
Competitive Analysis of Flash-Memory
Algorithms

Avraham Ben-Aroya and Sivan Toledo

School of Computer Science, Tel-Aviv University
{abrhambe, stoledo}@tau.ac.il

Abstract. The cells of flash memories can only endure a limited num-
ber of write cycles, usually between 10,000 and 1,000,000. Furthermore,
cells containing data must be erased before they can store new data, and
erasure operations erase large blocks of memory, not individual cells. To
maximize the endurance of the device (the amount of useful data that
can be written to it before one of its cells wears out), flash-based systems
move data around in an attempt to reduce the total number of erasures
and to level the wear of the different erase blocks. This data movement
introduces interesting online problems called wear-leveling problems. We
show that a simple randomized algorithm for one problem is essentially
optimal. For a more difficult problem, we show that clever offline algo-
rithms can improve upon naive approaches, but online algorithms essen-
tially cannot.

1 Introduction

The read/write/erase behaviors of flash memory is radically different than that
of other programmable memories, such as magnetic disks and volatile ram. Most
importantly, flash memory cells can be erased only a limited number of times,
between 10,000 and 1,000,000, after which they wear out and become unusable.

Writing to flash involves two separate operations: erasures and programming.
An erasure sets all the bits in a range of cells to ’1’. These ranges are called erase
units and are usually uniform in size. We denote the number of erase units by
n. The programming operation writes a given bit sequence to an erase unit, or
to a part of an erase unit by clearing some of the 1’s. We assume in this paper
that the computer system always programs fixed-length sequences called blocks.
We denote the number of blocks that fit within an erase unit by k. That is, each
erase unit is divided into k slots that can each store a single block. A slot that
has been programmed cannot be programmed again until the entire erase unit
is erased (there are exceptions to this rule, but they are beyond the scope of this
paper). Both k = 1 and higher values of k occur in practice.

Clever management of a flash device can dramatically extend its functional life
span. Consider a device with n erase units that can each be erased H times, which
are not divided into slots (that is, k = 1). We consider the device useless when
one of the n cells exceeds the wear limit H (our results justify this assumption).
When the device becomes useless, it has been written to between H + 1 and

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 100–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Competitive Analysis of Flash-Memory Algorithms 101

n(H + 1) times. Clever management aims to ensure that the device can be
successfully written to as close to n(H + 1) times as possible. Techniques that
aim to achieve this goal are called in the flash literature wear-leveling techniques.

Wear-leveling techniques work by separating the system’s naming of blocks
from the physical location of the slots that contain them. The computer system
views the flash device as a store of m ≤ nk fixed-size blocks named 1 through
m. The system uses the flash by issuing a sequence of read requests and write
requests. Read requests are irrelevant to endurance so we ignore them. Write
requests require the flash memory manager to store the new content of a named
block and to return it in the future. Initially, each data block is stored in some
slot. These slots are occupied. The flash memory manager serves a write re-
quest by performing a sequence of erasure and programming operations. In this
sequence, blocks can only be written to clean slots (slots that have not been
written to since the containing erase unit was erased), not to dirty slots (slots
that contain obsolete data). When a unit is erased, all its contents are lost, and
all its slots become clean. The sequence always needs to achieve one goal, and
in most systems, it needs to achieve two more:

– At the end of the sequence each block must be stored in some slot. This is
always necessary.

– The rearrangement of blocks might also contribute to wear leveling.
– Most systems require that the rearrangement of blocks is carried out such

that no data is lost if the system is shut off in the middle of the sequence.
This is an atomicity requirement with respect to the block-update request.

If atomicity is not an issue, the sequence always has the same structure. The
manager begins the sequence by marking the slot that contains the old copy of
the block as obsolete. If the manager wishes to rearrange additional blocks, it
reads them into volatile memory (ram) and marks the slots that contained them
as obsolete. Next, the manager can erase units that contain no occupied slots,
only clean and dirty ones. Finally, the manager writes all the blocks that are in
volatile memory, including the updated block that initiated the sequence, into
erased slots. If atomicity is required, or if the amount of ram is limited, update
sequences are more complex. The mapping issue (remembering where each block
is stored) is largely orthogonal to the endurance issue, and we ignore it in this
paper.

Starting around 1993, a variety of wear-leveling techniques have been pro-
posed, mostly in patents [1, 4, 5, 6, 7, 9, 10, 11, 12, 13]; for details about these tech-
niques and about other flash-management techniques, see [8]. In this paper,
we present a competitive analysis of online wear-leveling policies, including of
patented randomized policies. No such analysis has ever been published. Some of
our analyses, such as the lower bounds for deterministic policies, apply directly
to algorithms that have been previously proposed.

When the request series begins, we have m occupied slots and nk − m clean
slots. Thus, the manager cannot serve more than (nk − m) + Hnk requests. We
can, therefore, assume that the length of all request sequences is (nk−m)+Hnk.



102 A. Ben-Aroya and S. Toledo

The objective of the manager is to serve as many requests as possible before the
device wears out.

We use competitive analysis to quantify the effectiveness of online wear-
leveling policies. Let �opt(σ) be the number of requests that the optimal offline
algorithm can serve for a given request sequence σ, and let �α(σ) be the number
of requests that an online algorithm α can serve. The competitive ratio of α is
minσ �α(σ)/�opt(σ), where the minimization is over all the sequences of length
(nk − m) + Hnk. A good online policy achieves a high competitive ratio. If α is
randomized then we replace �α(σ) by the expected length that α can serve.

The paper is organized as follows. Section 2 analyzes the case k = 1 and
Section 3 analyzes the case k > 1. It turns out that these two cases are quite
different and are governed by different issues. Each of these sections describes an
effective offline algorithm, bounds on the competitiveness of deterministic and
randomized online algorithms, and online algorithms that match most of the
bounds. Section 4 presents our conclusions. Due to lack of space, most of the
proofs have been omitted; see [3] for the proofs, for additional simulation results,
and for a fuller discussion of implications of the results.

2 Single-Slot Units

We begin the analysis with single-slot erase units (k = 1). This case models at
least two real-world situations: flash devices that limit programming operations
to entire erase units, and flash devices that allow variable-size programming
operations, which usually leads system designers to use single-slot wear-leveling
algorithms.

In this case we can simplify the rules. First, we refer only to (erase) units, not
to slots. Second, units can be in only two states, clean and occupied (and not
dirty): We immediately erase a unit when a block is moved from it. Any result
for this simplified model applies to the full model up to a change of ±1 to H .

2.1 Deriving Atomic Policies from Non-atomic Ones

We present a method that allows us to separate the atomicity concern from the
wear-leveling concern. This method transforms many non-atomic algorithms,
including all the algorithms in this section, into atomic ones with exactly the
same endurance.

We denote by hi(t) the number of erasures that the algorithm already per-
formed on unit i immediately before serving request number t. We call hi(t) the
wear of i at time t. We denote by σt the index of the block requested by the tth
request in the sequence σ.

Theorem 1. Let N be a non-atomic algorithm for n blocks and n units that
serves a request sequence η by either putting ηt back in its unit or by switching
ηt with some other block. We can derive from N an atomic algorithm A for n−1
blocks and n units. For any request sequence σ that A serves, there is another



Competitive Analysis of Flash-Memory Algorithms 103

sequence η such that h
A(σ)
i (t) = h

N (η)
i (t) for all i and for all t. If N is online

then A is online.

The transformation simulates a fixed trivial online algorithm T on σ and uses
its state (the block-to-unit mapping) to define η. Then N is simulated on η.
The action of N on ηt, which is always one of two possible actions, is used to
deterministically define the action of A on σt. Therefore, if A is randomized,
then N essentially uses the coin tosses of A, and the result h

A(σ)
i (t) = h

N (η)
i (t)

holds for every sequence of coin tosses. Thus, the theorem implies that the en-
durance of A and N is the same, both in the worst-case sense and in probabilistic
senses.

2.2 Offline Algorithms

The best-case endurance (for “easy” sequences) is �(σ) = nH . Offline algorithms
can achieve almost this best-case endurance.

Theorem 2. There is an atomic offline algorithm for which the wear hi(t) of
any unit i at time t = Hn − n + 1 is at most H, for any sequence σ, even
if m = n − 1. For m = n there is a non-atomic algorithm that achieves this
endurance.

This implies that an offline algorithm can always achieve �off(σ) ≥ n(H − 1).
Since H > 10, 000, the offline endurance is exceedingly close to the best-case
endurance nH .

The non-atomic offline algorithm works as follows (the atomic one uses The-
orem 1). Normally, the algorithm serves a request to block x stored in unit i by
erasing i and putting x back into i. In some cases, however, the algorithm de-
cides to exchange the contents of i with the contents of another unit j. To decide
whether to switch i with j, the algorithm counts the number of remaining re-
quests to all the blocks, but only up to request number Hn−n. It switches if the
number of remaining requests to some block y stored in unit j matches exactly
the number of erasures left for unit i, or if the number of remaining requests to
x matches exactly the number of erasures left for unit j. The algorithm performs
at most n such switches on a given sequence. Notice that a switch performs two
erasures, while a write in-place performs only one.

2.3 Deterministic Online Algorithms

The endurance of deterministic algorithms depends entirely on the number n−m
of extra erase units. An online algorithm can achieve this endurance by always
putting the requested block in the least-worn out empty unit.

Theorem 3. Under this deterministic online algorithm, the wear of any unit
after (n − m + 1)H requests is at most H.

This is as good as any deterministic algorithm can achieve.



104 A. Ben-Aroya and S. Toledo

Theorem 4. For every deterministic algorithm α (even if α is non-atomic)
there exists a sequence σ such that �α(σ) ≤ (n − m + 1)H.

In spite of this pessimistic competitive result, many flash-based systems use
deterministic algorithms. This is due to the fact that in practice the request
sequence is oblivious to the mapping and such algorithms usually work well.

2.4 Randomized Online Algorithms

We analyze a randomized algorithm called Rp, which was patented by Amir
Ban along with several other wear-leveling algorithms [2]. The algorithm that
we analyze corresponds to Claims 2.c, 3, and 4.II in [2]. It serves a request to
block x using the following rules:

– With probability p, put x in a random unit i chosen uniformly and indepen-
dently, and put the block that was in i in the unit where x was stored (the
algorithm may return x to the unit in which it was stored).

– Otherwise, put x back in the unit from which it was taken out.

This algorithm is not atomic, but it satisfies the conditions of Theorem 1, so we
can easily derive an atomic variant with the same competitive ratio. In the anal-
ysis of the algorithm, we assume that the blocks are initially stored in random
units.

For p = 1, the behavior of this algorithm is fairly simple. Since the block that
was requested is always switched with a random block, uniformly, an adversary
has no useful information about which block is in which unit. Therefore, any
request sequence is equivalent to a random request sequence. For large H , the
wear of all the units under a random request sequence is roughly the same. Since
serving each request usually costs the algorithm two erasures (if m is close to
n), the endurance should be close to nH/2. A full analysis of R1 is not difficult.

However, a small p can improve the endurance and bring it close to nH .
Figure 1 shows the results of simulations of Rp. For given n and H , we simulated
Rp with several values of p, 50 times for each p, with a constant request sequence.
Each cross on the graph indicates the length of the sequence that a particular run
was able to serve. The results clearly show that the simple variant R1 achieves
endurance of roughly nH/2, but for a small p, the algorithm Rp can get close to
nH . The main goal of our analysis, which is more complex than the analysis of
R1, is to fully analyze this phenomenon and to provide guidelines for the choice
of p.

A small p only helps, however, if H is large. If H is small, R1 is optimal.
We begin with results that bound the performance of randomized algorithms for
small H and that show that R1 is optimal in this regime. The results from here
on are asymptotic with respect to a growing n.

Theorem 5. For any randomized online algorithm α (even if α is non-atomic)
and for every constant e such that n = m + e, there exists a sequence σ and a
constant c such that Pr

[
�α(σ) < n1−c/H ln n

]
≥ 1 − o(1). (The constants within

the small-o, as well as c, depend on e).



Competitive Analysis of Flash-Memory Algorithms 105

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5 n=20 H=10000

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6 n=20 H=100000

Fig. 1. Simulation results for n = 20 erase units and endurance limits of H = 10, 000
(left) and H = 100, 000 (right). Each cross represents one simulation. The x axis shows
the switching probability p that was used in the simulation, the y axis shows the number
of requests that were served before one of the units was erased H + 1 times. The y
axis always extends up to exactly nH erasures, the ideal endurance. Theorem 7 shows
that for switching probabilities far from 1 but significantly larger than p = (ln n/H)1/3

(indicated in the graphs by the vertical line), the endurance is nearly ideal.

Theorem 6. For H in the range

Ω(ln n/ ln lnn) ≤ H ≤ O(ln n) ,

there exists a constant d > 0 such that for every request sequence σ,

Pr
[
�R1(σ) < n1−d/H ln n

]
= o(1) .

When H is large, a good choice for p brings �Rp(σ) almost to nH .

Theorem 7. When H = ω(ln n), for any (ln n/H)1/3 � p � 1 and for every
request sequence σ,

Pr
[
�Rp(σ) < nH(1 − o(1))

]
= o(1) .

3 Fractional Unit Wear Leveling

Until now, we have analyzed the single-slot case k = 1. Some flash based systems
support fixed-size fractional writes, in which erase units are k times larger than
write blocks.

In this section, we consider the fractional wear-leveling problem, in which
k > 1. In the fractional case, the best-case scenario with a single spare unit (m =
(n − 1)k) is � = nHk: all the blocks in a given unit are requested contiguously
and are moved to the spare unit, then the unit with the k dirty slots is erased,
and so on. If the blocks are requested such that the units are emptied cyclically,
we achieve � = nHk. On the other hand, an algorithm that always moves all the
blocks in a unit together (and erases an entire unit as soon as one of its slots



106 A. Ben-Aroya and S. Toledo

becomes dirty) can achieve at most � = nH . Algorithms that behave like this are
essentially single-slot algorithms and the bounds that we presented earlier apply
to them. True fractional algorithms try to achieve endurance close to � = nHk.
Clearly, to achieve such endurance, algorithms must avoid greedy movement of
blocks and operate with units that contain some dirty slots.

Achieving high endurance in the fractional case is more difficult than achiev-
ing high endurance in the single-slot case; the two problems are very different.
Consider, for example, a request sequence with random requests. In the single-
slot case, even a naive non-atomic write-in-place deterministic algorithm achieves
high endurance on such a sequence. The whole point of our randomized online
algorithm was to introduce similar randomness into the process of serving an
arbitrary sequence. But in the fractional problem, a random request sequence is
difficult to serve, because it causes slots in many units to become dirty. When
there are no more empty slots, the algorithm must erase some unit. But with
high probability, no unit contains close to k dirty slots. Therefore, the algorithm
will need to erase a unit with a relatively small number of dirty slots, leading to
low endurance.

3.1 An Offline Algorithm for the Fractional Problem

Clearly, �opt ≤ (nk − m) + nHk. On the other hand, a simple lower bound is
given by the same algorithm that we used in the single-slot unit problem. This
can be done by treating all blocks that are initially in the slots of the same unit
as one big block that moves between units. As seen previously, this algorithm
will achieve �alg ≥ (H − 1)n.

Obviously, the fractional unit wear leveling problem is only interesting when
there are some spare empty units, since when all the units are full, the problem
is equivalent to the single-slot unit wear leveling problem. First, we describe an
non-atomic algorithm, which for H � 1 achieves

�off(σ) ≥ (1 − o(1))
(

kHn

9

)2/3

= (1 − o(1))

( 1
9k

)2/3

(Hn)1/3 Hn

using a single empty unit. This algorithm is better than the naive algorithm
when k is sufficiently large (specifically, when k ≥ 9

√
Hn). We later describe

two atomic variants, one with the same � using k + 2 empty units, and another
which loses a factor of log k but uses only three empty units.

The idea is to split the concerns of the algorithm. We first devise an algorithm
N that attempts to minimize the total wear (the total number of erasures). We
then apply the wear-leveling policy from Section 2.2 to even the wear among the
units.

The algorithm N serves σt as follows. If there is a clean slot, it puts σt in
it. Otherwise, it erases all the units that contain dirty slots, and sorts all the
blocks stored in them in the order of their future arrival time. That is, after
these erasures, there is a unit which is completely clean, and all the other erased
units are completely occupied and sorted.



Competitive Analysis of Flash-Memory Algorithms 107

For simplicity we assume that initially unit n is the empty unit, and that
whenever erasures are preformed, unit n is always erased and arranged such
that after the arrangement it is the one empty unit (regardless of whether there
are any dirty slots in it). This assures us that unit n is always the empty unit.

Since there are exactly k clean slots, N preforms erasures after each k con-
secutive requests. Thus, we split the executions of N into phases. Each phase
consists of serving k requests and performing subsequent erasures. Phase φ ends
just before serving σφk+1. Let Aφ denote the set of erased units at the end of the
φth phase. Our main objective now is to bound

∑
Aφ. To do this, we define the

following labeling scheme. A block x is associated with a set of labels denoted by
Sx. Initially all these sets are empty. They are updated between phases. After
the φth phase, the only blocks whose sets are updated are the blocks in the units
of Aφ. First, the sets Sσ(φ−1)k+1 , . . . , Sσφk

of the requested blocks becomes empty.
Then, for each of block x within the units of Aφ the label (φ, zx) is added to Sx,
where zx ∈ {1, . . . , k} indicates the unit order of the unit that now contains x
(i.e., if x’s arrival time is the jth shortest one among the blocks in the units of
Aφ, then zx = �j/k	). Observe that a unit that contains blocks with label (φ, z)
is not erased until all the blocks with label (φ, z − 1) are requested. The sets
{Sx} change during the execution; we denote the set Sx before the φth phase
by Sx(φ).

We say that a block x is accessible just before the φth phase begins if, for each
label pair (a, z) ∈ Sx(φ), there is no other set Sy(φ) such that (a, z′) ∈ Sy(φ)
for some z′ < z − 1. A unit i 
= n is erasable just before the φth phase if all
the blocks in it at that time are accessible. We denote by Bφ the set of erasable
units before φth phase and define ζφ = |Bφ+1 \ Bφ|.

Lemma 1. Aφ \ {n} ⊆ Bφ.

Lemma 2. |Bφ+1| ≤ |Bφ| − |Aφ| + 3 + ζφ for any φ ≥ 1.

Proof. A unit that is erasable in the φth phase but was not erased (it is not in
Aφ) is surely erasable in the (φ+1)th phase. We now examine the set Aφ. By the
previous lemma, every unit i 
= n in Aφ was erasable before just before phase φ.
At the end of the φth phase, the algorithm sorts the blocks in Aφ according to
their next arrival times. Therefore, most of the units in this set are not erasable
in the (φ + 1)th phase: only the two units with the shortest arrival times are.
This adds 2 to the right-hand side of the inequality. Unit n is always erased but
it is not erasable (by definition): this adds 1 to the right-hand side. To bound
|Bφ+1| we only need to add ζφ, the number of units that became erasable during
the φth phase. �


Lemma 3. Let D1, . . . , DΦ be Φ sets of pairs of integers (a, z), where the first
component in each pair is an integer between 1 and Φ. Suppose that for i 
= j,
there is at most one integer a such that (a, z1) ∈ Di and (a, z2) ∈ Dj for some
z1 
= z2 (i.e. a appears as the first component in a pair in Di and in a pair in
Dj). Then

∣∣
∣
⋃Φ

i=1 Di

∣∣
∣ ≤ 3Φ

√
Φ.



108 A. Ben-Aroya and S. Toledo

We can now prove a bound on
∑

φ ζφ.

Lemma 4. For any Φ ≥ 1 we have
∑Φ

i=1 ζi ≤ 9Φ
√

Φ .

Proof. We wish to bound the number of events in which a unit changes its state
from non-erasable to erasable. A unit becomes non-erasable when it is erased
and used to store blocks with label (a, z) for some z > 2. (The units that are
used to store blocks with label (a, z) for z = 1, 2 are immediately erasable.) For
such a unit to become erasable again, all the k blocks with labels (a, z −2) must
be requested. Until the label (a, z − 2) disappears, the unit that stores blocks
labeled (a, z) does not become erasable again. Therefore, what we need to count
to bound

∑
ζi is the number of labels that completely disappears.

Only kΦ blocks are requested during the first Φ phases. However, this does not
give a bound of Φ on the number of units that become erasable again during these
Φ phases, because requested blocks with more than one label may contribute to
the erasability of multiple units.

Let Ct = Sσt(�t/k	) be the set of labels that block σt carries at time t. The
number of labels (a, z) that appear exactly k times in the Ct’s is exactly the
number of units that become erasable again. Other labels, the ones that appear
fewer than k times, are irrelevant and we completely ignore them in the rest of
the analysis. Thus, from now on, we assume that each label appears in exactly
k of the Ct’s.

Let D = {D1, . . . , DΦ} be a random sample of the Ct’s, drawn uniformly and
independently (with repetitions). The probability that a particular label appears
in one of the Di’s is exactly 1/Φ, because exactly k of the kΦ sets Ct contain
that label. The probability that a particular label does not appear in any of the
Di’s is, therefore,

(
1 − 1

Φ

)Φ ≤ 1
e < 2

3 . Hence, the probability that the label does
appears in some of the Di’s is bounded from below by a constant. Therefore,
the expected number of labels that appear in ∪iDi is bounded from below by a
1/3 times the number of labels in ∪tCt. This implies that there is some specific
sample D = {D1, . . . , DΦ} in which the number of labels is at least 1/3 fraction
of the labels in the (reduced) Ct’s.

We say that two sets Ct1 and Ct2 are linked by a if (a, z) ∈ Ct1 and (a, z′) ∈ Ct2

for some z′ 
= z. We claim that if Ct1 and Ct2 are linked by a, then they cannot be
linked by any other phase-label b 
= a. Suppose for contradiction that the claim
is false and that the two sets are also linked by b. Without loss of generality, let
a < b and z′ > z. If time t1 occurs after phase b ends, then (b, ?) 
∈ Ct2 , because
until after time t1, the block associated with Ct2 is in a unit in which all the
blocks are labeled by (a, z′). None of these blocks can be requested until after
time t1, so the block associated with Ct2 cannot be labeled with b. On the other
hand, if time t1 occurs before phase b ends, then (b, ?) 
∈ Ct1 .

Therefore, the Ct’s satisfy the mutual exclusion assumption of Lemma 3.
This implies that so do the Di’s in the specific set D. Lemma 3 guarantees that∣
∣∣
⋃Φ

i=1 Di

∣
∣∣ ≤ 3Φ

√
Φ. Since

∣
∣∣
⋃Φ

i=1 Di

∣
∣∣ ≥ 1

3

∣
∣∣
⋃kΦ

i=1 Ci

∣
∣∣ we conclude that

∣
∣∣
⋃kΦ

i=1 Ci

∣
∣∣ ≤

9Φ
√

Φ. The lemma follows from the fact that
∑Φ

i=1 ζi =
∣∣
∣
⋃kΦ

i=1 Ci

∣∣
∣. �




Competitive Analysis of Flash-Memory Algorithms 109

If the number of units that become erasable is small, the flash endures.

Theorem 8. If H � 1 then for t ≤ (1 − o(1))(kHn/9)2/3 the total number of
erasures under this offline algorithm is

∑n
i=1 hN

i (t) ≤ Hn − n.

Proof. It follows from Lemma 2 (by simple induction, using |B1| ≤ n) that

|BΦ| ≤ n −
Φ−1∑

i=1

|Ai| + 3(Φ − 1) +
Φ∑

i=1

ζi .

From Lemma 1 we know that |BΦ| + 1 ≥ |AΦ|. This implies

Φ∑

i=1

|Ai| ≤ 1 + n + 3(Φ − 1) +
Φ∑

i=1

ζi ≤ 1 + n + 3(Φ − 1) + 9Φ
√

Φ ,

where the last inequality follows from the previous lemma. Since
∑Φ

i=1 |Ai| =∑n
i=1 hN

i (Φk) we get
∑n

i=1 hN
i (Φk) ≤ 1+n+3(Φ−1)+9Φ

√
Φ and conclude that∑n

i=1 hN
i (t) ≤ n + 3(t/k − 1) + 9(t/k)3/2. Thus, for t ≤ (1 − o(1))(kHn/9)2/3 it

holds that
∑n

i=1 hN
i (t) ≤ Hn − n. �


We now use the algorithm for the single-slot unit wear-leveling problem to create
an algorithm N2 which evens the wear among the units. N2 first simulates N
and generates a new single-slot request sequence η. To avoid confusion, we call
the blocks in η pseudo-blocks. We construct η as follows: whenever N erases unit
i, we add a request for pseudo block i to η (since N may erase many units at
once, we impose an arbitrary order on these erasures). Now N2 runs the offline
algorithm for the single-slot case on η. When the single-slot offline algorithm
switches blocks among two units, N2 switches the corresponding actual units.

Theorem 9. If H � 1 then the wear hN2
i (t) of any unit i at time t = (1 −

o(1))(2kHn/3)2/3 is at most H.

The algorithm N2 is clearly not atomic. We can transform it into an atomic one
in two ways.

Theorem 10. There exist atomic algorithms A1, A2 such that for H � 1 the
wear hA1

i (t1), hA2
i (t2) of any unit i at times t1 = (1 − o(1))(2kHn/3)2/3 and

t2 = Ω
(
(2kHn/3)2/3/ log k

)
is at most H. A1 requires k + 2 empty units and

A2 requires 3 empty units.

The difficult non-atomic part of N is the sorting of the blocks in the dirty units.
A1 uses a straightforward approach that requires k + 1 empty units to preform
this sorting. A2 does it using the merge-sort algorithm, using two extra units to
hold the partial runs of sorted blocks that the algorithm constructs. It is not hard
to see that two extra units are always sufficient, and that the sorting algorithm
performs O(k log k) erasures. The same idea can be used to trade off any number
of extra units for better endurance using multiway merge-sort. Both algorithms
apply the atomic single-slot unit wear leveling algorithm, which requires another
extra unit.



110 A. Ben-Aroya and S. Toledo

3.2 The Deterministic Online Fractional Problem

The endurance of any deterministic algorithm for the fractional problem depends
on the number of extra slots, nk − m, just like in the single-slot problem.

Theorem 11. For every deterministic algorithm α (even if α is non-atomic)
there exists a sequence σ such that �α(σ) ≤ (nk − m + 1)(H + 1). Furthermore,
there exists a deterministic non-atomic algorithm that achieves �(σ) ≥ (nk−m+
1)(H +1) and an atomic variant that achieves �(σ) ≥ ((n− 1)k −m+1)(H +1)
using a single empty unit.

3.3 The Randomized Online Fractional Problem

We now present a lower bound for randomized online algorithms for the frac-
tional problem. The main ingredient that we analyze is the number of erasures
preformed by the algorithm. The bound that we prove depends on the number
of empty slots s. In particular, we require that s < nk/2. Otherwise, even a
deterministic algorithm can achieve high endurance.

Theorem 12. For every randomized online algorithm α (even if α is non-
atomic) for the fractional wear leveling problem with s = s(n) empty slots, such
that s � Hn and s < nk/2:

– If s = n1−ε for some constant 0 < ε < 1 then there exists a constant c > 0
and σ such that E [�α(σ)] < cHn.

– If n

polylog(n)
≤ s � n log n then there exists a constant c > 0 and σ such

that
E [�α(σ)] < cHn · log n

log (n log n/s)
.

– If s = Ω(n log n) then there is a constant c > 0 and σ such that E [�α(σ)] <
cHs.

The proof’s idea is to observe a random request sequence and split it into phases
of size 2s. Since there are only s empty slots, the algorithm must clean at least
s slots during each phase. Because the requests are random, during each phase
there is not likely to be a unit with many dirty slots. Thus, the algorithm will
be forced to perform many erasures.

4 Conclusions

Our analysis shows that Ban’s simple randomized algorithm [2] is nearly opti-
mal (both in the competitive sense and in the absolute sense) for the single-slot
wear-leveling problem. The competitive performance of deterministic algorithms
for the same problem is poor, although many flash-based systems do use deter-
ministic algorithms. The effectiveness of deterministic algorithms in practice
is probably due to the fact that request sequences are oblivious to the online
algorithm.



Competitive Analysis of Flash-Memory Algorithms 111

Our analysis of the fractional wear-leveling problem leads to two conclusions.
First, the fact that offline algorithms outperform online algorithms implies that
in practice, it is advantageous to try to cluster blocks according to the expected
time of their next modification. Second, the analysis justifies the separation of
the erasure-minimization policy from the wear-leveling policy.

References

1. Mahmud Assar, Siamack Nemazie, and Petro Estakhri. Flash memory mass storage
architecture incorporation wear leveling technique. US patent 5,479,638, US patent
5,388,083 (slightly different title), and US patent 5,485,595 (slightly different title),
all filed 1993, issued 1995/6, and assigned to Cirrus Logic, 1993.

2. Amir Ban. Wear leveling of static areas in flash memory. US patent 6,732,221,
filed 2001, issued 2004, and assigned to M-Systems, 2001.

3. Avraham Ben-Aroya. Competitive analysis of flash-memory algorithms. Master’s
thesis, School of Computer Science, Tel-Aviv University, April 2006. Available
online at www.tau.ac.il/~abrhambe.

4. Ricardo H. Bruce, Ronaldo H. Bruce, Earl T. Cohen, and Allan J. Christie. Unified
re-map and cache-index table with dual write-counters for wear-leveling of non-
volitile flash ram mass storage. US patent 6,000,006, December 1999. Filed August
25, 1997; Issued December 7, 1999; Assigned to BIT Microsystems.

5. M.-L. Chiang and R.-C. Chang. Cleaning policies in mobile computers using flash
memory. The Journal of Systems and Software, 48(3):213–231, 1999.

6. Mei-Ling Chiang, Paul C.H. Lee, and Reui-Chuan Chang. Using data cluster-
ing to improve cleaning performance for flash memory. Software—Practice and
Experience, 29(3), 1999.

7. Petro Estakhri, Mahmud Assar, Robert Reid, Alan, and Berhanu Iman. Method
of and architecture for controlling system data with automatic wear leveling in a
semiconductor non-volitile mass storage memory. US patent 5,835,935, 1998. Filed
September 13, 1995; Issued November 10, 1998; Assigned to Lexar Media.

8. Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories.
ACM Computing Surveys, 37:138–163, 2005.

9. Sang-Wook Han. Flash memory wear leveling system and method. US patent
6,016,275, January 2000. Filed November 4, 1998; Issued January 18, 2000; As-
signed to LG Semiconductors.

10. Edwin Jou and James H. Jeppesen III. Flash memory wear leveling system pro-
viding immediate direct access to microprocessor. US patent 5,568,423, October
1996. Filed April 14, 1995; Issued October 22, 1996; Assigned to Unisys.

11. Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A flash-memory based file
system. In Proceedings of the USENIX 1995 Technical Conference, pages 155–164,
New Orleans, Louisiana, January 1995.

12. Karl M. J. Lofgren, Robert D. Norman, Gregory B. Thelin, and Anil Gupta. Wear
leveling techniques for flash EEPROM systems. US patent 6,081,447 and US patent
6,594,183, filed 1998/1999, issued 2000/2003, and assigned to Western Digital and
Sandisk, 1998.

13. Steven E. Wells. Method for wear leveling in a flash EEPROM memory. US patent
5,341,339, 1994. Filed November 1, 1993; Issued August 23, 1994; Assigned to
Intel.


	Introduction
	Single-Slot Units
	Deriving Atomic Policies from Non-atomic Ones
	Offline Algorithms
	Deterministic Online Algorithms
	Randomized Online Algorithms

	Fractional Unit Wear Leveling
	An Offline Algorithm for the Fractional Problem
	The Deterministic Online Fractional Problem
	The Randomized Online Fractional Problem

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




