Skip to main content

Fréchet Distance for Curves, Revisited

  • Conference paper
Algorithms – ESA 2006 (ESA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4168))

Included in the following conference series:

Abstract

We revisit the problem of computing the Fréchet distance between polygonal curves, focusing on the discrete Fréchet distance, where only distance between vertices is considered. We develop efficient approximation algorithms for two natural classes of curves: κ-bounded curves and backbone curves, the latter of which are widely used to model molecular structures. We also propose a pseudo–output-sensitive algorithm for computing the discrete Fréchet distance exactly. The complexity of the algorithm is a function of the complexity of the free-space boundary, which is quadratic in the worst case, but tends to be lower in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized self-approaching curves. Discrete Applied Mathematics 109, 3–24 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alt, H., Buchin, M.: Semi-computability of the Fréchet distance between surfaces. In: Proc. 21th European Workshop on Computational Geometry (2005)

    Google Scholar 

  3. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49, 262–283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Agarwal, P.K., Har-Peled, S., Mustafa, N., Wang, Y.: Near-linear time approximation algorithms for curve simplification in two and three dimensions. Algorithmica (to appear, 2005)

    Google Scholar 

  6. Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the fréchet distance. In: Proceedings 18th International Symposium on Theoretical Aspects of Computer Science, pp. 63–74 (2001)

    Google Scholar 

  7. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17, 292–318 (1994)

    Article  MathSciNet  Google Scholar 

  9. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple polygons in polynomial time. In: Proc. 22st Annu. ACM Sympos. Comput. Geom., pp. 80–87 (2006)

    Google Scholar 

  10. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc. 31st VLDB Conference, pp. 853–864 (2005)

    Google Scholar 

  11. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1, 133–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Clausen, M., Mosig, A.: Approximately matching polygonal curves with respect to the Fréchet distance. Comput. Geom. Theory Appl. 30, 113–127 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Efrat, A., Guibas, L.J., Har-Peled, S., Murali, T.M.: Morphing between polylines. In: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 680–689 (2001)

    Google Scholar 

  15. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)

    Google Scholar 

  16. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: Proc. 40th Annu. IEEE Sympos. Found. Comput. Sci., pp. 512–522 (1999)

    Google Scholar 

  17. Indyk, P.: Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 102–106 (2002)

    Google Scholar 

  18. Kwong, S., He, Q.H., Man, K.F., Tang, K.S., Chau, C.W.: Parallel genetic-based hybrid pattern matching algorithm for isolated word recognition. Int. J. Pattern Recognition & Artificial Intelligence 12(5), 573–594 (1998)

    Article  Google Scholar 

  19. Kim, M.S., Kim, S.W., Shin, M.: Optimization of subsequence matching under time warping in time-series databases. In: Proc. ACM symp. Applied comput., pp. 581–586 (2005)

    Google Scholar 

  20. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping to massive dataset. In: Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc., London, UK, pp. 1–11 (1999)

    Google Scholar 

  21. Kolinski, A., Skolnick, J.: Monte carlo simulations of protein folding: Lattice model and interaction scheme. Proteins 18, 338–352 (1994)

    Article  Google Scholar 

  22. Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th Annu. IEEE Sympos. Found. Comput. Sci., pp. 28–34 (1978)

    Google Scholar 

  23. Parizeau, M., Plamondon, R.: A comparative analysis of regional correlation, dynamic time warping, and skeletal tree matching for signature verification. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 710–717 (1990)

    Article  Google Scholar 

  24. Rote, G.: Curves with increasing chords. Math. Proc. Camb. Phil. Soc. 115, 1–12 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Technical Report ECG-TR-241108-01 (May 2005)

    Google Scholar 

  26. Salowe, J.S.: L  ∞  interdistance selection by parametric search. Information Processing Letters 30, 9–14 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wenk, C.: Shape Matching in Higher Dimensions. PhD thesis, Dept. of Comput. Sci., Freie Universität Berlin (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C. (2006). Fréchet Distance for Curves, Revisited. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_8

Download citation

  • DOI: https://doi.org/10.1007/11841036_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38875-3

  • Online ISBN: 978-3-540-38876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics