changing in a
rapid or discontinuous fashion. For example, a robot armipeagquired to manipulate
objects of different weights — an instantiation of contrader multiple contexts. In
these cases, classic adaptive control methods are inaeesjonee they result in large
errors and instability during the period of adaptation.tkermore, if the dynamics
change back and forth, readapting everytime is a suboptindinefficient strategy.
Humans do not have difficulty controlling their limbs undéffetent contexts. It
has been suggested that they achieve this by using not jashodel that is constantly
adapted to new environments, but a set of models, each ohighappropriate for a dif-
ferent environment [1]. The key issue that needs to be reddiy this multiple model
paradigm is that at any time the current context needs to teerdmed; this will be re-
ferred to as the context estimation problem and is centtaisavork. Context estimates
are needed both during training and control, i.e., for dagidvhich model should be
used for control and which model should be trained with tha daperienced. Biologi-
cal systems (e.g. humans) estimate contexts using a vafisgnsory information like
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Fig. 1. Typical setup of a multiple model paradigm for control

vision or tactile input. In artificial systems though, theadable sensory information
may be much poorer and the context has to be estimated froexgiegienced dynam-
ics only. Our approach will formulate a proper probabitistiodel that represents the
context as a latent switching variable. This model allowgaigstimate the context
online based only on the learned inverse models using a Menkdiltering. Further,
an Expectation-Maximization procedure is used to boqgadtra distinction of contexts
from context-unlabeled data.

There are some existing paradigms that implement the neiltifwdel approach:
Multiple Model Switching and Tuning (MMST) [4, 5], Multipl®aired Forward and
Inverse Models (MPFIM) [3] and Modular Selection and Idéaition for Control
(MOSAIC) [2]. Fig. 1 shows the typical setup of a multiple nebgbaradigm, where
a set of different context dynamics models is maintaineandst existing approaches,
the dynamics models for each context is a pair consistingfofweard and an inverse
model. Context estimation is performed by comparing the observed dynamics of the
system with the dynamics predicted by each context’s fawandel. For control pur-
poses, one can either switch between commands predictdtehmast likely context
or mix them. Similarly, context estimates can be used fordhar ‘soft’ assignment
of data for training the most likely contexts. The most gahef the mentioned para-
digms is MOSAIC, which is an extension of MPFIM. MOSAIC useiximg instead of
switching, with the hope that more contexts can be handl¢d avsmaller number of
models. This seems plausible in the case of linear dynamit$raleed MOSAIC has
been realized only for linear systems. Real robotic systerashighly non-linear, re-
quiring the ability to learn online and adjust model comfiei a data-driven manner.
Existing multiple model approaches are, therefore, ndabba In this paper we present
a non-linear multiple model approach to control based orffégient non-linear online
learning algorithm (LWPR) that addresses these requiresnémthe best of our knowl-
edge, this is the first multiple model study that managesaml@on-linear dynamics
under multiple contexts with online separation of contektlata.



2 Adaptive non-linear control with LWPR

Let us first consider the single context scenario of leartiirgdynamics of a system
(e.g., a robot) and using them for control. At time stepet ©; be the state of the
system (which include the position and velocity componegmsiT; the control signal.
A deterministic forward modef describes the discrete-time system dynamics as

9t+1 = f(Qt, Tt) . (1)

Learning a forward modef of the dynamics is useful for predicting the behavior of the
system. However, for control purposes, an inverse modedésiad. The inverse model
g maps from transitions between states to the control sidvalis needed to achieve
this transition:

s = g(O,O¢11) - (2

A probabilistic graphical model representation of the fardvand inverse model is
shown in Fig. 2(a) and Fig. 2(c), respectively.

Idealistically, an accurate inverse model can be used tctigXallow a sequence of
transitions that form a desired trajectory of the systenweier, given only an approx-
imate inverse model, the error in following the trajectorsgyraccumulate and become
unacceptably large. A standard approach for control witagproximate inverse model
is to combine it with a conventional linear feedback com¢rathat counteracts the de-
viation from the desired trajectory. Given a desired tr@jpcO;.- and the true state
O, the composite control command at timis

7t = 9(05,0511) + A (O] — 64), ®3)

where A is a gain matrix. We will use this composite control with gabased on the
Proportional Derivative (PD) control law. One effect of dwmmnposite control approach
is that the more accurate the inverse magehe smaller are the errors and the error-
correcting PD control signals. Thus, the total amount oflbseek control is a measure
of the accuracy of the inverse 'predictive’ model.

To learn the inverse dynamics we needam-linear, online regression technique
which also provides error bounds that we may use for conparation. We use the
Locally Weighted Projection Regression (LWPR) [6] — an aiidpon which is extremely
robust and efficient for incremental learning of non-linewrdels in high dimensions.
A LWPR model consists of a set of local linear models that cpaieed with a kernel
that defines the locality of the model. For a given inputhe kernel of thé:-th local
model determines a weighting, () while the local linear model predicts an output
¥y (z). The combined prediction of LWPR is

o) = o S wnla) vale) . W= 3 wla). (4)
k k

Each locality kernelv, (x) has a parametric Gaussian form and the distance metric is
adapted during learning in a data driven manner. The localetsare trained using an
online variant of Partial Least Squares using the collestéticient statistics. LWPR

is incremental and non-parametric in the sense that nev hocdels are added when
training proceeds and new areas of the input domain are glo
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Fig. 2. Graphical model representation of the: (a) Forward modeh{@rse model and (b,d) their
respective context augmented models

The role of LWPR in the probabilistic inverse model of Fig.&hde summarized
in the equation:

P(T | 9t+17 91&) = N(¢(9t+17 91&), 0(9t+1, Qt))v (5)

whose¢(6;11,0;) is a learned LWPR regression mapping desired state transito
torques. Here, we have two options for choosing the variafigewe can assume a
fixed noise level independent of the context and the inpyty@ can use the confi-
dence bounds provided by each LWPR model which also depentteaurrent input
(OG:41, 0;). We will test both cases in our experiments. Please see [6héwe details
on LWPR and the input dependent variance estimate.

3 Learning Multiple Models for multiple contexts

In the multiple context scenario, we assume that insteadwhlg a single forward and
inverse dynamics (Fig. 2(a,c)), the dynamics depend on ahserved random variable
¢, the context. Fig. 2(b,d) illustrates this situation asmagted graphical models for
the forward and inverse models. We assume a discrete corggable and maintain
separate LWPR models to represent the inverse dynamicadbrantext. Thus, Eq.5
becomes:

P(1|6411,0,c1=1) = N(¢;(O411,64), 0i(O411,6%)) . (6)

The problem we face in the context of adaptive online corigrdofold: (1) Given
a batch of yet unlabeled data and a set of yet untrained ievarglels, we have to
bootstrap the specialization of inverse models to diffepamts of the data while at the
same time associating different data points to differentexts— we call this problem
data separation; (2) Given a set of already trained inverse models and puswbserva-
tions, we have to estimate the current context in order tos@ohe right inverse model
in calculating the control signal- we call this probleontext estimation. These prob-
lems are very closely related. We first address the simpletegbestimation problem
before discussing data separation.
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Fig. 3. Multiple model with temporal contextual dependencies gis{a) forward model or (b)
inverse model for context estimation. (¢) Schematic of theukated 3-link robot arm

3.1 Context Estimation

In general, context estimation with a given set of modelseisggmed comparing the
predictions of each model with the observed dynamics. Uistiat is done by compar-
ing a set of trained forward models with the observed dynantiowever, the predic-
tions of inverse models can equally be compared with thergbdalynamics and thus,
there is no need to learn additional forward models. Our piEnt is that at each time
stept we “observe” a state transition and an applied torque sigmamarized in the
triplet (©:, ©:4+1, 1), i.€., we have access to the true applied control commanitifwh
was generated via composite control) as part of the obsenvaio estimate the latent
context variable:; (without yet exploiting the temporal dependency) we can po@
P(ct | ©¢,0441, 1), i-€., the probability of being in a context given the obselrtran-
sition between two consecutive states and the commandesaited in this transition.
Using Bayes rule, we get

P = ]
P(ey=i| 04, Or1,m) = P(1i | e =1, 04, Or11) P o= (7)

(7¢O, Op41)

Here, we used®(c; =i |6y, ©141) = P(c: =1), which is the context prior. Assuming
a uniform prior, the RHS quotient is a normalization factmtependent of the context
i. Hence, the responsibility’(c; = i | ©¢, ©;+1, 1) is proportional to the-th model
likelihood (eq.6).

It is straight-forward to extend this to take a Markovian eegency between con-
texts into account: intuitively, we would expect that in mpsactical cases, the context
would stay the same most of the time and switch only occalljofar instance, in our
current experiments we apply control signals at 100Hz anexpect that the frequency
of context switches will be much lower. Thus, including teenporal dependency be-
tween context$(c:+1 | ¢t), the graphical models in Fig. 2(b,d) can be reformulated as
the Dynamic Bayesian Networks shown in Fig. 3(a,b). Appiaaof standard HMM
techniques is straightforward by using eq.7 as the obsenviitelihood in the HMM,
given the hidden statg =i.
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A low transition probability penalizes too frequent trdimsis and using smoothing
or Viterbi alignment produces more stable context estimdte the experiments, we
will assume a fixed transition matrik(c; = j | c; =) with high value .999 for = j
and .001 otherwise and use the HMM model only for filteringrapsthing, depending
on whether we investigate an online or batch estimationa@grespectively.

3.2 Dataseparation

In existing multiple model approaches, separation of datdefarning happens online.
The predictions of the models are compared with the obsdrgkdviour of the system
to give context estimates and train the models online. Hewéw get these context esti-
mates we need a mechanism for getting relatively accunaitea() models to bootstrap
the context estimation procedure. Most of the existing ipkelimodel paradigms do not
give a satisfying answer to this issue. MMST assumes thatively good models are
available from the beginning, whereas MPFIM does not addt@s issue at all.

The problem of bootstrapping the context separation fromied-unlabeled data is
very similar to clustering problems using mixture of Gaassi In fact, the context vari-
able can be interpreted as a latent mixture indicator anll ie&erse model contributes
a mixture component to give rise to the mixture model of thef®(7; | O¢, Ory1) =
> P(1¢] 64, Ory1, ¢y =1) P(c=1). Clustering with mixtures of Gaussians is usually
trained using Expectation-Maximization (EM), where iality the data are labeled with
random responsibilities (are assigned randomly to thedifft mixture components).
Then every mixture component is trained on its assignedgiwed) data (M-step) and
afterwards the responsibilities for each data point ismgmated by setting them propor-
tional to the likelihoods for each mixture component (Ep¥téterating this procedure,
each mixture component will specialize on different paftthe data and the responsi-
bilities encode the learned cluster assignments.

We will apply a common variant of the EM-algorithm where resgibilities are
computed greedily, i.e., where the data is hard assigndtbtotxture component with
maximal likelihood instead of weighted continuously witietcomponent’s likelihood
in the M-step. In our case, the likelihood of a data triglét, ©;+1, 7¢) under theith
inverse model isP(7; | ©4, Oi41, ¢t = 1), which is a Gaussian with either fixed vari-
ance or the variance given by LWPR’s confidence bounds. Tgsoach is similar to
MOSAIC's approach to data separation except that it is basetthe inverse models,
accounts for the possibility of non-linear models, andvadlaus to use the correct con-
fidence bounds predicted by LWPR.

4 Experiments

The methods proposed earlier were tested on a simdlageint arm, with 3 degrees of

freedom (see Fig.3(c)). The first joint allows up and down eroents and the next two
allow left and right movements. The target trajectoriedfigrarm were a superposition
of different phase-shifted sinusoidal trajectories fartemint:

2 2
07 = a; cos(y % t) + b; cos(B; % t), (8)

! Robot arm simulation modeled in dynamical physics engin&E@penGL
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Fig. 4. Control performance of online trained LWPR on a single cxind@er the training cycles.
Left: normalized MSE on the test data. Middle: contributadrihe error-correcting feedback PD
control. Right: tracking error under decreasing PD gains.

whereT = 4000 is the total length of the target trajectory,, b; € [—1,1] are dif-
ferent amplitudes and;, 5; € {1, .., 15} parameterize different frequencies. Different
contexts are simulated by changing the weight of the thirdybaf the arm. This is
equivalent to varying work loads held by the arm.

4.1 Learning single context dynamicsand using them for control

We will first demonstrate that LWPR can learn an accuratergazenodel of the arm
dynamics online and use it for control. Training was repegatelependently for six
different contexts. Twenty iterations of the trajectoryrevexecuted. In the first 3 iter-
ations, a pure PD controller is used, whereas, after thatrgosite controller with the
model being learnt is used. Every second sample of the dyseewperienced is used
for training the inverse model online and every other sarigkept to test the accuracy
of the inverse model. Fig. 4 (left) shows how the normalisedmsquare error (nMSE)
on the test data drops as training proceeds through ther2fidtes, indeed, converging
to very low nMSE for all joints.

The accuracy of the inverse model learned can also be judggetton the contri-
bution of the feedback command to the total composite condniEme smaller the con-
tribution of the feedback command, the more accurate therg@vmodel learnt is. The
average contribution of the feedback command through thige2&tions can be seen
in Fig. 4(middle). Already from the fourth iteration, wherewwitch from PD control
to composite control, the contribution is quite low and drdprther — in accordance
to the behaviour of the nMSE. In Fig. 4(right), we can alsolsaw the tracking error
decreases as the model becomes more accurate while, airtbeisee, we decrease the
gains of the feedback controller.
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4.2 Experimentswith context estimation

The context estimation methods described in section 3.& u&d for online estimation
and control with the six contexts learnt. Random switchéwséen the six contexts were
performed in the simulation, where at every time step wechwiv a random context
with probability .001 and stay in the current context othisewThe context estimates
were used online for selecting the model that will provide filed-forward commands.

We have two classes of experiments, one is where we are mg H8iIM filtering
of the contextual variable and the other is where we use #o Alve have two choices
for the variance of the observation model, one is where waesastant (found empir-
ically) and the other is where we use the more principled denfte bounds provided
by LWPR. The simulation was run for 10 iterations. The petage of accurate online
context estimates for the four cases along with offline Yitatignment can be seen in
the Fig. 5(left).

Fig. 5(middle) gives an example of how the best context edton method that we
have, the HMM filtering using LWPR’s confidence bounds, perf® when used for
online context estimation and control. Sometimes the octr@stimation lags behind
a few time steps when there are context switches, which igwalaffect of online
filtering (as opposed to retrospect smoothing).

The performance of online context estimation and contralése to the control
performance we achieved for the single context displaydeign4. Using the HMM
filtering based on LWPR'’s confidence bounds, the averagk&itrgerror over the 10
cycles was 0.0019 and the ratio of feedback PD control wag&i0.0
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4.3 Experimentswith data separation

Finally, we investigate the bootstrapping of data sepamdtiom unlabeled data. Here,
when generating the data, we switched between two diffeventexts (work loads)
with probability .001 at each time step. We first collectechtch of context-unlabeled
data from 4 cycles through the target trajectory where thewaas controlled by pure
feedback PD control. The EM procedure for data separatiectis 3.2) was tested
on this data with and without temporal modelling (alwayshgsiWPR'’s confidence
bounds as a basis). In the temporal case, Viterbi alignmastwsed to assign data-
points to contexts rather than filtered estimates. Fig. 6payes the evolution of the
data separation for the two methods over six EM-iteratitising the temporal context
performs much better, i.e., 84% of the datapoints were asditp the correct context.

The bootstrapping of the context separation from unlabétgd gives rise to two
separate inverse models for the two different contextsufinér improve these models,
we then used them for online context estimation and corjtrsl as investigated in the
previous section, for another 12 cycles through the targgtdtory. Simultaneously, the
context estimates were used for selecting data for furtlagmibhg of the models. The
accuracy of context estimation was 88% while the trackimgravas 0.0051 and the
ratio of feedback PD control was 0.23. The errors are shghityher than in the case
where models were trained using labeled data, but thisissag considering the fact
that we started with unlabeled data.
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5 Discussion

In this paper we presented an efficient multiple model pgrador the general case of
non-linear control. The approach is based on a probabilistidel of multiple-context
dynamics, using LWPR as an efficient online regressor fon @aerse model. We have
demonstrated that it is possible to bootstrap multiple nsdénon-linear dynamics
from context-unlabeled data and use them for simultanenliseocontext estimation,
control, and training.

In comparison to previous multiple model approaches, matstbly MOSAIC, our
approach is the first to handle the case of non-linear dyrarigather, we showed that
it is unnecessary to maintain pairs of forward and inversdets Context estimation
can more efficiently be based solely on the learned inverskefador each context. We
have seen that including a Markovian model of context swiiglgreatly enhances the
context estimation performance. If additional knowledgewt the context is available,
for instance, if it is related to sensory information, one easily extend our framework
by augmenting the likelihood term in the Markovian model.

An issue yet unaddressed by any existing method is that efmé@ting the number
of separate contexts based on data only, if it is not knowiicaipAs detailed in section
3.2, our formulation of data separation is very similar t@tthf clustering using mixture
of Gaussians. Hence, existing techniques for determihi@gécessary number of clus-
ters in mixtures of Gaussians literature can directly bdatqul. More specifically, a
common approach is to incrementally add new mixture compisnghen the new data
cannot, with sufficient likelihood, be explained with ekigt mixture components [7].
This can also be realized online, which will be the subjedutdre research to extend
the presented approach.
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