Abstract
We revisit the problem of computing the Fréchet distance between polygonal curves, focusing on the discrete Fréchet distance, where only distance between vertices is considered. We develop efficient approximation algorithms for two natural classes of curves: κ-bounded curves and backbone curves, the latter of which are widely used to model molecular structures. We also propose a pseudo–output-sensitive algorithm for computing the discrete Fréchet distance exactly. The complexity of the algorithm is a function of the complexity of the free-space boundary, which is quadratic in the worst case, but tends to be lower in practice.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized self-approaching curves. Discrete Applied Mathematics 109, 3–24 (2001)
Alt, H., Buchin, M.: Semi-computability of the Fréchet distance between surfaces. In: Proc. 21th European Workshop on Computational Geometry (2005)
Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49, 262–283 (2003)
Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Internat. J. Comput. Geom. Appl. 5, 75–91 (1995)
Agarwal, P.K., Har-Peled, S., Mustafa, N., Wang, Y.: Near-linear time approximation algorithms for curve simplification in two and three dimensions. Algorithmica (to appear, 2005)
Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the fréchet distance. In: Proceedings 18th International Symposium on Theoretical Aspects of Computer Science, pp. 63–74 (2001)
Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2004)
Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17, 292–318 (1994)
Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple polygons in polynomial time. In: Proc. 22st Annu. ACM Sympos. Comput. Geom., pp. 80–87 (2006)
Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proc. 31st VLDB Conference, pp. 853–864 (2005)
Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1, 133–162 (1986)
Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1), 67–90 (1995)
Clausen, M., Mosig, A.: Approximately matching polygonal curves with respect to the Fréchet distance. Comput. Geom. Theory Appl. 30, 113–127 (2005)
Efrat, A., Guibas, L.J., Har-Peled, S., Murali, T.M.: Morphing between polylines. In: Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pp. 680–689 (2001)
Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)
Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: Proc. 40th Annu. IEEE Sympos. Found. Comput. Sci., pp. 512–522 (1999)
Indyk, P.: Approximate nearest neighbor algorithms for Fréchet distance via product metrics. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 102–106 (2002)
Kwong, S., He, Q.H., Man, K.F., Tang, K.S., Chau, C.W.: Parallel genetic-based hybrid pattern matching algorithm for isolated word recognition. Int. J. Pattern Recognition & Artificial Intelligence 12(5), 573–594 (1998)
Kim, M.S., Kim, S.W., Shin, M.: Optimization of subsequence matching under time warping in time-series databases. In: Proc. ACM symp. Applied comput., pp. 581–586 (2005)
Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping to massive dataset. In: Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc., London, UK, pp. 1–11 (1999)
Kolinski, A., Skolnick, J.: Monte carlo simulations of protein folding: Lattice model and interaction scheme. Proteins 18, 338–352 (1994)
Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th Annu. IEEE Sympos. Found. Comput. Sci., pp. 28–34 (1978)
Parizeau, M., Plamondon, R.: A comparative analysis of regional correlation, dynamic time warping, and skeletal tree matching for signature verification. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 710–717 (1990)
Rote, G.: Curves with increasing chords. Math. Proc. Camb. Phil. Soc. 115, 1–12 (1994)
Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Technical Report ECG-TR-241108-01 (May 2005)
Salowe, J.S.: L ∞ interdistance selection by parametric search. Information Processing Letters 30, 9–14 (1989)
Wenk, C.: Shape Matching in Higher Dimensions. PhD thesis, Dept. of Comput. Sci., Freie Universität Berlin (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C. (2006). Fréchet Distance for Curves, Revisited. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_8
Download citation
DOI: https://doi.org/10.1007/11841036_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)