Skip to main content

Neuronal Cell Death and Synaptic Pruning Driven by Spike-Timing Dependent Plasticity

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

The embryonic nervous system is refined over the course of development as a result of two main processes: apoptosis (programmed cell death) and selective axon pruning. We simulated a large scale spiking neural network characterized by an initial apoptotic phase, driven by an excessive firing rate, followed by the onset of spike-timing-dependent plastiticity (STDP), driven by spatiotemporal patterns of stimulation. In the apoptotic phase the cell death affected the inhibitory more than the excitatory units. The network activity stabilized such that recurrent preferred firing sequences appeared along the STDP phase, thus suggesting the emergence of cell assemblies from large randomly connected networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G.K., Bloom, F.E.: The formation of synaptic junctions in developing rat brain: A quantitative electron microscopic study. Brain Research 6(4), 716–727 (1967)

    Article  Google Scholar 

  2. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    Google Scholar 

  3. Bourgeois, J., Rakic, P.: Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience 13, 2801–2820 (1993)

    Google Scholar 

  4. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal Regulation: A Mechanism for Synaptic Pruning During Brain Maturation. Neural Computation 11, 2061–2080 (1999)

    Article  Google Scholar 

  5. Eriksson, J., Torres, O., Mitchell, A., Tucker, G., Lindsay, K., Rosenberg, J., Moreno, J.-M., Villa, A.E.P.: Spiking Neural Networks for Reconfigurable POEtic Tissue. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 165–174. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Huttenlocher, P.R.: Synaptic density in human frontal cortex – Developmental changes and effects of aging. Brain Research 163(2), 195–205 (1979)

    Article  Google Scholar 

  7. Iglesias, J., Eriksson, J., Grize, F., Marco, T., Villa, A.E.P.: Dynamics of Pruning in Simulated Large-Scale Spiking Neural Networks. Biosystems 79, 11–20 (2005)

    Article  Google Scholar 

  8. Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.P.: Stimulus-Driven Unsupervised Pruning in Large Neural Networks. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 59–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Innocenti, G.M.: Exuberant development of connections, and its possible permissive role in cortical evolution. Trends in Neurosciences 18(9), 397–402 (1995)

    Article  Google Scholar 

  10. Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)

    Article  Google Scholar 

  11. Karmarkar, U.R., Buonomano, D.V.: A model of spike-timing dependent plasticity: one or two coincidence detectors? J. Neurophysiol. 88, 507–513 (2002)

    Google Scholar 

  12. Moreno, J.M., Eriksson, J.L., Iglesias, J., Villa, A.E.P.: Implementation of Biologically Plausible Spiking Neural Networks Models on the POEtic Tissue. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 188–197. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Rakic, P., Bourgeois, J.P., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S.: Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232, 232–235 (1986)

    Article  Google Scholar 

  14. Song, S., Abbott, L.F.: Cortical Development and Remapping through Spike Timing-Dependent Plasticity. Neuron 32, 339–350 (2001)

    Article  Google Scholar 

  15. Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biology 3(3), 507–519 (2005)

    Article  Google Scholar 

  16. Tetko, I.V., Villa, A.E.: A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated patterns. Journal of Neuroscience Methods 105, 1–14 (2001)

    Article  Google Scholar 

  17. Villa, A.E.P.: Empirical Evidence about Temporal Structure in Multi-unit Recordings. In: Miller, R. (ed.) Time and the Brain, vol. 1, pp. 1–51. Harwood Academic Publishers, England (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iglesias, J., Villa, A.E.P. (2006). Neuronal Cell Death and Synaptic Pruning Driven by Spike-Timing Dependent Plasticity. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_99

Download citation

  • DOI: https://doi.org/10.1007/11840817_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics