
Fréchet Distance for Curves, Revisited∗

Boris Aronov† Sariel Har-Peled‡ Christian Knauer§ Yusu Wang¶

Carola Wenk‖

November 12, 2018

Abstract

We revisit the problem of computing Fréchet distance between polygonal curves under L1,
L2, and L∞ norms, focusing on discrete Fréchet distance, where only distance between vertices
is considered. We develop efficient algorithms for two natural classes of curves. In particular,
given two polygonal curves of n vertices each, a ε-approximation of their discrete Fréchet distance
can be computed in roughly O(nκ3 log n/ε3) time in three dimensions, if one of the curves is
κ-bounded. Previously, only a κ-approximation algorithm was known. If both curves are the so-
called backbone curves, which are widely used to model protein backbones in molecular biology,
we can ε-approximate their Fréchet distance in near linear time in two dimensions, and in roughly
O(n4/3 log nm) time in three dimensions. In the second part, we propose a pseudo–output-sensitive
algorithm for computing Fréchet distance exactly. The complexity of the algorithm is a function of
a quantity we call the number of switching cells, which is quadratic in the worst case, but tends to
be much smaller in practice.

1 Introduction

Fréchet metric is a natural measure of similarity between two curves [EGH+02]. An intuitive definition
of the Fréchet distance is to imagine that a dog and its handler are walking on their respective curves.
Both can control their speed but can only go forward. The Fréchet distance of these two curves is the
minimal length of any leash necessary for the handler and the dog to move from the starting points of
the two curves to their respective endpoints. Fréchet distance and its variants have been widely used
in many applications such as in dynamic time-warping [KP99], speech recognition [KHM+98], signature
verification [PP90], and matching of time series in databases [KKS05].

∗A preliminary version of this paper appeared in ESA 2006 [AHK+06].
†Dept. of Comp. Sci. & Engineering; Polytechnic School of Engineering; New York University, NY; Research supported

in part by NSF ITR Grant CCR-00-81964 and by a grant from US-Israel Binational Science Foundation. http://cis.

poly.edu/~aronov.
‡Dept. of Comp. Sci, University of Illinois; 1304 West Springfield Ave., Urbana, IL 61801; sariel@uiuc.edu. http:

//sarielhp.org.
§Universität Bayreuth; Institut für Angewandte Informatik; 95440 Bayreuth, Germany; christian.knauer@uni-

bayreuth.de.
¶Dept. of Comp. Sci. and Engineering, The Ohio State Univ, Columbus, OH 43016; yusu@cse.ohio-state.edu. http:

//www.cse.ohio-state.edu/~yusu/.
‖Department of Computer Science, Tulane University, New Orleans, LA 70118, cwenk@tulane.edu, http://www.cs.

tulane.edu/~carola.

1

ar
X

iv
:1

50
4.

07
68

5v
1

 [
cs

.C
G

]
 2

8
A

pr
 2

01
5

http://cis.poly.edu/~aronov
http://cis.poly.edu/~aronov
mailto:sariel@uiuc.edu
http://sarielhp.org
http://sarielhp.org
mailto:christian.knauer@uni-bayreuth.de
mailto:christian.knauer@uni-bayreuth.de
mailto:yusu@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~yusu/
http://www.cse.ohio-state.edu/~yusu/
mailto:cwenk@tulane.edu
http://www.cs.tulane.edu/~carola
http://www.cs.tulane.edu/~carola

Alt et al. [AG95] present an algorithm to compute the Fréchet distance between two polygonal
curves of n and m vertices, respectively, in time O(nm log2(nm)). Improving this roughly quadratic-
time solution for general curves seems to be hard, and so far, no algorithm, exact or approximate, with
running time significantly smaller than O(nm) has been found for this problem for general curves.Since
the Fréchet distance essentially requires computing a correspondence between the two curves, it has
some resemblance to the edit distance problem (which asks for the best alignment of two strings), for
which no substantially subquadratic algorithm is known either.

On the other hand, another similarity measure, the Hausdorff distance, can be computed faster in
the plane and approximated efficiently in higher dimensions. Unfortunately, Hausdorff distance does
not reflect curve similarity well (see Figure 1 (a) for an example). Alt et al. [AKW04] showed that
the Hausdorff distance and the Fréchet distance are the same for a pair of closed convex curves. They
also showed that the two measures are closely related for κ-bounded curves. Roughly speaking, for any
two points p, q on a κ-bounded curve τ , τ(p, q), the subcurve from p to q, is contained within some
neighborhood of p and q with size roughly κ||p − q|| (see Figure 1 (b); precise definition is introduced
later). Alt et al. showed that the Fréchet distance between any two κ-bounded curves is bounded by
κ + 1 times the Hausdorff distance between them. This leads to a κ-approximation algorithm for the
Fréchet distance for any pair of κ-bounded curves, and they also developed an algorithm to compute
the reparametrizations of input curves that realize this approximation (see the definitions below). The
algorithm runs is O((n+m) log2(n+m)2α(n+m)) time in two dimensions. In three or higher dimensions,
the time complexity is dominated by the computation of Hausdorff distance between the curves. Not
much is known about the Fréchet distance for other types of curves. In fact, even for x-monotone curves
in three dimensions, no known algorithm runs in substantially subquadratic time.

The problem of minimizing Fréchet distance under various classes of transformations has also been
studied [AKW01, Wen02]. However, even in two dimensions, the exact algorithm takes roughly O(n6)
time for computing the best Fréchet distance under translations, and roughly O(n8) time under rigid
motions. Approximation algorithms have been studied [CM05, Wen02], but practical solutions remain
elusive. The basic building block of those algorithms, as well as one of the bottlenecks, is the computation
(or approximation) of the Fréchet distance between curves π and σ.

There is a slightly simpler version of the Fréchet distance, the discrete Fréchet distance, which
only consider vertices of polygonal curves. Its computation takes Θ(n2) time and space using dynamic
programming [EM94], and no substantially subquadratic algorithm is known either. Fréchet distance
has also been extended to graphs (maps) [AERW03], to piecewise smooth curves [Rot05], to simple
polygons [BBW06] and to surfaces [AB05]. Finally, Fréchet distance was used as the similarity measure
for morphing [EGHM01] between curves, and for high-dimensional approximate nearest neighbor search
[Ind02]. It was also used for efficient curve simplification [AHMW05].

Our results. Given the apparent difficulty of improving the worst-case time complexity of computing
the Fréchet distance between two unrestricted polygonal curves, we aim at developing algorithms for
more realistic cases. First, in Section 3, we consider efficient approximation algorithms for the slightly
simpler variant of Fréchet distance, the discrete Fréchet distance, the best algorithms for which currently
have only slightly better worst-case time complexity than the continuous case. Most currently algorithms
for computing Fréchet distance rely on a so-called decision procedure which determines whether a given
distance is larger or smaller than the Fréchet distance between the two given curves. We observe that an
approximation solution to the decision problem can lead to an approximation of Fréchet distance, and
curve simplification can help us to approximate the decision problem efficiently. We apply this idea for
two families of common curves. In the first case, given two polygonal curves of size n and m respectively,

2

p
q

π

(a) (b) (c)

Figure 1: (a) Light and dark curves are close under Hausdorff but far under Fréchet distance. (b) π is
κ-bounded iff for any p, q ∈ π, subchain π(p, q) lies inside the shaded region, where the radius of two
disks (centered at p and q) is κd(p, q)/2. (b) The dashed curve µ-simplifies the solid one; the radius of
each disk is µ.

with one of them being κ-bounded, we can ε-approximate their discrete Fréchet distance in O((m +
nκd/εd) log(nm)) time in d-dimensions. In the second case, both curves are so-called backbone curves,
used widely to model molecular structures like protein backbones, and DNA/RNAs. We ε-approximate
their (both discrete and continuous) Fréchet distance in near linear time in two dimensions, and in
roughly O(nm1/3 log nm) time in three dimensions.

In Section 4, we shift our focus back to the exact computation of discrete Fréchet distance. Previously,
the problem of deciding whether Fréchet distance was smaller than some threshold was cast as finding
some viable path in the so-called free-space diagram which is a n × m map. We observe that such
viable path can be computed once some subset § of cells in the free-space diagram are given. The size
of § is nm in worst case, but is expected to be much smaller in general. Based on this observation,
we present algorithms that run in O(|§| + n logd−1 n) time for discrete Fréchet distance in L∞ norm
in d-dimensions. For L2 norm, it takes roughly O(|§| + n4/3 polylog n) time in two dimensions, and
O(|§|+ n2−1/2d polylog n) time for d > 2.

2 Preliminaries

A (parameterized) curve in Rd can be represented as a function f : [0, 1]→ Rd. A (monotone) reparametriza-
tion α is a continuous non-decreasing function α : [0, 1]→ [0, 1] with α(0) = 0 and α(1) = 1. Given two
curves f, g : [0, 1]→ Rd, the Fréchet distance between them, δF(f, g), is defined as

δF(f, g) := inf
α,β

max
t∈[0,1]

d(f(α(t)), g(β(t))).

where d(x, y) denotes the Euclidean distance between points x and y, and α and β range over all
monotone reparametrizations.

Discrete Fréchet Distance. A simpler variant of the Fréchet distance for two polygonal curves
π = 〈p1, p2, . . . , pn〉 and σ = 〈q1, q2, . . . , qm〉 is the discrete Fréchet distance, denoted by δD(π, σ). Imagine
that both the dog and its handler can only stop at vertices of π and σ, and at any step, each of them
can either stay at their current vertex or jump to the next one (i.e., magically, both the dog and the
handler seem to have turned into frog princess and prince, respectively). The discrete Fréchet distance
is defined as the minimal leash necessary at these discrete moments.

To formally define the discrete Fréchet distance, we first consider a discrete analog of continuous
reparametrizations. A discrete monotone reparametrization α from {1, . . . , k} to {1, . . . , `} is a non-
decreasing function α : {1, . . . , k} → {1, . . . , `}, for integers k ≥ ` ≥ 1, with α(1) = 1, α(k) = ` and

3

α(i+1) ≤ α(i)+1, for all i = 1, . . . , k−1. An (order-preserving complete) correspondence between π and
σ is a pair (α, β) of discrete monotone reparametrizations from {1, . . . , k} to {1, . . . ,m} and {1, . . . , n}.
The discrete Fréchet distance between π and σ, δD(π, σ) is

δD(f, g) := min
(α,β)

max
t∈[1,k]

d(f(α(t)), g(β(t))),

where (α, β) range over all order-preserving complete correspondences between π and σ. An equivalent
definition of order-preserving complete correspondence between π and σ is a set of pairs M ⊆ {(p, q) |
p ∈ π, q ∈ σ} such that (i) order-preserving : if (pi, qj) ∈ M , then no (ps, qt) ∈ M for s < i and t > j;
and (ii) complete: for any p ∈ π (resp. q ∈ σ), there exists some pair involving p (resp. q) in M . The
discrete Fréchet distance is related to the edit distance between the “strings” π and σ where the cost of
changing a symbol is the Euclidean distance of the relevant points.

It is well known that discrete and continuous versions of the Fréchet distance relate to each other as
follows:

δF(π, σ) ≤ δD(π, σ) ≤ δF(π, σ) + max{`1, `2},

where `1 and `2 are the lengths of the longest edges in π and σ, respectively. This suggests using δD to
approximate δF. Unfortunately, it seems that computing δD(π, σ) is asymptotically almost as hard as
computing δF(π, σ).

Decision problem. In the original paper, Alt and Godau [AG95] used the following framework to
compute δF(π, σ): First, develop a procedure that answers the following decision problem in Θ(nm)
time and space by a dynamic programming algorithm: Given a parameter δ ≥ 0, is δF(π, σ) ≤ δ?
This procedure is then used as a subroutine to search for δF(π, σ) using parametric search paradigm
within O(nm log2 nm) time[AG95, AST94]. The same paradigm can be used to compute δD(π, σ) in
O(nm log(nm)) time by replacing the parametric search to a binary search. Although this is slightly
worse than the Θ(nm) algorithm in [EM94], we describe how to solve the decision problem for δD(π, σ)
below, as our algorithm will use this framework, and as the algorithm from [EM94] runs in Θ(nm) time
for any input.

(n,m)

π

σ

(1, 1)

π

σ

(1, 1)

σ

π

(n,m)

G

(1, 1)

(n,m)

(a) (b) (c) (d)

Figure 2: The valid path (solid curve) in the Free-space diagram D(π, σ, δ) in (a) corresponds to the
order-preserving, complete correspondence (dashed lines) in (b). The path in (c) is not valid, as the
two solid segments violate the bi-monotonicity condition. (d) The directed graph corresponding to the
white cells in free-space diagram in (a).

Given two polygonal chains π and σ and a distance threshold δ ≥ 0, we construct the following
free-space diagram D = D(π, σ, δ); D is an n × m matrix (grid) and a grid cell D[i, j] has value 1 if

4

d(pi, qj) ≤ δ, and value 0 otherwise. We refer to 1-cells as white and 0-cells as black. The white cells
in the ith column (resp., jth row) correspond to the set of vertices of σ (resp., π) whose distance to pi
(resp., qj) is less than δ. A viable path in D is a path connecting s := D[1, 1] to t := D[n,m], visiting
only white cells of D, and moving in one step from (i, j) to either (i, j + 1), (i + 1, j), or (i + 1, j + 1).
It is easy to check that a complete order-preserving correspondence M induces a viable path in D and
vice versa (see Figure 2). Hence the problem of deciding “δD(π, σ) ≤ δ?” is equivalent to deciding the
existence of a viable path in D.

Given D, one can extract a viable path, if it exists, in Θ(nm) time by a dynamic programming
algorithm. Alternatively, one can traverse a directed graph G defined as follows: The nodes of G are
the white cells of D. A white cell is connected to its top, right, or top-right neighbor cells by a directed
edge, if they are white. See Figure 2 (d). The size of G is the bounded by |W |, the number of white cells
of D, the in-degree (out-degree) of each node is at most three, and δD(π, σ) ≤ δ if and only if there is
a directed path in G from (1, 1) to (n,m). That is, testing this condition corresponds to a connectivity
check in a directed graph in time O(|W |), once the graph G is given.

Approximations. We say that τ is an ε-approximation of δ(π, σ) if

(1− ε)δ(π, σ) ≤ τ ≤ (1 + ε)δ(π, σ).

We say that an algorithm ε-approximates the decision problem “Is δ(π, σ) ≤ δ?”, if it returns ‘yes’
whenever δ(π, σ) ≤ (1 − ε)δ and ‘no’ whenever δ(π, σ) ≥ (1 + ε)δ. If δ is a (1 + ε)-approximation of
δ(π, σ), the algorithm is allowed to return either ‘yes’ or ‘no.’ Such an algorithm is also called an ε-fuzzy
decision procedure for δ(π, σ).

3 Approximation Algorithms Based on Simplification

In this section, we first introduce a general framework for approximating the discrete Fréchet distance
by solving the decision problem approximately. We then present efficient approximation algorithms for
two families of common curves based on this framework: the κ-bounded curves and the backbone curves,
using curve simplifications, packing arguments, and other observations.

3.1 Approximation via approximate decision problem

Given a set P of N points in Rd, compute a well-separated pairs decomposition (WSPD) of P for a
separation parameter 10, which is a collection {(Ai, Bi)} of pairs of subsets of P , with the property that
(1) for every pair of points x, y ∈ P , there is an index i, so that x ∈ Ai and y ∈ Bi and (2) the minimum
distance between Ai and Bi is at least 10 times the diameter of either set. One can compute such a
collection of size O(N) in O(N logN) time [CK95]. For every pair (Ai, Bi) in the WSPD, we choose an
arbitrary pair of points pi ∈ Ai and qi ∈ Bi as its representatives. It is easy to check that the distance
between any two points x, y ∈ P is 1/5-approximated by the distance between the representatives of
the corresponding WSPD pair.

If we want to approximately solve an optimization problem using a decision procedure, where the
optimal solution δ∗ is one of the distances induced by a pair of points of P , then we can use the above
WSPD to extract O(N) values: for each WSPD pair, we take the distance between its representative
points. Next, we replace each value x by two values 4

5
x and 6

5
x, sort the resulting values, and perform a

binary search (using the decision procedure) to identify which interval delimited by consecutive values
contains δ∗. Let I = [x, y] be the resulting interval; obviously y ≤ 6

5
x. We now perform another binary

5

search on this interval to identify the interval [x′, y′] containing δ∗ with y′ ≤ (1 + ε)x′, giving rise to an
ε-approximation of δ∗. The second binary search invokes the decision procedure O(log(1/ε)) times.

Interestingly, the decision procedure does not have to be exact, and it can return a fuzzy answer, in
the sense of last section. An equivalent view of an ε-fuzzy decision procedure is: for a parameter δ, if
it returns “no”, then δ∗ < (1 + ε)δ; otherwise if it returns “yes”, then δ∗ > (1 − ε)δ. It can be shown
that the above binary search can be adapted to work with a fuzzy decision procedure with the same
performance guarantees (details omitted and can be found in Appendix A. We summarize:

Theorem 3.1. Let P be a set of N points in Rd, and let X be an optimization problem, for which the
optimal answer is a distance induced by a pair of points of P . Given an ε-fuzzy decision procedure for
X, one can ε-approximate the optimal solution in

O(N logN + TFDecision(N, 1/10) logN + TFDecision(N, ε/4) log(1/ε))

time, where TFDecision(N, ε) is running time of the fuzzy decision procedure when the required accuracy
is ε.

Proof: The algorithm is described above. The fuzzy decision procedure can be used with constant
accuracy in the stage of the algorithm. Higher accuracy of ε/4 is required only at the second stage,
when we perform the binary search over the interval I.

On the other hand, observe that there must exist some p∗ ∈ π and q∗ ∈ σ such that d(p∗, q∗) =
δD(π, σ). In other words, the solution δ∗ = δD(π, σ) will be one of the distances induced by a pair of
points from P = { vertices from π and σ}. Hence the above theorem implies that we now only need a
fuzzy decision procedure for δD(π, σ) in order to approximate δD(π, σ).

3.2 Approximation with simplifications

The remaining question is how to implement fuzzy decision procedure efficiently. One useful heuristic
is curve simplification. Below we first describe the particular simplification we use and how it helps in
approximating δD(π, σ). We then show that together with a packing argument and other observations,
guaranteed efficiency can be achieved for the two classes of common curves that we investigate.

Greedy simplification. Given a polygonal chain π = 〈p1, . . . , pn〉, we simplify π to obtain π̃ =
〈p̂1, . . . , p̂k〉, where vertices of π̃ form a subsequence of π, with p̂1 = p1 and p̂k = pn. More precisely,
let Iπ(i) = j if p̂i = pj ∈ π; the subscript π is omitted when it is clear from context. We say that
π̃ µ-simplifies π if (i) I(i) < I(k) for i < k (i.e, order-preserving), and (ii) d(p̂i, pk) ≤ µ for any
k ∈ [I(i), I(i + 1)) (see Figure 1 (c)). (This definition of µ-simplification is slightly different from the
standard definition found in the literature.)

We construct a µ-simplification of π, π̃, in a greedy manner: Start with p̂1 = p1. At some stage,
suppose we have already computed p̂i = pj. In order to find I(i + 1), we check each vertex of π
starting from pj in order, and stop when we reach the first edge pkpk+1 of π such that d(pj, pk) ≤ µ and
d(pj, pk+1) > µ. We set p̂i+1 = pk+1 and proceed until we reach pn, at which point we add pn as the
last vertex of π̃. The entire procedure takes linear time. By construction, the following observation is
straightforward.

Observation 3.2. For any edge p̂ip̂i+1 in π̃, other than the last edge, we have d(p̂i, p̂i+1) ≥ µ.

Now if we µ-simplify both input curves π and σ to obtain π̃ and σ̃, we have the following lemma:

6

π

σ

π

σ

Figure 3: Small empty circles mark vertices of π̃ and σ̃. Left picture shows part of π and σ and the
correspondence M∗ (indicated by dashed segments). Right picture shows π̃ and σ̃ (thick curves) and
the induced correspondence for them (thick dashed segments).

Lemma 3.3. δD(π, σ)− 2µ ≤ δD(π̃, σ̃) ≤ δD(π, σ) + µ.

Proof: We first consider the right-hand inequality. Let δ∗ = δD(π, σ), and M∗ be the complete order-
preserving correspondence that produces δD(π, σ). Obviously, for any pair (pi, qj) in M∗, we have that
d(pi, qj) ≤ δ∗. M∗ can be modified into a correspondence M between π̃ and σ̃ as follows: we add the
match (p̂i, q̂j) to M if and only if (C1) there exists a match (pIπ(i), qb) ∈M∗ such that b ∈ [Iσ(j), Iσ(j+1)),
or (C2) there exist a match (pa, qIσ(j)) ∈M∗ such that a ∈ [Iπ(i), Iπ(i+1)), where Iπ (resp. Iσ) maps the
indices between π and π̃ (resp. σ and σ̃) (see Figure 3 for an example). It is easy to verify that M is both
complete and order-preserving. By the triangle inequality, we have that d(p̂i, q̂j) ≤ d(p̂i, qb) + d(qb, q̂j)
for case (C1), implying that d(p̂i, q̂j) ≤ d(p̂i, qb) + µ ≤ δ∗ + µ (the case for (C2) is symmetric). Since
δD(π̃, σ̃) should be smaller than the distance induced by M , the right-hand inequality then follows.

The proof for the left-hand inequality is similar but slightly more involved. Details omitted and can
be found in the Appendix B.

The above lemma implies that if the answer to δD(π̃, σ̃) ≤ δ is ‘yes’, then, δD(π, σ) ≤ δ + 2µ. If
it is ‘no’, then δD(π, σ) ≥ δ − µ. Thus the decision problem for δD(π̃, σ̃) (2µ/δ)-approximates that of
δD(π, σ). We next show that δD(π̃, σ̃) can be answered asymptotically much faster for two special classes
of curves, giving rise to efficient fuzzy decision procedure for them.

3.3 Fréchet Distance for κ-bounded curves

Given a polygonal curve π, let π(x, y) ⊆ π denote the subcurve of π that connects x ∈ π and y ∈ π,
and lπ(x, y) the length of π(x, y) along π; π may be omitted from the subscript when clear. We say
that π is κ-straight if l(x, y) ≤ κ · d(x, y), for any x, y ∈ π. Examples of κ-straight curves include
curves with increasing chords of [Rot94] and self-approaching curves of [AAI+01]. As defined by Alt et
al. [AKW04], π is κ-bounded if π(x, y) ⊆ B(x, κ

2
d(x, y)) ∪ B(y, κ

2
d(x, y)), for all x, y ∈ π, where B(x, r)

is the radius-r Euclidean ball centered at x and where we have slightly abused the notation by treating
a curve section as a point set. See Figure 1 (b) for an illustration in two dimensions. Every κ-straight
curve is κ-bounded.

We now describe how to construct an ε-fuzzy decision procedure for the problem “δD(π, σ) ≤ δ?”,
where one curve, say σ, is κ-bounded. We first µ-simplify π and σ into π̃ and σ̃ respectively, using
µ := εδ/2. By Lemma 3.3, the decision problem for δD(π̃, σ̃) is an ε-fuzzy decision procedure for
δD(π, σ). Hence we now focus on checking whether δD(π̃, σ̃) ≤ δ. Let n, m, r, s be the size of π, σ, π̃,
and σ̃ respectively; r = O(n) and s = O(m).

Decision problem for δD(π̃, σ̃). Let D be the free-space diagram for π̃ and σ̃ with respect to δ.
Recall that δD(π̃, σ̃) ≤ δ if there exists a viable path in D which can be computed in O(|W |) time once
W , the set of white cells of D are given. We first bound the size of W .

7

For every p̂ ∈ π̃, let N(p̂) be the set of points from σ̃ contained in B(p̂, δ). Obviously, |W | =∑
p̂∈π̃ |N(p̂)|. Consider any two points q1, q2 ∈ σ̃ that lie in B(p̂, δ) for some p̂ ∈ π̃. There are two cases:

(i) q1q2 is an edge of σ̃ and (ii) otherwise. For case (i), we have that d(q1, q2) ≥ µ by Observation 3.2.
For case (ii), we know that

σ(q1, q2) ⊆ B(q1,
κ

2
d(q1, q2)) ∪B(q2,

κ

2
d(q1, q2)),

as σ is κ-bounded. Furthermore, let q1q ⊂ σ̃ be the edge with q ∈ σ(q1, q2); d(q1, q) ≥ µ by
Observation 3.2. It then follows that (κ/2)d(q1, q2) ≥ µ and therefore d(q1, q2) ≥ 2µ/κ. Hence
N(p̂) = O((κδ/µ)d) by a straightforward packing argument. This means that the number of white
cells is |W | = O(s(κδ/µ)d) = O(n(κδ/µ)d) given that σ is a κ-bounded curve.

We still need to compute N(p̂) efficiently, that is, to enumerate the set of vertices of σ̃ contained
in B(p̂, δ) for every p̂ ∈ π̃. This can be done by a spherical range query. As there are no known
efficient algorithms for spherical range queries, we instead first perform a β-approximate range query of
B(p̂, δ) among all vertices from σ̃, such that vertices lying completely inside B(p̂, δ) are guaranteed to
be retrieved, those completely outside B(p̂, (1 + β)δ) will not be reported, while those in-between may
or may not be returned. By the same packing argument as above, it is easy to verify that the number
of vertices returned is still bounded by O(((1+β)κδ

µ
)d). We then inspect each vertex returned, and only

mark the corresponding cell in D white when it indeed lies in B(p̂, δ).
We preprocess σ̃ into a data structure of size O(s) = O(m), using O(s) preprocessing time, such that

the resulting data-structure answers β-approximate range query for B(p̂, δ) in O(1/βd) time. This can
be easily achieved by constructing a grid of appropriate size (which is βδ), throwing the points of σ̃ into
this grid (using hashing). Next, an approximate spherical range query is no more than probing all the
grid cells that intersects the query ball. The number of cells being probed in a single query is O(1/βd).
Therefore the set of white cells in D can be computed in O(r + s + r(κδ/µ)d) time by choosing β > 0
to be a small constant, say β = 1/2.

Putting everything together, we have an ε-fuzzy decision procedure for δD(π, σ) that runs in O(n+
m+ nκd/εd) time and space in Rd. By Theorem 3.1, we have that:

Lemma 3.4. An ε-approximation of δD(π, σ) for a polygonal curve π and a κ-bounded curve σ, of size
n and m respectively, can be computed in O((m+ nκd/εd) log(n/ε)) time and O(n+m+ nκd/εd) space
in d dimensions.

3.4 Fréchet Distance for Protein Backbones

In molecular biology, it is common to model a protein backbone by a polygonal chain, where each Cα
atom becomes a vertex, and each edge represents a covalent bond between two consequent amino acids.
All the bonds have approximately the same bond length, and no two atoms (thus vertices) can get too
close due to van der Waals interactions. This is the motivation behind the study of the backbone curves,
which have the following properties:

P1. For any two non-consecutive vertices u and v of the curve, d(u, v) ≥ 1,

P2. Every edge of the curve has length l such that c1 ≤ l ≤ c2, where c1, c2 > 0 are constants.

We remark that although proteins lie in three dimensional space, there are simplified models for protein
backbones in both two and three dimensions, such as the lattice model which has been widely studied
to understand the mechanism behind protein folding [GIP99, KS94].

8

Now suppose we are given backbone curves π and σ in Rd. Given a distance threshold δ ≥ 0, we
want to know whether δD(π, σ) ≤ δ. We µ-simplify π and σ to obtain π̃ and σ̃ as in the previous case,
for µ = εδ/2, and construct the free-space diagram D for π̃ and σ̃ with respect to δ. D is an r× s grid,
where by Observation 3.2 and property P2, r = |π̃| ≤ c2n/µ and s = |σ̃| ≤ c2m/µ. Once D is given, the
decision problem can be solved in time proportional to |W |, where W is the set of white cells in D.

The set of white cells W . A straightforward bound for |W | is O(min{rδd, sδd})1, as by the packing
argument and property P1, there are at most O(δd) vertices lying in δ-neighborhood of any vertex of π̃
and σ̃. If δ < 1, then the number of white cells is O(n+m). Hence we now assume that δ ≥ 1.

We can improve this bound by a more careful counting analysis. Assume without loss of generality
that r ≤ s. For any vertex p̂ ∈ π̃ and its δ-neighborhood B(p̂, δ), let E(p̂) be the set of edges of σ̃
intersecting the ball B(p̂, δ). The number of vertices of σ̃ in B(p̂, δ) can be upper bounded by O(|E(p̂)|).
Furthermore, given any edge e = (q̂i, q̂i+1) ∈ σ̃, let σ(e) = σ(qIq(i), qIq(i+1)) (that is, subchain σ(e) ⊆ σ is
simplified into edge e in chain σ̃). E(p̂) can be partitioned into two sets: (i) E1 = {e ∈ E(p̂) | σ(e) ⊆
B(p̂, δ)}, and (ii) E2 = {e ∈ E(p̂) | at least a vertex of σ(e) lies outside B(p̂, δ)}.

By property P2, we know that the number of vertices in σ(e) is at least µ/c2 for any e ∈ σ̃. Therefore
|E1| = O(c2δ

d/µ). On the other hand, for every edge e ∈ E2, there is at least one vertex of σ(e) that
lies in the spherical shell of B(p̂, δ + c2) \ B(p̂, δ), as the length of edges in σ is at most c2. Since the
volume of this spherical shell is O(c2(c2 + δ)d−1), the size of E2 is bounded by O((c2(c2 + δ)d−1/(cd−11))).
Therefore, we have that |E(p̂)| = |E1| + |E2| = O(δd−1 + δd/µ). Summing it over all r vertices of
π̃, we have that |W | = O(n

µ
(δd−1 + δd/µ)). Furthermore, since this number cannot exceed the size

of D which is O(rs) = O(nm/µ2), we have |W | = min{nm/µ2, O(n
µ
(δd−1 + δd/µ)}. Note that |W | is

maximized when the two balancing terms are equal: nm
ε2δ2

= δd−2

ε2
, that is, when δ = m1/d. This implies

that |W | = O(nm1−2/d/ε2).
We still need to compute these white cells of D efficiently. Similar to the case for κ-bounded curves, we

preprocess σ̃ into a data structure of size O(s), using O(s) preprocessing time, such that the resulting
data structure answers β-approximate range query for B(p̂, δ) in O(1/βd) time, for a small constant
β > 0, say β = 1/2. We then check all vertices returned by this approximate range query, and keep only
those indeed contained in B(p̂, δ). Overall, we can compute all white cells in O(r + s + |W |) time and
space, thus can answer the decision problem “Is δD(π̃, σ̃) ≤ δ? ” in the same time and space. Putting
everything together, we have:

Lemma 3.5. Given two backbone curves of sizes n and m, respectively, we can develop an ε-fuzzy
decision procedure for δD(π, σ) w.r.t. δ that runs in O((n + m) + 1

ε2
nm1−2/d) time and space. In

particular, the time complexity is O(n+m/ε2) when d = 2, and O(n+m+ nm1/3/ε2) when d = 3.

Finally, for backbone curves, in order to approximate δD(π, σ), one can use a binary search procedure
(described in Appendix C instead of the approach using WSPD as described earlier. The advantage of
the binary search procedure is that all results can then be extended for the continuous case δF(π, σ) by
more careful and involved packing arguments. We conclude with the following theorem.

Theorem 3.6. Given two backbone curves π and σ of n and m vertices respectively, we can compute
an ε-approximation of δF(π, σ) in O((n+m)

ε3
log(nm)) time in two dimensions, and O(1

ε3
nm1/3 log(nm))

time in three dimensions.

1In the following, the big O notation sometimes hide factors depending on constants c1 and c2.

9

4 Pseudo–Output-Sensitive Algorithm

In this section, given curves π and σ of size n and m, respectively, we present a pseudo-output-sensitive
algorithm for computing δD(π, σ) for general curves. Although the worst case complexity may still
be Θ(nm), we believe that the observation made within should help to produce efficient (possibly
approximate) algorithms for Fréchet distance in practice. In what follows, we provide results for L∞
norm (which provides a constant factor approximation for optimal solution under L2 norm). The time
complexity for exact computation under L2 norm is quite messy and omitted.

Suppose we have an algorithm that answer the following select-distance query in B(N) time: given
a set of N points P and a rank k, what is rankd(k), the kth smallest distance among all pair-wise
distances from P . Now given an algorithm to solve the decision problem “Is δ∗ = δD(π, σ) ≤ δ?” in time
A(n+m), we can find the optimal solution δ∗ in O((A(n+m) +B(n+m)) log(nm)) time by querying
rankd(k) among n+m points in a binary search manner2. For L∞ norm, the distance-selection problem
can be solved in O(dN logd−1N) in Rd [Sal89]. For the decision problem, a straightforward bound for
time complexity A is |W | plus the time to compute W , where W is the set of white cells in the free-space
diagram D = D(π, σ, δ) for a threshold δ > 0. Below we provide a tighter bound for A although its
worst-case complexity is still Θ(nm).

Switching cells. Given an n × m map D with respect to some threshold δ, a switching cell is a
white cell whose immediate neighbor above or below it is black. So if D[i, j] is a switching cell, then
the edge qjqj+1 ⊂ σ (or qjqj−1) intersects the boundary of B(pi, δ) exactly once (one endpoint must lie
inside and one must be outside). For a vertex p ∈ π, while the set of white cells involving p correspond
those vertices from q falling inside B(p, δ), the switching cells involving p correspond to those vertices
inside B(p, δ) with one incident edge crossing the boundary of B(p, δ). Let § = §(π, σ, δ) denote the set
of switching cells of D(π, σ, δ). Although in worst case |§| = Ω(|W |) = Ω(nm), we expect it to be much
smaller than |W | in practice. For example, consider the case when vertices of σ form lines of a cubic
lattice of size n1/3 × n1/3 × n1/3 and δ is roughly n1/3/2. For a vertex p at the center of this cube, the
number of white cells in the corresponding column in D is Θ(n), while the number of switching cells is
Θ(n2/3). The remaining questions are (i) how to compute the set of switching cells §(π, σ, δ) and (ii)
how to solve the decision problem once § is given.

Decision problem with §. Once the set of switching cells is given, we can solve the decision problem
in O(|§|) time and space as follows. Instead of representing D explicitly, we now represent each column
of D, C[i] for 1 ≤ i ≤ n, as a set of ordered intervals, where each interval corresponds to a maximal
set of consecutive white cells in this column. Obviously, the endpoints of these intervals are exactly
the switching cells. Let V [i] be the set of ordered intervals, each representing a maximal set of cells in
the ith column reachable from D[1, 1], and |C[i]| and |V [i]| the number of intervals in C[i] and V [i],
respectively. Easy to see that |V [i]| ≤ |C[i]|, because all cells covered by intervals from V [i] are white,
and because if any cell c from an interval I ∈ C[i] is in some interval J ∈ C[i], then all cells of I above
c should also be covered by J . Our algorithm scans D from left to right (i.e, from column 1 to column
n), and at the ith round, we compute V [i] by merging C[i] and V [i − 1] in O(|V [i − 1]| + |C[i]|) time
using a merge-sort like procedure (see details in Appendix D).

Computing §. Given p and δ, let §(p, δ) denote the set of edges from σ “crossing” the boundary of
B(p, δ). Here by crossing, we mean that one endpoint of the edge is inside B(p, δ) and one is outside (so

2In some sense, our previous approach using WSPD is performing implicit approximate distance selection.

10

it is not the usual segment/ball intersection problem). To compute §, we need to perform n edge/ball
crossing queries, one for each vertex from π. Under the L∞ norm, the basic operation is in fact an
edge/cube crossing query, where all cubes are congruent. We can preprocess the set of edges by building
a range-search tree for their endpoints (similar to the multi-level data structure for orthogonal range
reporting problem). The entire data structure has size O(m log2dm) and given a cube, the set of edges
crossing it can be reported in O(log2dm+ k) where k is the number of such edges.

Putting everything together, we conclude with the following theorem:

Theorem 4.1. Given two arbitrary polygonal curves π and σ in Rd, with n and m vertices, respectively,
one can compute δD(π, σ) under L∞-norm, in O((Φ+ (n+m) log2d(nm)) log(nm)) time and O(Φ+ (n+
m) log2d(nm)) space, where Φ is an upper bound of the number of switching cells for any threshold δ.

We remark that for L2 norm, the running time is Õ(Φ + (n+m)4/3 log(nm)) for d = 2 and Õ((Φ +
(n + m)2−1/2

d
) log(nm)) time for d > 2. The edge/ball crossing query required by computing § can

be converted into an segment/hyperplane query in one dimension higher. It is less practical as the
solution involves heavy machinery. Nevertheless, if approximation is allowed, one can use the idea
from Theorem 3.1 as well as multi-dimensional range trees to obtain an ε-approximation algorithm in
O(Φ + polylog n) time and space where polylog depends on both ε and d.

5 Conclusions and Discussion

In this paper, we considered the problem of computing discrete Fréchet distance between two polygonal
curves either approximately or exactly. Our main contribution is a simple approximation framework
that leads to efficient ε-approximation algorithms for two families of common curves: the κ-bounded
curves and the backbone curves. We also consider the exact algorithm for general curves, and proposed a
pseudo-output-sensitive algorithm by observing that only a subset of the white cells from the free-space
diagram are necessary for the decision problem. It will be interesting to investigate whether there are
families of curves that are guaranteed to have small Φ, which is the upper bound on the number of
switching cells.

We feel that for general curves, it might be hard to develop algorithms that are significantly sub-
quadratic in worst case, given that no such algorithm exists for a related and widely studied problem, the
edit distance for strings. Hence our future directions will focus on practical variants of Fréchet distance
so that one can handle outliers and/or partial matching, or so that one can perform efficient multiple-
curve alignments. Another important direction is to develop efficient (approximation) algorithm for
computing smallest Fréchet distance under rigid motions (in particular rotations).

Postscript. Since the appearance of this paper in ESA 2006 [AHK+06] a lot of research was done
on related problems. Driemel et al. [DHW12] introduced the notion of c-packed curves, and showed a
near linear time algorithm for such curves. Bringmann [Bri14] proved that Fréchet distance can not be
computed exactly in subquadratic time under the SETH hypothesis. There is more recent research on
the Fréchet distance, but surveying it is outside the scope of this note.

References

[AAI+01] O. Aichholzer, F. Aurenhammer, C. Icking, R. Klein, E. Langetepe, and G. Rote. Gener-
alized self-approaching curves. Disc. App. Math., 109(1-2):3–24, 2001.

11

http://page.mi.fu-berlin.de/~rote/

[AB05] H. Alt and M. Buchin. Semi-computability of the Fréchet distance between surfaces. In
Proc. 21st Euro. Workshop on Comput. Geom., pages 45–48, 2005.

[AERW03] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. J. Algorithms, 49:262–283,
2003.

[AG95] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
Internat. J. Comput. Geom. Appl., 5:75–91, 1995.

[AHK+06] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet distance for curves,
Revisited. In Proc. 14th Annu. European Sympos. Algorithms (ESA), pages 52–63, 2006.

[AHMW05] P. K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near-linear time approximation
algorithms for curve simplification in two and three dimensions. Algorithmica, 42:203–219,
2005.

[AKW01] H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the fréchet
distance. In Proc. 18th Internat. Sympos. Theoret. Asp. Comp. Sci., pages 63–74, 2001.

[AKW04] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves.
Algorithmica, 38(1):45–58, 2004.

[AST94] P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric
optimization. J. Algorithms, 17:292–318, 1994.

[BBW06] K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between simple
polygons in polynomial time. In Proc. 22nd Annu. Sympos. Comput. Geom. (SoCG), pages
80–87, 2006.

[Bri14] K. Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. 55th Annu. IEEE Sympos. Found. Comput.
Sci. (FOCS), pages 661–670, 2014.

[CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach.,
42:67–90, 1995.

[CM05] M. Clausen and A. Mosig. Approximately matching polygonal curves with respect to the
Fréchet distance. Comput. Geom. Theory Appl., 30:113–127, 2005.

[DHW12] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic
curves in near linear time. Discrete Comput. Geom., 48:94–127, 2012.

[EGH+02] A. Efrat, L. J. Guibas, S. Har-Peled, J. S.B. Mitchell, and T.M. Murali. New similarity
measures between polylines with applications to morphing and polygon sweeping. Discrete
Comput. Geom., 28:535–569, 2002.

[EGHM01] A. Efrat, L. J. Guibas, S. Har-Peled, and T. M. Murali. Morphing between polylines. In
Proc. 12th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 680–689, 2001.

[EM94] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Tech. Report CD-TR 94/64,
Christian Doppler Lab. Expert Sys., TU Vienna, Austria, 1994.

12

http://www.inf.fu-berlin.de/inst/ag-ti/members/alt.en.html
http://www.inf.fu-berlin.de/inst/ag-ti/members/alt.en.html
http://www.cs.arizona.edu/~alon/
http://page.mi.fu-berlin.de/~rote/
http://www.cs.utsa.edu/~carola/
http://www.inf.fu-berlin.de/inst/ag-ti/members/alt.en.html
http://cis.poly.edu/~aronov/
http://sarielhp.org
http://www.cs.duke.edu/~wys/
http://www.cs.utsa.edu/~carola/
http://www.cs.duke.edu/~pankaj
http://sarielhp.org
http://www.cs.duke.edu/~wys/
http://www.inf.fu-berlin.de/inst/ag-ti/members/alt.en.html
http://www.cs.utsa.edu/~carola/
http://www.inf.fu-berlin.de/inst/ag-ti/members/alt.en.html
http://www.cs.utsa.edu/~carola/
http://www.cs.duke.edu/~pankaj
http://www.math.tau.ac.il/~michas
http://www.cs.utsa.edu/~carola/
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2014.76
http://www.acm.org/jacm/
http://sarielhp.org
http://www.cs.utsa.edu/~carola/
http://link.springer.com/journal/454
http://www.cs.arizona.edu/~alon/
http://geometry.stanford.edu/member/guibas/
http://sarielhp.org
http://link.springer.com/journal/454
http://link.springer.com/journal/454
http://www.cs.arizona.edu/~alon/
http://geometry.stanford.edu/member/guibas/
http://sarielhp.org

[GIP99] D. Goldman, S. Istrail, and C. H. Papadimitriou. Algorithmic aspects of protein structure
similarity. In Proc. 40th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 512–522,
1999.

[Ind02] P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product metrics.
In Proc. 18th Annu. Sympos. Comput. Geom. (SoCG), pages 102–106, 2002.

[KHM+98] S. Kwong, Q. H. He, K. F. Man, K. S. Tang, and C. W. Chau. Parallel genetic-based hybrid
pattern matching algorithm for isolated word recognition. Int. J. Pattern Recog. Art. Intel.,
12(5):573–594, August 1998.

[KKS05] M.S. Kim, S.W. Kim, and M. Shin. Optimization of subsequence matching under time
warping in time-series databases. In Proc. ACM symp. Applied comput., pages 581–586,
2005.

[KP99] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive dataset. In
Proc. of the Third Euro. Conf. Princip. Data Mining and Know. Disc., pages 1–11, 1999.

[KS94] A. Kolinski and J. Skolnick. Monte carlo simulations of protein folding: Lattice model and
interaction scheme. In Proteins, volume 18, pages 338–352, 1994.

[PP90] M. Parizeau and R. Plamondon. A comparative analysis of regional correlation, dynamic
time warping, and skeletal tree matching for signature verification. IEEE Trans. Pattern
Anal. Mach. Intell., 12(7):710–717, 1990.

[Rot94] G. Rote. Curves with increasing chords. Math. Proc. Camb. Phil. Soc., 115:1–12, 1994.

[Rot05] G. Rote. Computing the Fréchet distance between piecewise smooth curves. Technical
Report ECG-TR-241108-01, Freie Universitat, Berlin, May 2005. To appear in Comput.
Geom. Theory Appl.

[Sal89] J. S. Salowe. L∞ interdistance selection by parametric search. Inform. Process. Lett.,
30:9–14, 1989.

[Wen02] C. Wenk. Shape Matching in Higher Dimensions. PhD thesis, Dept. of Comput. Sci., Freie
Universitat, Berlin, 2002.

A Approximation via fuzzy decision procedure

Given an β-fuzzy decision procedure ApprDecision(δ, β) for deciding whether δ∗ ≤ δ, we combine it
with the WSPD approach described in Section 3.1 to compute an ε-approximation of δ∗. In par-
ticular, construct the O(n) distances using WSPD as before, and perform a binary search by querying
ApprDecision(v, 1/10) among these distances to identify the interval I = [x, y] such that ApprDecision(x, 1/10)
returns “no” while ApprDecision(y, 1/10) returns “yes”. Easy to verify that a = 4

5
x < δ∗ < 7

5
x = b. We

then start with a pair kl = a/(1 + ε), and kh = b/(1 − ε), and perform a standard binary search while
always maintaining that ApprDecision(kl, ε/4) returns “no” and ApprDecision(kh, ε/4) returns “yes” until
kh − kl ≤ (b − a)ε/3. It is easy to verify that the invariant holds when we start, and the number of

13

http://theory.lcs.mit.edu/~indyk/
http://page.mi.fu-berlin.de/~rote/
http://page.mi.fu-berlin.de/~rote/
http://www.cs.utsa.edu/~carola/

iterations is at most O(log(1/ε)). Furthermore, because of the invariant that we maintain, we have
(1− ε/4)kl ≤ δ∗ ≤ (1 + ε/4)kh and kh − kl ≤ (b− a)ε/2 < δ∗ε/2. It then follows that when ε < 1,

δ∗ ≤ (1 + ε/4)kh ≤ (1 + ε/4)(kl + δ∗ε/2)→ δ∗ ≤ (1 + ε/4)kl/(1− (1 + ε/4)ε/2) ≤ (1 + ε)kl.

This implies that kl is an ε-approximation of δ∗. Hence we can use a fuzzy decision procedure to
approximate δ∗.

B Left-inequality of Lemma 3.3

Let C∗ be the complete order-preserving correspondence that produce δD(π̃, σ̃). We now modify it
into a correspondence C between π and σ as follows: First we add all matches (pIπ(i), qIσ(j)) to C if
(p̂i, q̂j) ∈ C∗. Next, we take each pair of consecutive matches. There are three cases as illustrated in
Figure 4. The first two are symmetric, and we simply add matches (pIπ(i), qk) (resp. (pk, qIσ(j))) into C

q
2q

1

p
1

q
2q

1

p
1

q
2q

1

p
1

q
2q

1

p
1

p
2

q
2q

1

p
1

p
2

q
uq

u

q
2q

1

p
1

p
2

(1) (2)

(3)

π π

π π π

π

σ

σ σ σ

σσ

Figure 4: Small empty circles mark vertices of π̃ and σ̃. Three cases for two consecutive pairs from C∗

between π̃ and σ̃. For case (3), we first add all correspondences between p1 and all vertices between q1
and q2 along σ, we then add all correspondences between qu and vertices between p1 and p2.

for k ∈ (Iσ(j), Iσ(j+ 1)) (resp. k ∈ (Iπ(i), Iπ(i+ 1))). For the third case, we add all matches of the form
(pIπ(i), qk) for k ∈ (Iσ(j), Iσ(j+1)), and of the form (pk, qu) for k ∈ (Iπ(i), Iπ(i+1)) and u = Iσ(j+1)−1.
It is easy to verify that the resulting matching M is both complete and order-preserving. Furthermore,
by triangle inequality, each match (pi, qj) added for the first two cases satisfies d(pi, qj) ≤ δD(π̃, σ̃) + µ;
while an edge (pk, qu) added in last case satisfies

d(pk, qu) ≤ d(pk, pIπ(i)) + d(pIπ(i), qIσ(j)) + d(qIσ(j), qu) ≤ δD(π̃, σ̃) + 2µ.

This proves the left-hand inequality in Lemma 3.3.

C Approximating δD(π, σ) for backbone curves

Let ApprDecision(π, σ, δ, ε) denote the ε-fuzzy decision procedure for δD(π, σ) for two backbone curves
π and σ. In order to find an ε-approximation of δD(π, σ), we can simply use Theorem 3.1. However,
for this particular case, we can have a much simpler binary search procedure within similar time/space
complexity that avoids the construction of WSPD.

14

In particular, if δD(π, σ) < β, for some constant β, say β = 1, then we know that there exist a pair of
vertices p∗ ∈ π and q∗ ∈ σ such that d(p∗, q∗) = δD(π, σ) < β. We collect the set T of all pairs between
π and σ with distance smaller than β. By similar packing argument as in Section 3.4 (in computing
white cells), |T | = O(n + m) and we can compute T in the same time/space. We then simply perform
a binary search among T to locate (p∗, q∗) and compute δD(P,Q) exactly in O((n + m) log(nm)) time.
We call this procedure ExactFSmall(P,Q, ε, β).

Algorithm ApprFBackbone(P , Q, ε)
begin

Set δo = δn = 1, yes = 0, no = 0.
while (yes == 0 or no == 0) do

if δ < 1 then

return ExactFSmall(P,Q, ε, 2)
end if

if ApprDecision(δn, ε/3) == ‘yes’) then

set yes = 1, δo = δn, δn = δo/(1 + ε/3)
else

set no = 1, δo = δn, δn = (1 + ε/3)δo
end if

end while

return δo
end

Figure 5: Algorithm ApprFBackbone(P,Q, ε) computes an ε-approximation of δD(P,Q) for two backbone
curves. Subroutine ExactFSmall(P,Q, ε, β) computes δD(P,Q) exactly if δD(P,Q) < β.

For the case when δD(π, σ) ≥ β, we perform a different search procedure as described in Figure 5.
Easy to verify that while loop can be called at most O(log1+ε(n + m)) = O((log(n + m))/ε) time,
as obviously δD(π, σ) ≤ c2(n + m) for backbone curves. To see that the output of the algorithm is
indeed an ε-approximation of δD(π, σ), observe that when the algorithm terminates, the sequence of
answers from ApprDecision() is either a sequence of “yes” followed by one “no”, or a sequence of “no”
followed by one “yes”. Let assume that we have the first case (the second is symmetric). Suppose
the output of the algorithm is δ̄, then we have that (1 − ε/3)δ̄ ≤ δ∗ = δD(π, σ). In the previous
iteration of the while loop, δn = δ̄(1 + ε/3), as the answer then was “yes”. Hence we have that
δ∗ ≤ (1 + ε/3)δn = (1 + ε/3)2δ̄ ≤ (1 + ε)δ̄ if ε < 1. This implies that δ̄ ε-approximates δ∗. Hence
Theorem 3.6 follows.

D Decision problem with switching cells §
The only step unexplained is how to compute V [i] by merging C[i] and V [i− 1] in O(|V [i− 1]|+ |C[i]|)
time. This can be achieved by a bottom-up scanning for V [i − 1] and C[i] simultaneously. More
specifically, given V [i− 1] and C[i], we can sort the endpoints of their intervals in O(|V [i− 1]|+ |C[i]|)
time using merge sort. We process them in order and maintain the partial V [i] at any time. For sake
of simplicity, we call an endpoint a L-point (resp. H-point) of V [i − 1] or C[i] if it is the low-endpoint
(resp. higher endpoint) of some interval from V [i − 1] or C[i]. The pseudo-code is shown in Figure 6,
where V = V [i − 1], C = C[i], and the output is X = V [i]. It is easy to verify the correctness of the
algorithm, and the running time is proportional to the sum of interval lists being merged.

15

Algorithm mergeColumn(V,C)
begin

Set potentialReachFlag = 0 and potentialStartFlag = 0
Sort H, the set of endpoints from V and C
for (i = 1; i < |H|; i+ +) do

if (H[i] is L-point of V) then

Set potentialReachFlag = 1
if (potentialStartFlag == 1)
then Add H[i] as L-point for X

else if (H[i] is H-point of V) then

Set potentialReachFlag = 0
else if (H[i] is L-point of C) then

Set potentialStartFlag = 1
if (potentialReachFlag = 1)
then Add H[i] as L-point for X

else if (H[i] is H-point of C) then

Set potentialStartFlag = 0
Add H[i] as H-point for X

end for

end

Figure 6: Algorithm to compute V [i] (i.e, X) from V [i− 1] (i.e, V) and C[i] (i.e, C).

16

	1 Introduction
	2 Preliminaries
	3 Approximation Algorithms Based on Simplification
	3.1 Approximation via approximate decision problem
	3.2 Approximation with simplifications
	3.3 Fréchet Distance for -bounded curves
	3.4 Fréchet Distance for Protein Backbones

	4 Pseudo–Output-Sensitive Algorithm
	5 Conclusions and Discussion
	A Approximation via fuzzy decision procedure
	B Left-inequality of [lemma:simpappr]Lemma ??
	C Approximating D(,) for backbone curves
	D Decision problem with switching cells §

