
Analysis and Verification of Time Requirements
applied to the Web Services Composition ?

Gregorio Dı́az, Maŕıa-Emilia Cambronero, M Llanos Tobarra
Valent́ın Valero and Fernando Cuartero

Department of Computer Science
University of Castilla-La Mancha

Escuela Politécnica Superior de Albacete. 02071 - SPAIN
[gregorio,emicp,llanos,valentin,fernando]@dsi.uclm.es

Abstract. This work presents a new approach to the analysis and veri-
fication of the time requirements of Web Services compositions via goal-
driven models and model checking techniques. The goal-driven model
used is an extension of the goal model KAOS and the model checker
engine is the UPPAAL tool. The goal model specifies the properties
that the system must satisfy and how they should be verified by using
the model checker engine. In order to illustrate this approach, we apply
these techniques to a basic Internet purchase process.

1 Introduction

A basic activity in the design of software system and by extension to Web Ser-
vices is the analysis and verification of the requirements that the system must
satisfy. However, before performing the analysis and verification, the software
engineer must gather these requirements in an standardized specification.

In this work, we have focused our efforts on those systems where time plays
an important role. Thus, in the literature we can find related works for the
specification of software system requirements, as for instance [17]. However, we
have based this work on the work of Lamsweerde et al [1,8,20]. Thus we have
extended this work in order to describe more complex goal-driven requirement
models. Once we have captured the system requirements and implemented the
system by means of Web Services composition [5,4] (concretely by using the Web
Service Choreography Description Language, WS-CDL [12]), these Web Services
are translated into Timed Automata [2] by using the technique presented in [11].
After the translation, we can verify the time requirements by using the model
checker, UPPAAL [9,10,15].

This work is structured in seven sections. In the first section we have al-
ready seen a brief introduction to the work. The second section presents the
methodology approach. The third section specifies the study case that we fol-
low in this work. The fourth section shows a goal-driven model for gathering
? This work has been supported by the CICYT project “Description and Evaluation

of Distributed Systems and Application to Multimedia Systems”,TIC2003-07848-
C02-02 and the UCLM project “Aplicación de Métodos Formales al Desarrollo y
Verificación de Web Services”



time requirements. The fifth section performs a brief summary about WS-CDL,
timed automata and the translation process between them. In the sixth section,
we will see how to perform the verification process. Finally, the seventh section
deals with the conclusions and future works.

2 The Methodology Approach

The proposed methodology is divided into three phases (Fig. 1): Analysis, design
and verification. The analysis is performed by using an extension of the goal
model KAOS. This goal model allows analysts and specifiers to gather time
requirements of software systems in a hierarchic order, i.e., from general and
strategic goals to concrete requirements.

ANALYSIS

DESIGN

CHOREOGRAPHIES

WS-CDL

VERIFICATION
VIA

MODEL CHECKING
(UPPAAL)

TIMED
AUTOMATA

+
KAOS PROPT.

GOAL MODEL

Fig. 1. The proposed Methodology for Web Services composition.

The design is performed via composed specifications written in Web Services
choreographies (WS-CDL), which are known as Web Services choreography spec-
ifications. These specifications appear as a necessary result of composing Web
Services and implement mechanisms to deal with compositional problems, as for
instance concurrency and time aspects.

The verification phase in the literature is useful taken together with the
design phase. However, during the last few years, there has been a growing
consensus that verification is a key instrument for developing software systems,
in that sense Hoare [14], Clarke [7] together with a large number of authors have
agreed in its importance [13]. Thus, we have considered that the verification is
substantial enough to be taken apart from previous phases, although, we should
not forget how close this phase is to the design. In this phase we have used a
translation algorithm presented in [11] in order to translate the choreographies
specified in the design into timed automata, which are the formalism used by
the model checker UPPAAL. The timed automata captures in a proper manner
the time behaviors of the different Web Services involved in a choreography.
Once this translation is successfully finished, the verifiers can check whether
the requirements, now transformed into properties, are fulfilled by the timed
automata or not. If the verifiers find that the timed automata do not satisfy a



property, then they can use the counterexample obtained from the verification
to locate where exactly the error lies. This error can occur for several reasons, in
which are included: Requirement specification errors, choreography specification
errors and, the most desirable case, errors in the real system.

3 The study case: An Internet Purchase Process

This example is based upon a typical purchase process that uses Internet as
a business context for a transaction. There are three actors in this example:
a customer, a seller and a carrier. The Internet purchase works as follows: “A
customer wants to buy a product by using Internet. There are several sellers
that offer different products in Internet Servers based on Web-pages. The cus-
tomer contacts a seller in order to buy the desired product. The seller checks the
stock and contacts with a carrier. Finally, the carrier delivers the product to the
customer.”

Fig. 2. The diagram for a purchase process by Internet

Figure 2 depicts the diagram that represents this purchase process. This
process consists of three participants: the customer, the seller and the carrier.
The behavior of each participant is defined as follows:
– Customer: He contacts the seller to buy a product. He must send the seller

the information about the product and the payment method. After the pay-
ment, he waits to receive the product from a carrier within the agreed time,
twenty four hours.

– Seller: He receives the customer order and the payment method. The seller
checks if there is enough stock to deliver the order and sends an acceptance
notification to the customer . If there is stock to deliver the order, then he
contacts with a carrier to deliver the product.

– Carrier: He picks up the order and the customer information in order to
deliver the product to the customer. The interval to deliver the product is
the time that the seller has stipulated, one day, which is the main temporal
constraint.

4 The analysis phase

The requirements, properties and characteristics of the system must be gathered
in order to be checked. However, they must be expressed in a formalized man-
ner. There are several languages, graphical diagrams, etc. to perform this, but



we apply those in which time requirements are well captured. In this sense, goal-
oriented requirements engineering emerges as a natural choice. The key activity
in goal-oriented requirements engineering is the construction of the goal model.
Goals are objectives the system under construction must achieve. Goal formu-
lations thus refer to intended properties to be ensured. They are formulated
at different levels of abstraction from high-level, strategic concerns to low-level
technical concerns. Goal models also allow analysts to capture and explore al-
ternative refinements for a given goal. The resulting structure of the goal model
is an AND-OR graph. The specific goal-oriented framework considered here is
an extension of KAOS methodology [1,6,8,20] which has a two-level language:
(1) an outer semi-formal layer for capturing, structuring and presenting require-
ments engineering concepts; (2) an inner formal assertion layer for their precise
definition and for reasoning about them.

4.1 The inner formal assertions layer: TCTL style requirements

The formal assertions, in which the goals are written, use the UPPAAL language
for specifying properties. This language is a subset of timed computation tree
logic (TCTL) [19,18], where atomic expressions are location names, variables
and clocks from the modeled system. The properties are defined using local
properties that are either true or false depending on a specific configuration.
Definition 1 (Local Property) Given an UPPAAL model 〈A, V ars, Clocks, Chan, Type〉.
A formula ϕ is a local property iff it is formed according to the following syntac-
tical rules:

ϕ ::= deadlock
| A.l for A ∈ A and l ∈ LA

| x ./ c for x ∈ Clocks, ./∈ {<,<=,==, >=>}, c ∈ Z
| x− y ./ c for x, y ∈ Clocks, ./∈ {<,<=,==, >=>}, c ∈ Z
| a ./ b for a, b ∈ V ars

⋃
Z, ./∈ {<,<=, ! =, ==, >=>}

| (ϕ1) for ϕ1 a local property
| not ϕ1 for ϕ1 a local property
| ϕ1 or ϕ2 for ϕ1, ϕ2 logical properties (logical OR)
| ϕ1 and ϕ2 for ϕ1, ϕ2 logical properties (logical AND)
| ϕ1 imply ϕ2 for ϕ1, ϕ2 logical properties (logical implication)

In Definition 1 we have expressed the syntaxis of the temporal logic that
UPPAAL uses. Now, let us see the definition of the five different property classes
that UPPAAL may check.

Definition 2 (Temporal Properties) let M = 〈A, V ars, Clocks, Chan, Type〉
be an UPPAAL model and let ϕ and ψ be local properties. The correctness of
temporal properties is defined for the classes A[ ], A <> and −− > as follows:

M ² A[ ] ϕ iff ∀{(l, e, v)}K ∈ τ(M). ∀k ≤ K. (l, e, v)k ²loc ϕ
M ² A <> ϕ iff ∀{(l, e, v)}K ∈ τ(M). ∃k ≤ K. (l, e, v)k ²loc ϕ
M ² ϕ−− > ψ iff ∀{(l, e, v)}K ∈ τ(M). ∀k ≤ K

(l, e, v)k ²loc ϕ ⇒ ∃k′ ≥ k. (l, e, v)k′ ²loc ψ



Requirement

SubReq1 SubReq2

And-refinement

Requirement

SubReq1 SubReq2

Or-refinement

Fig. 3. And-refinement and Or-refinement goal models.

The two temporal property classes dual to A[ ] and A <> are defined as follows:

M ² E <> ϕ iff ¬(M ²loc A[ ] not(ϕ))
M ² E[ ] ϕ iff ¬(M ²loc A <> not(ϕ))

4.2 The outer semi-formal layer: the goal-driven model

Two key elements are used as building elements for the definition of a goal
model: goals and requirements. A goal prescribes intended behaviors of the sys-
tem. It may refer to services to be provided (functional goals) or to the quality
of service (non-functional goals). A requirement is a leaf goal that requires co-
operation between different parties, which are called agents. Agents are active
components that play a role in achieving goal satisfaction. To build Goal Mod-
els, goals are organized in an AND/OR refinement - abstraction hierarchy where
higher-level goals are, in general, strategic, coarse-grained and involve multiple
agents whereas lower-level goals are, in general, technical, fine-grained and in-
volve fewer agents. In such structures, AND-refinement links relate a goal to a
set of subgoals (called refinement) possibly conjoined with domain properties;
this means that satisfying all subgoals in the refinement is a sufficient condition
in the domain for satisfying the goal, as seen in the left-hand side of Figure 3.
OR-refinement links may relate a goal to a set of alternative refinements, as seen
in right-hand side of Figure 3.

Requirements must be checked by the model checker and are formalized in a
real-time temporal logic that we have shown above. Keywords such as Achieve
(reachability), Avoid (not safety), Maintain (safety), possibly always, inevitably
and unbounded response, are used to name goals according to the temporal be-
havior pattern they prescribe. They are depicted in the goal model as follows:



Temporal Behavior Goal Model Representation

Maintain (Safety) A[ ] ϕ
Requirement

Achieve (Reachability) E <> ϕ
Requirement

Possibly Always E[ ] ϕ
Requirement

Inevitably A <> ϕ
Requirement

Unbounded Response ϕ−− > ψ
Requirement

Once we have defined the goal model, we can apply this technique to our
example. We must identify the crucial requirements for the Internet purchase
process that we have described above. For this we have identified two different
kinds of requirements. One kind refers to the obligation that both the seller and
carrier have agreed to deliver the product on time, while the other refers to the
quality of service. The time restriction establishes that the seller and carrier
have twenty four hours to deliver the product. So, the seller must prepare the
order for the carrier to send the product within the interval. The service quality
is determined by two different requirements that are closely linked. The service
must be rapid and also efficient. Due to this close relationship between these two
requirements, if one of them is fulfilled then the other is fulfilled too.

CorrectInternetPurchase

NoDelays SatisfiedCustomer

DeliverOnTime

And-refinement

AchieveMaintain

Inevitably

Efficient
Service

Unbound
Respond

PickUpOnTime RapidService

Or-refinement

Fig. 4. The goal-model for the Internet Purchase Process

Figure 4 depicts the goal-model that we have developed for this example.
The root goal “CorrectInternetPurchase” is decomposed into two subgoals by
an And-refinement, which means that each one must be fulfilled in order to
achieve the root goal. The first one, “NoDelays”, that is of type “maintain”, is
refined by another And-refinement with two leaf goals that inherit the maintain
character. The first leaf goal “PickupOnTime” is of type “Unbound Respond”.
This goal represents the situation that the carrier must pick up the order on
time and is formalized as follows:

Customer.WaitOrder −− >

(Carrier.P ickUp ∧ Clockdeliver < 24hours) (1)



The second leaf goal “DeliverOnTime” is of type “Inevitably” and specifies
that the carrier must deliver the order on time. The goal is defined as follows:

A <> (Carrier.Deliver ∧ Clockdeliver < 24hours) (2)

The second one, “SatisfiedCustomer”, of type “Achieve”, is formed by two
leaf goals. These leaf goals refine the parent goal by an Or-refinement, which
means that if one of them is satisfied then the parent goal is satisfied too. The
leaf goal “RapidService”, that determines that the customer will receive the order
on time, is specified as follows:

E <> (Customer.ReceiveOrder ∧ Clockdeliver < 24hours) (3)

The leaf goal “EfficientService” has the behavior of an ”Unbounded Re-
sponse” requirement. This goal indicates that when the seller accepts the order,
then in the future, the customer will receive the order. This goal is formalized
as follows:

Seller.AcceptOrder −− > Customer.ReceiveOrder (4)

5 The design phase

In the design phase, designers must specify the system by implementing it with
the Web Service Choreography Description Language. Once we have this chore-
ography specification, we can use the work presented in [11] in order to obtain
the equivalent timed automata.

5.1 Designing Web Services composition with WS-CDL

WS-CDL describes interoperable collaborations between parties. In order to fa-
cilitate these collaborations, services commit to mutual responsibilities by es-
tablishing Relationships. Their collaboration takes place in a jointly agreed set
of ordering and constraint rules, whereby information is exchanged between the
parties. The WS-CDL model consists of the following entities:

– Participant Types, Role Types and Relationship Types within a
Choreography. Information is always exchanged between parties within or
across trust boundaries. A Role Type enumerates the observable behavior a
party exhibits in order to collaborate with other parties. A Relationship Type
identifies the mutual commitments that must be made between two parties
for them to collaborate successfully. A Participant Type groups together
those parts of the observable behavior that must be implemented by the
same logical entity or organization.

– Information Types, Variables and Tokens. Variables contain informa-
tion about commonly observable objects in a collaboration, such as the in-
formation exchanged or the observable information of the Roles involved.
Tokens are aliases that can be used to reference parts of a Variable. Both
Variables and Tokens have Types that define the structure of what the Vari-
able contains or the Token references.



– Choreographies define collaborations between interacting parties:

• Choreography Life-line: This shows the progression of a collaboration.
Initially, the collaboration is established between the parties; then, some
work is performed within it, and finally it completes either normally or
abnormally.

• Choreography Exception Block: This specifies the additional inter-
actions that should occur when a Choreography behaves in an abnormal
way.

• Choreography Finalizer Block: This describes how to specify addi-
tional interactions that should occur to modify the effect of an earlier
successfully completed Choreography (for instance to confirm or undo
the effect).

– Channels establish a point of collaboration between parties by specifying
where and how information is exchanged.

– Work Units prescribe the constraints that must be fulfilled for making
progress and thus performing actual work within a Choreography.

– Activities and Ordering Structures. Activities are the lowest level com-
ponents of the Choreography that perform the actual work. Ordering Struc-
tures combine activities with other Ordering Structures in a nested structure
to express the ordering conditions in which information within the Choreog-
raphy is exchanged.

– Interaction Activity is the basic building block of a Choreography, which
results in an exchange of information between parties and possible synchro-
nizations of their observable information changes, and the actual values of
the exchanged information.

Figure 5 shows a piece of the WS-CDL specification corresponding to this
purchase process.

5.2 Timed Automata

By definition, a timed automaton is a standard finite-state automaton extended
with a finite collection of real valued clocks. The clocks are assumed to proceed at
the same rate and their values may be compared with natural numbers or reset
to 0. UPPAAL extends the notion of timed automata to include integer vari-
ables, i.e. integer valued variables that may appear freely in general arithmetic
expression used in guards as well as in assignments.

The model also allows clocks not only to be reset, but also to be set to any
non-negative integer value.

Definition 3 (Atomic Constraints) Let C be a set of real valued clocks and I a
set of integer valued variables. An atomic clock constraint over C is a constraint
of the form: x ∼ n or x − y ∼ n, for x, y ∈ C, ∼∈ {≤,≥,=}and n ∈ N.
An atomic constraint over I is a constraint of the form: i ∼ n, for i ∈ I,
∼∈ {≤,≥, =}and n ∈ Z.



<interaction name="createPO" channelVariable="tns:seller-channel"
operation="handlePurchaseOrder" align="true" initiate="true">

<participate relationshipType="tns:CostIntSellCarrRS"
fromRole="tns:Customer" toRole="tns:Seller"/>

<exchange name="request" informationType="tns:purchaseOrderType"
action="request">

<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>
<exchange name="response" informationType="purchaseOrderAccepted"

action="respond">
<send variable="cdl:getVariable("tns:purchaseOrderAcceted","","")"/>
<receive variable="cdl:getVariable("tns:purchaseOrderAccepted","","")"/>

</exchange>
<exchange name="NoStockAckException" informationType="NoStockAckType"

action="respond">
<send variable="cdl:getVariable(’tns:NoStockAck’, ’’, ’’)"

causeException="true" />
<receive variable="cdl:getVariable("tns:NoStockAck","","")"

causeException="true"/>
</exchange>
<record name="record-the-channel-info" when="after">
<source variable="cdl:

getVariable("tns:purchaseOrder,"","PO/CustomerRef")"/>
<target variable="cdl:getVariable("tns:customer-channel", "", "")"/>

</record>
<record name="reset-clock" when="after">
<source variable="00:00"/>
<target variable="cdl:getVariable("tns:Clock1", "", "")"/>

</record>
</interaction>
<interaction name="PickUpProductPO" channelVariable="tns:deliver-channel"

operation="PickUpPurchaseOrder" align="true" initiate="true">
<participate relationshipType="tns:CustIntSellCarrRS"

fromRole="tns:Seller" toRole="tns:Carrier"/>
<exchange name="request"

informationType="tns:purchaseOrderType" action="request">
<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>

</interaction>
<interaction name="DeliverProductPO" channelVariable="tns:customer-channel"

operation="DeliverProductOrder" align="true" initiate="true">
<participate relationshipType="tns:CostIntSellCarrRS"

fromRole="tns:Carrier" toRole="tns:Customer"/>
<exchange name="request" informationType="tns:purchaseOrderType"

action="request">
<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>
<timeout time-to-complete=

"cdl:minor(cdl:getVariable("tns:Clock1","",""),"48:00")"/>?
</interaction>

Fig. 5. WS-CDL interaction specification of the Internet purchase process



By Cc(C) we will denote the set of all clock constraints over C, and by Ci(I)
we will denote the set of all integer constraints over I.

Definition 4 (Guards) Let C be a set of real valued clocks, and I a set of integer
valued variables. A guard g over C and I is a formula generated by the following
syntax: g ::= c|g ∧ g, where c ∈ (Cc(C)

⋃
Ci(I)).

B(C, I) will stand for the set of all guards over C and I.

Definition 5 (Assignments) Let C be a set of real valued clocks and I a set
of integer valued variables. A clock assignment over C is a tuple 〈v, c〉, where
v ∈ C and c ∈ N. An integer assignment over I is a tuple 〈w, d〉 representing
the assignment w = d, where w ∈ I and d ∈ Z.

We will use A(C, I) to denote the power-set of all assignments over I and C.

Definition 6 (Timed automata) A timed automaton A over a finite set of ac-
tions Act , clocksC and integer variables I is a tuple 〈L, l0, E, V 〉, where L is a
finite set of nodes (control-nodes), l0 is the initial node, E ⊆ L × B(C, I) ×
Act×A(C, I)× L corresponds to the set of edges, and V : L → B(C, I) assigns
invariants to locations. For a brief notation, we will denote l

g,a,r−−−→ l′ by the edge
〈l, g, a, r, l′〉 ∈ E.

5.3 Translation process: WS-CDL into Time Automata

For each component of a WS-CDL description we have the following correspon-
dence in timed automata (see Fig. 6 for a schematic presentation of this corre-
spondence):

Role : These are used to describe the behavior of each class of party that we are
using in the choreography. Thus, this definition matches with the definition
of a template in timed automata terminology.

Relation type : These are used to define the communications between two
roles, and the needed channels for these communications. In timed automata
we just need to assign a new channel for each one of these channels, which
are the parameters of the templates that take part in the communication.

Participant type : These define the different parties that participate in the
choreography. In timed automata they are processes participating in the
system.

Channel types : A channel is a point of collaboration between parties, together
with the specification of how the information is exchanged. As stated above,
channels of WS-CDL correspond with channels of timed automata.

Variables : These are easily translated, as timed automata in UPPAAL support
variables, which are used to represent some information.



Role = Template
Relation Type = Channel+

Participant Type = Process+

Channel Type = Channel
Variables = Variables
Choreography = Choreography+ | Activity
Activity = Work Unit | Sequence | Paralelism | Choice
Sequence = Activity+

Parallelism = Activity+

Choice = Activity+

Work Unit = State & Guard & Invariant

where the symbols +, | are BNF notation, and & is used to join information

Fig. 6. Schematic view of the translation

Now the problem is to define the behavior of each template. This behav-
ior is defined by using the information provided by the flow of choreographies.
Choreographies are sets of workunits or sets of activities. Thus, activities and
workunits are the basic components of the choreographies, and they capture the
behavior of each component. Activities can be obtained as result of a composi-
tion of other activities, by using sequential composition, parallelism and choice.
In terms of timed automata these operators can be easily translated:

– The sequential composition of activities is translated by concatenating the
corresponding timed automata.

– Parallel activities are translated by the cartesian product of the correspond-
ing timed automata.

– Choices are translated by adding a node into the automata which is con-
nected with the initial nodes of the alternatives.

Finally, time restrictions are associated in WS-CDL with workunits and in-
teraction activities. These time restrictions are introduced in timed automata by
means of guards and invariants. Therefore, in the event of a workunit of an ac-
tivity having a time restriction we associate a guard to the edge that corresponds
to the initial point of this workunit in the corresponding timed automaton.

Thus, by applying these rules we obtain three timed automata: one corre-
sponding to the customer (Fig. 7), another one to the seller (left-hand side of
Fig. 8) and the last one to the carrier (right-hand side of Fig. 8).

6 The Verification phase: via model checking

The model checking algorithm that UPPAAL uses is based on the symbolic
model checking [3,16] that uses constraint solving. The algorithm checks if a state
in a timed automata is reachable from the initial state or not. When searching the
state space we need two buffers that we can call “wait” and “passed” respectively.



Start WaitAcceptance

WaitOrderReceiveOrder

custosell!

PurchaseOrderID := 3 custosell?

carrtocus?

purchaseaccepted == true
x := 0

purchaseaccepted==false

Fig. 7. The customer automaton.

Start
CheckStock

AcceptOrder

custosell?

purchaseorder := PurchaseOrderID,

purchaseaccepted := false

purchaseaccepted == true

selltocarr!

Purchaseaccepted
:= true

custosell!

purchaseaccepted == false

Deliver PickUp

x < 24

selltocarr?

carrtocus!

custosell!

Fig. 8. Seller and carrier automata.

The wait buffer holds the states not yet explored and the passed buffer holds
the states explored so far.

Algorithm 1 Forward Reachability Analysis
If we do forward reachability analysis we initially store 〈l0, U0〉 in the wait

buffer. We then repeat the following:

1. Pick a state 〈li, Ui〉 from the wait buffer.
2. Check if li = lf ∧ Ui ⊆ Uf . If that is the case, return the answer yes.
3. If li = lj ∧ Ui ⊆ Uj, for some 〈li, Ui〉 in the passed buffer, drop 〈li, Ui〉 and

go to step 1. Otherwise save 〈li, Ui〉 in the passed buffer. If Uj ⊂ Ui we can
replace the state 〈lj , Uj〉 with 〈li, Ui〉. (To save space)

4. Find all lk that are reachable from li in one step regardless of the assign-
ments, taking only actions into account. Let gk be the set of guards on the
performed transition and ak the set of resets

5. Now set Uk = reset(sp(Ui) ∩ gk, ak). If Uk 6= ∅, store 〈lk, Uk〉 in the wait
buffer.

6. If the wait buffer is not empty go to step 1, otherwise return the answer no.



Fig. 9. The Uppaal trace for property 5

Thus, we can use the verifier of UPPAAL in order to check the properties
that were identified. Notice that these properties must be adapted to consider
the particular names of variables and clocks that are used in UPPAAL. For
instance, the first property “PickupOnTime” (1) is rewritten as follows:

Customer.WaitOrder −− > (Carrier.P ickUp ∧ x < 24) (5)

The second property, “DeliverOnTime” (2) is rewritten as:

A <> (Carrier.Deliverandx < 24) (6)
The third property “SatisfiedCustomer” (3) is rewritten as follows:

E <> (Customer.ReceiveOrderandx < 24) (7)
The fourth property “EfficientService” (4) is rewritten as follows:

Seller.AcceptOrder −− > Customer.ReceiveOrder (8)

Observe that the clocks Clockdeliver is renamed to x.
We find an error in the verification of a property, concretely in Property 5

(Fig. 9). The problem appears when the seller sends the ”acceptorder”, but he
does not send the ”PickUp” message to the carrier within 24 hours. Then the
carrier cannot deliver the product on time and the property is not fulfilled.

In order to correct this problem it is necessary to force the seller to send
the ”PickUp” message on time. For that purpose, we add an invariant to the
seller state ”CheckStock” labeled x < 2. With this invariant the seller must send
the message within 2 hours since he has sent the message ”PurchaseAccepted”.



Start
CheckStock

x < 2

AcceptOrder

custosell?

purchaseorder := PurchaseOrderID,
purchaseaccepted := false

purchaseaccepted == true

selltocarr!

purchaseaccepted := true

custosell!
custosell!

purchaseaccepted := false

Fig. 10. Corrected Seller automaton

<interaction name="PickUpProductPO" channelVariable="tns:deliver-channel"
operation="PickUpPurchaseOrder" align="true" initiate="true">

<participate relationshipType="tns:CustIntSellCarrRS"
fromRole="tns:Seller" toRole="tns:Carrier"/>

<exchange name="request"
informationType="tns:purchaseOrderType" action="request">

<send variable="cdl:getVariable("tns:purchaseOrder", "", "")" />
<receive variable="cdl:getVariable("tns:purchaseOrder", "", "")"

recordReference="record-the-channel-info" />
</exchange>
<timeout time-to-complete=

"cdl:minor(cdl:getVariable("tns:Clock1","",""),"02:00")"/>?
</interaction>

Fig. 11. Corrected interaction

Thus, the seller automaton would be replaced with the automaton depicted in
Fig. 10 and the WS-CDL interaction that represents it would be rewritten as
shown in Fig. 11.

7 Conclusions and Future Work

In this work, we have presented a proposal for the analysis and verification
of Web Services choreographies with time requirements. The gathering of time
requirements via goal-driven diagrams, such as the KAOS extension presented in
the fourth section, is a powerful tool for developing systems where time aspects
determine whether the implementation presents the proper behaviors or not.
However, in order to achieve this conclusion, this technique must be used together
with formal specifications and formal techniques that can perform a verification
process. For this purpose, the model checking technique has shown itself to be,
in a wide range of systems, one of the most feasible formal method techniques.



As future work, we are working on the application of these techniques to
other fields like Web Services orchestrations (WS-BPEL).

References

1. A. van Lamsweerde A. Dardenne and Stephen Fickas. Goal-directed requirements
acquisition. page 350.

2. R. Alur and D. Dill. Automata for modeling real–time systems. In In Proceedings
of the 17th International Colloquium on Automata, Languages and Programming,
volume 443. Springer–Verlag, 1990.

3. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In W. Reisig and G. Rozenberg, editors, In Lecture Notes on Concurrency and Petri
Nets. Springer-Verlag, 2004.

4. Mario Bravetti, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro. Support-
ing e-commerce systems formalization with choreography languages. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied computing, pages 831–835,
New York, NY, USA, 2005. ACM Press.

5. Mario Bravetti, Roberto Lucchi, Gianluigi Zavattaro, and Roberto Gorrieri. Web
services for e-commerce: guaranteeing security access and quality of service. In
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages
800–806, New York, NY, USA, 2004. ACM Press.

6. A. Rifaut J.F. Molderez A. van Lamsweerde C. Ponsard, P. Massonet and H. Tran
Van. Early verification and validation of mission critical systems. In Ninth Inter-
national Workshop on Formal Methods for Industrial Critical Systems, 2004.

7. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

8. R. Darimont and A. van Lamsweerde. Formal refinement patterns for goaldriven
requirements elaboration. In Ninth International Workshop on Formal Methods
for Industrial Critical Systemse, FSE-4 - 4th ACM Symp. on the Foundations of
Software Engineering, October 1996.

9. Gregorio Dı́az, Fernando Cuartero, Valent́ın Valero Ruiz, and Fernando L. Pelayo.
Automatic verification of the tls handshake protocol. In SAC ’04: Proceedings
of the 2004 ACM symposium on Applied computing, pages 789–794. ACM Press,
2004.

10. Gregorio Dı́az, Kim Guldstrand Larsen, Juan José Pardo, Fernando Cuartero, and
Valentin Valero. An approach to handle real time and probabilistic behaviors in
e-commerce: validating the set protocol. In SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing, pages 815–820. ACM Press, 2005.

11. Gregorio Dı́az, Juan José Pardo, Maŕıa-Emilia Cambronero, Valentin Valero, and
Fernando Cuartero. Automatic translation of ws-cdl choreographies to timed au-
tomata. In EPEW/WS-FM, volume 3670 of Lecture Notes in Computer Science,
pages 230–242. Springer, 2005.

12. Nickolas Kavantzas et al. Web service choreography description language (wscdl)
1.0. http://www.w3.org/TR/ws-cdl-10/.

13. Constance Heitmeyer and Dino Mandrioli. Formal Methods for Real-Time Com-
puting. John Wiley & Sons, 1996.

14. Tony Hoare. The verifying compiler: A grand challenge for computing research. J.
ACM, 50(1):63–69, 2003.



15. K. Larsen, P. Pettersson, and Wang Yi. Uppaal in a nutshell. Journal on Software
Tools for Technology Transfer, 1, 1997.

16. Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time
Systems Symposium, pages 76–87. IEEE Computer Society Press, Dec 1995.

17. Elena Navarro, Pedro Sanchez, Patricio Letelier, Juan A. Pastor, and Isidro Ramos.
A goal-oriented approach for safety requirements specification. In 13th Annual
IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (ECBS’06), pages 319–326. IEEE Computer Society, 2006.

18. Costas Courcoubetis Rajeev Alur and David L. Dill. Model-checking in dense
real-time. In Journal of Information and Computation, 1993.

19. J. Sifakis T.A. Henzinger, X. Nicollin and S. Yovine. Symbolic model checking
for real-time systems. In In Proceedings of the IEEE Conference on Logics in
Computer Science (LICS), 1992.

20. A. van Lamsweerde. Requirements engineering in the year 00: a research perspec-
tive. In International Conference on Software Engineering, page 519, 2000.


