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Abstract. Phase synchronisation is a phenomenon observed in mea-
surements of dynamic systems, composed of several interacting oscilla-
tors. It can be quantified by the phase locking factor (plf), which re-
quires knowledge of the instantaneous phase of an observed signal. Linear
sources separation methods treat scenarios in which measurements do not
represent direct observations of the dynamics, but rather superpositions
of underlying latent processes. Such a mixing process can cause spuri-
ously high plfs between the measurements, and camouflage the phase
locking to a provided reference signal. The plf between a linear projec-
tion of the data and a reference can be maximised as an optimisation
criterion revealing the most synchronous source component present in
the data, with its corresponding amplitude. This is possible despite the
amplitude distributions being Gaussian, or the signals being statistically
dependent, common assumptions in blind sources separation techniques
without a-priori knowledge, e.g. in form of a reference signal.

1 Introduction

Interest in phase synchronisation phenomena has a long history, when study-
ing the interaction of complex, natural or artificial, dynamic systems. A detailed
documentation of the topic is given in Ref. [1]. Although not completely adopted,
synchronisation was attributed a role in the interplay between different parts of
the central nervous system (cns) as well as across central and peripheral nervous
systems. In that formulation, the elementary units are self-sustained oscillators

xi(t), exhibiting stable limit cycles. If the coupling between the oscillators is of
weak nature, any distortion that a mutual forcing would cause on the amplitudes,
will be immediately compensated. Then the interactions of m self-sustained os-
cillators can be described with the Kuramoto model (cf. Ref. [2, 3] for a review),
solely on the phases dynamics

φ̇i(t) = ωi(t) +
1

m

m
∑

j=1

κij sin
(

φj(t) − φi(t)
)

, (1)

where φi(t) and ωi(t) denote the oscillators’ instantaneous phases and frequen-
cies; and κ can either be the scalar-valued global coupling strength or a matrix in
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which [κ]ij describes the coupling between oscillators i and j. Postulated that the
system in Eq. (1) is an adequate description of the dynamics of a phenomenon,
it becomes meaningful to focus investigations of their interaction principles to
phase synchronisation.

In the cns, the basic unit — the neuronal oscillator — can be a single
neuron, with an oscillating membrane potential, or a whole population of already
synchronous neurons, that synchronises to another population at a different site
of the brain. Examples of models for neuronal dynamics based on self-sustained
oscillators can be found in Refs. [4, 5].

The phase synchronisation is commonly quantified by the phase locking fac-
tor (plf, for definition see Sec. 2). In many applications, direct measurements
of the individual sources x(t) are not available, but instead global multi-sensor
measurements y(t) of the whole system, which represent mixtures of x(t). See
[6] for a general treatment of such problems. Often, this mixing process can be
described by a linear transformation y(t) = Ax(t). If the plf is evaluated w.r.t.
y(t) two problems arise: (i) calculating the plf between observations yi(t) will,
due to the presence of individual oscillators in several sensors, lead to an erro-
neous detection of interactions between them; (ii) since each sensor measurement
contains more than one of the oscillators the plf of the yi(t) to a reference will
be reduced, obscuring the true interactions.

Here, an algorithm for the extraction of sources synchronised with a given
reference is introduced (Sec. 2). The plf is only evaluated in the source space,
not for the observations, circumventing spurious synchronisations by cross-talk,
and allowing the recovery of the true sources and their coupling strengths. The
search for coupled oscillator networks is facilitated by the use of a reference
signal, embodying existing information on the targeted networks. This can be a
continuous stimulus to the complex system, an already extracted component of
the system, or an external, more accessible part of the system. The algorithm
is presented in a general gradient-based formulation, and can be applied to a
variety of problems. Experimental results in a controlled simulated data set
(Secs. 2.1,2.2), as well as in a preliminary investigation into cortico-muscular
control are presented (Sec. 3).

2 Extraction of One Source Synchronised to a Reference

As stated above, assume that the observations result from a linear superposition
of generative sources, y(t) = Ax(t), with the restriction that A is invertible. The
time index shall be discrete in the following and reside in a fixed interval 1 6 t 6

T ∈ N. Further postulate that, for a given reference signal u(t), a phase locking
is taking place between the reference and at least one of the source signals, xi(t).
Denote the analytic signals1 as ŷi(t) = Yi(t) e

iϕi(t) = yi(t) + iH[yi](t), û(t) =
U(t) eiψ(t) and ŝ(t) = S(t) eiφ(t). s(t) is the extracted source, an approximation
of xi(t). For the phase difference between reference and the extracted source

1 Here, H[x](t) is the Hilbert transform of a signal, x(t).
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Algo. 1. Extraction of a phase locked component.

1: input: y(t), û(t), η, nitr;
2: init: w ∼ N(0, I); k = 1;
3: repeat

4: s(t)← wTy(t);
5: ŝ(t)← s(t) + iH[s](t);
6: P ← 1

T

P

t
ŝ(t)û(t)/|ŝ(t)û(t)|;

7: Ψ ← angle(P ); ̺← |P |;
8: ∆ ← Eq. (9);
9: w ← w + η∆;

10: w ← w/‖w‖;
11: k ← k + 1;
12: until (̺ > 1− δ) ∧ (‖∆‖ < ǫ) ∧ (k > nitr)

signal ∆φ(t) = φ(t) − ψ(t), define a function

̺ eiΨ =
1

T

T
∑

t=1

ei∆φ(t) =
1

T

T
∑

t=1

ŝ(t)û∗(t)

|ŝ(t)û(t)|
, (2)

so that the amplitude ̺ measures the phase locking between the reference signal
and the projection s(t) = wTy(t). It is called the phase locking factor plf

and, since depending on the source signal, it is also a function of w and the
data. Because the complex vector ŝ(t) and û(t) in Eq. (2) are scaled to one, the
plf ̺ ∈ R lies in the interval 0 6 ̺ 6 1. As the maximisation criterion for
our algorithm we can use its square ̺2. The gradient w.r.t. w is given by the
following expression

∇̺2 =
2̺

T

T
∑

t=1

sin(Ψ −∆φ(t))

S2(t)
Γ (t)w, (3)

with the amplitude ̺ and the mean phase Ψ as defined by Eq. (2), and a matrix
[Γ (t)]ij = Yi(t)Yj(t) sin(ϕi(t) − ϕj(t)), fully defined by the observations. The
details of the derivation are shown in appendix A.

Eq. (9) can be used in a batch gradient ascent iteration to maximise ̺. The
learning rule reads

∆w = η
2̺

T

T
∑

t=1

sin(Ψ −∆φ(t))

S2(t)
Γ (t)w. (4)

For smoother convergence, the learning factor η can be chosen to decay in a
variety of annealing strategies. Since ̺ 6 1, a sufficient stopping criterion for
the iteration, iff a phase locked component is present in the data, is ̺ > 1 − δ

for 0 < δ ≪ 1. A maximum number of iterations has to be specified, in case the
reference signal has no phase locked component in the data, because then the
objective function will not reach a high value. The batch algorithm is summarised
in Algo. 1.
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Fig. 1. Kurtosis values of the sources
are kurt(x1) = −0.02, kurt(x2) =
0.007, kurt(x3) = 0.02, kurt(x4) =
0.005, kurt(x5) = 0.006 and kurt(x6) =
−0.18.
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Fig. 2. The Linear mixtures y(t), with
their plf to the reference displayed as
the area of opposite squares.

For larger data sets, with potential nonstationary phase locking behaviour, as
can be produced by Eq. (1), the learning rule can be formulated in an online way
comparable to stochastic gradient algorithms. Then, ̺t e

iΨt will be evaluated in
a time window and the update rule is

∆wt ∝ βt
2̺t sin(Ψt −∆φ(t))

S2(t)
Γ (t) wt. (5)

The evolution of the synchrony, or loss of it, for a component can be assessed by
monitoring the quantity ̺t. The choice of forgetting factor βt is then a critical
element in the algorithm. A good choice will result in slowly varying component
estimates.

If one suspects several components in the data to be synchronous with the
reference signal, the algorithm can be applied several times, in a deflation man-
ner. Each time a synchronous source s(t) is found it needs to be removed from
the data. The standard solution of projecting s(t) back to the observation space
and subtracting it from y(t), would require the data to be whitened. This can be
achieved by an invertible linear transformation of y(t), prior to running Algo. 1.
Since this presents just an additional linear mixing, Algo. 1 can, without any loss
of generality, compensate for it. Let the whitened data be z(t), then each com-
ponent can be subtracted, e.g. by z′(t) = z(t)−(wwT)−1w s(t), and the process
continues. Even for two components with exactly the same phase evolution, i.e.

identical plfs, if their amplitudes vary, the algorithm would not converge to a
mixture of those.

2.1 Simulation Examples

True blind source separation (bss) algorithms use no explicit information about
the sources to be extracted. The estimation relies typically on general assump-



5

s1

s2

50

Fig. 3. Left: Examples of the two
sources found by Algo.1. in the noise-
less case (η = 0.1). Right: Correspond-
ing objective function.
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Fig. 4. Left: Examples of the two
sources found by Algo.1. in the noisy
case (η = 0.1). Right: Corresponding
objective function.

tions such as statistical independence or non-Gaussianity of the sources’ distribu-
tions. When in presence of oscillatory data, often a criterion based on temporal
decorrelation can be employed (see [6] for an overview of various implementa-
tions of independent component analysis, one of the most used solutions to the
bss problem). No such requirements are necessary if knowledge of the source
phase is available, up to an arbitrary constant phase lag.

To show the applicability of Algo. 1. to the search for components syn-
chronous to a reference, we have generated a set of oscillatory signals xi(t) =
Ai(t) sin(φi(t)) (see Fig. 1). These can not be estimated from instantaneous linear
mixtures by neither non-Gaussianity, nor temporal decorrelation criteria. This is
because most of the sources have modulated amplitudes that insure histograms
close to Gaussian. All have kurtosis close to that of x6(t), which corresponds to
random Gaussian noise. Temporal decorrelation methods will fail also due to the
varying frequency content of the sources.

The oscillators xi(t)|i=1,··· ,6 are not phase coupled, thus the change of the

instantaneous phase is proportional to their own natural frequency φ̇i = ωi(t).
Only components 2 and 3 are coupled, such that φ2(t)−φ3(t) = const. Opposite
to Fig. 1, is depicted the plf of each source signal to the reference as the area of
a square. The reference has the same phase dynamic as x2 and x3, but a different
phase offset and an arbitrary amplitude, thus ̺x2

= ̺x3
≈ 1. This choice is just

illustrative. Comparable results were reached using all other oscillators.

Figure 2 shows a set of linear mixtures of the signals in Fig. 1. Note that
all mixtures have now a medium amount plf to the reference, although clearly
bellow those attained by the sources (no mixture has a plf in excess of 0.75).

The perfect coupling between x2(t) and x3(t) suggests that any of the two
can be found when the algorithm in Algo. 1 is used with a reference sharing
their phase dynamics. Since any mixture of x2(t) and x3(t) is less synchronous
to the reference, a single one is estimated at a time. The results depicted in
Fig. 3 illustrate this fact. Note the correct estimation of the amplitude of the
source signal, in addition to the phase recovery with the proper offset. In order to
extract the second phase locked component, the first estimate should be removed
by projecting it back to the observation space and subtracting it. This allows to
extract the whole two dimensional subspace from the data, that is maximally
phase locked to the reference.
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Fig. 5. Ordinate: plf; Abscissa: σ2. Maximal number of iterations and learning rate η
are kept constant.

As in many source extraction algorithms the global amplitude scale and the
sign of the sources will remain undetermined. For that reason, the projection
vector is arbitrarily normalised to unit norm in step 10 of the algorithm.

The convergence speed for a particular run of the method can be inspected
on the right part of Fig. 3. The exact values can vary, depending on the choice
of η. If the phase of the reference signal is not present in the data, the algorithm
will not reach a high plf.

2.2 Sensitivity to Noise

The phase of a Gaussian white noise signal is typically mildly locked (plf of ca.
0.1) to any other signal, including other Gaussian noise processes.

Let us assume that the observed mixtures y(t) = Ax(t) + σ ε(t), as well as
the reference signal v(t) = u(t) + ς ν(t), are corrupted with noise of variance σ2

and ς2 respectively. ε(t) and ν(t) are both drawn form a Gaussian distribution
having zero mean and Cov[εi(s)εj(t)] = δijδst, Cov[ν(s)ν(t)] = δst.

Figure 4 shows a replication of the experiment reported in Fig. 3, for the
case of added observational noise of the same unit variance σ2 = 1 as the data.
The estimation is not as perfect as in the noiseless environment, possibly due
to a non-zero phase locking between the reference signal and the noise (see
Fig. 1). The plf serves as a quality measure for the extracted components. The
obtained plfs are ̺s1 = 0.83 and ̺s2 = 0.59, which are significantly beneath
those of the true sources. A common problem of deflation schemes is that the
estimation error accumulates with the number of extracted components. Also
the convergence speed is, as should be expected, reduced slightly with the noise
source present.
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In Figure 5 the plf is plotted as a function of the observation noise magnitude
σ2. The different graphs correspond to values of ς2 (the steeper slops for lower
ς2). The maximally achieved objective function value (keeping the maximum
number of iterations fixed) deteriorates with increasing noise variance in both
observations and reference.

The presence of noise has a profound influence in many real world applica-
tions. Furthermore, is it possible for real signals to exhibit very broad spectra,
with oscillatory dynamics in different frequency ranges. The Hilbert transform is
not able to estimate a meaningful phase for such broad band signals. In conclu-
sion, it is therefore advisable to remove, or reduce the noise and filter the signal
in a targeted frequency band of interest, prior to the phase analysis. A way to
combine filtering and phase estimation, that was reported to perform reliably
on biological signals, is the convolution with complex Morlet wavelets [7]. An-
other valuable preprocessing approach is singular spectrum analysis (ssa), since
it allows to decompose a signal into trends, oscillators and noise components, cf.

Ref. [8].

3 Cortico-muscular Phase Locking in MEG Revisited

Strong coherence, i.e., spectral cross-correlation (see [9] and references therein),
and synchronisation have been observed between electrophysiological measure-
ments from the brain and muscles (using electroencephalograms, eeg; mag-
netoencephalograms, meg; and electromyograms, emg). Cortico-muscular and
cortico-cortical interactions were found in frequency bands centred around 15Hz,
20Hz and 40Hz. These have been supported by physiological consideration upon
the biological processes involved.

An obstacle in these studies, e.g., addressed in [10], is that the synchronisa-
tion among eeg or meg channels is likely to result partially from cross-talk and
volume conduction, i.e. the same oscillator being present in different measure-
ments, because of a natural mixing process. Synchronisation between eeg/meg

and emg, on the contrary, will be decreased as a result of the same process,
since there is no single eeg/meg channel that presents directly the underlying
oscillator that is synchronous to the emg.

In [11] the imaginary part of coherence has been introduced as a promising
measure for brain interactions. It has the appealing property of not being sen-
sitive to volume conduction, though it could possibly oversee interactions with
very small phase lags. Such zero phase lag synchronisation could arise if the
neuronal coupling between the two subsystems is strong and symmetric. On the
other hand, the amount of phase lag between the compared signals does not
affect the estimate of the plf, on which Algo. 1. is based. Since it only measures
synchrony between the source signals and the reference, the volume conduction
and cross-talk should also be decreased. The algorithm’s assumptions of a linear
and instantaneous nature of the mixing process, are both substantiated from a
theoretical viewpoint (see, e.g., [12, 13]).
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Fig. 6. Topographic map of the Neuromag meg helmet at 18–20Hz.

We tested Algo. 1 on real measurements, using the data set described in [9].
It consists of simultaneous meg recordings, with a 306-sensor Vectorview neu-
romagnetometer (Neuromag Ltd; 204 planar gradiometers and 102 magnetome-
ters), together with left and right hand emg’s. The subject was instructed to
simultaneously keep isometric contraction in left and right hand muscles, using
a special squeezing device. Only the measurements of the planar gradiometers
were analysed. The sampling rate is 600 Hz for a duration of 3 minutes.

Based on physiological considerations, we have scanned a series of frequency
ranges for targeting the algorithm. The results attained for the range 18–20Hz
are shown in Fig. 6. This corresponds to the estimated projection between the
extracted source and the measurements. This topographic map is conventionally
called the component’s field map. The view is taken from above, preserving right
and left orientations, and with front facing up.

A comparison between the results shown, and the ones presented in [9], sug-
gests the phase locked component to represent activity originating from the
primary motor cortex. The variance of the extracted source is of the same mag-
nitude as the measurements, indicating that the component has a significant
presence in the recordings.

4 Concluding Remarks

Synchronisation plays a capital role in interacting oscillatory systems. It has been
proposed in the literature that brain communication is implemented through
synchronisation. We introduced a gradient based algorithm for the extraction of
components, from measurements that are phase synchronous to a given reference
signal. This can potentially elicit information about neuronal oscillator interac-
tions from brain signals. The problem of noise was addressed in a controlled
simulated environment. A preliminary study of its usage in cortico-muscular
interactions was also presented.
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In the future the robustness and convergence behaviour of the algorithm
shall be determined in more detail. On a practical side, one should investigate
which preprocessing techniques are useful when applying the algorithm to real
world problems. Beyond the cortico-muscular example, we intend to investigate
communication inside the central nervous system. This will require an extension
of the algorithm in which the reference signal is estimated also from the measured
signals in an unsupervised manner.
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12. Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., Lounasmaa, O.V.:
Magnetoencephalography—theory, instrumentation, and applications to noninva-
sive studies of the working human brain. Reviews of Modern Physics 65(2) (1993)
413–497



10
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A Gradient of ̺2

The gradient can be written out as ∇̺2 = ∇
(

̺ cos(Ψ)
)2

+ ∇
(

̺ sin(Ψ)
)2

, which
equals

2̺
(

cos(Ψ)[∇̺ cos(Ψ)] + sin(Ψ)[∇̺ sin(Ψ)]
)

. (6)

From the definition in Eq. (2) it follows that ̺ cos(Ψ) = 1
T

∑T
t=1 cos(∆φ(t)).

Inserting this and the equivalent identity for ̺ sin(Ψ) into Eq. (6) and further
evaluating the gradient yields

2̺

T

T
∑

t=1

[

sin(Ψ) cos
(

∆φ(t)
)

− cos(Ψ) sin
(

∆φ(t)
)

]

∇φ(t). (7)

The phase φ(t) is the angle of ŝ(t) in the complex plane. This is given as φ(t) =
angle ŝ(t) = arctan2(H[s](t), s(t)), where the two arguments arctan maps the
angle into the correct quadrant. Let the Hilbert transform H[·] operate on the
coordinates of a vector. For the gradient of φ(t) = arctan2(wTy(t),wT

H[y](t)),
the arctan2-function can be substituted by the normal arctan, so that

∇φ(t) = ∇ arctan
(wT

H[y](t)

wTy(t)

)

=
(wTy(t))H[y](t) − (wT

H[y](t))y(t)
(

1 +
(

wTH[y](t)
wTy(t)

)2
)

(wTy(t))2
.

The first factor in the denominator is the derivative of arctan and the second is
the result of the quotient rule of differentiation. This can be rearranged to

∇φ(t) =
(H[y](t)yT(t) − y(t)H[y]T(t)) w

(wTy(t))2 + (wTH[y](t))2
, (8)

reviling the denominator to be the square magnitude of extracted source s2(t)+
H[s]2(t) = S2(t). The matrix Γ (t) = (H[y](t)yT(t) − y(t)H[y]T(t)) in the nu-
merator can also be written in terms of the phase of the observation signal as

[Γ (t)]ij = Yi(t)Yj(t) sin(ϕi(t)) cos(ϕj(t)) − Yi(t)Yj(t) cos(ϕi(t)) sin(ϕj(t))

= Yi(t)Yj(t) sin(ϕi(t) − ϕj(t)).

The same simplification can be applied to Eq. (7), to finally arrive at

∇̺2 =
2̺

T

T
∑

t=1

sin(Ψ −∆φ(t))

S2(t)
Γ (t)w. (9)


