
IT Support for Release Management Processes
in the Automotive Industry?

Dominic Müller1,2, Joachim Herbst1, Markus Hammori1, and
Manfred Reichert2

1 Dept. REI/ID, DaimlerChrysler AG Research and Technology, Germany
{uni-twente.mueller|joachim.j.herbst|markus.hammori}@daimlerchrysler.com

2 Information Systems Group, University of Twente, The Netherlands
{d.mueller|m.u.reichert}@ewi.utwente.nl

Abstract. Car development is based on long running, concurrently ex-
ecuted and highly dependent processes. The coordination and synchro-
nization of these processes has become a complex and error-prone task
due to the increasing number of functions and embedded systems in mod-
ern cars. These systems realize advanced features by embedded software
and enable the distribution of functionality as required, for example,
by safety equipment. Different life cycle times of mechanical, software
and hardware components as well as different duration of their devel-
opment processes require efficient coordination. Furthermore, product-
driven process structures, dynamic adaptation of these structures, and
handling real-world exceptions result in challenging demands for any IT
system. In this paper we elaborate fundamental requirements for the
IT support of car development processes, taking release management as
characteristic example. We show to which extent current product data
and process management technology meets these requirements, and dis-
cuss which essential limitations still exist. This results in a number of
fundamental challenges requiring new paradigms for the product-driven
design, enactment and adaptation of processes.

1 Introduction

In the automotive industry, car development has been dramatically influenced by
the introduction of electrical and electronic (E/E) systems. E/E-systems consist
of electrical control units (ECUs), i.e., embedded systems containing hardware
and software components. In modern cars, we can find up to 70 ECUs compris-
ing more than 10.000.000 lines of code [1, 2]. Several bus systems interconnect
dependent ECUs realizing joint features like safety or multimedia functions. Car
manufacturers expect shorter development cycles by faster implementation, bug
fixing and installation of ECU software. Process support in E/E development
shall accelerate product development and transfer of new technologies into the

? This work has been funded by DaimlerChrysler Research and Technology and has
been conducted in the COREPRO (configuration based release processes) project

car. However, development processes must also meet the requirements of prod-
uct liability laws and industrial standards, e.g., by adopting CMMI (Capability
Maturity Model Integration) to achieve process maturity in car development
or by implementing IEC 61508 to meet safety requirements. Altogether, ma-
ture processes shall contribute to realize strategic goals like high quality of the
developed components and thus the whole car.

These expectations have raised new challenges for car development, particu-
larly regarding the integrated support of engineering processes in the disciplines
mechanics, electronics and software [3]. The synchronization of the different de-
velopment life cycles is one challenge; another arises from the handling of the
complex dependencies in E/E systems due to highly networked ECUs. Finally,
different departments, engineering teams and external suppliers participating in
the development processes have to be coordinated (cf. Fig. 1).

Total E/E
System

Engineering
data

Logical
circuit

Circuit
diagram

Release Management
Processes

Requirements
(logical)

Organizational
structure, Roles

EngineeringTeams

Manager

Suppliers

Sub-
system

ECU ECU ECU

300 m

Sub-
system

Sub-
system

Total System

Product E/E System
(configuration structure)

Software

Networking

Fig. 1. E/E development with highly linked organizational structures, requirements,
documents, product structures and processes [4].

The optimal coordination and synchronization of the development processes
related to different car components is the key to adequate IT support. Fig. 1
illustrates the strong correlation between data and process structures. In partic-
ular, the structuring of the different development processes and their concrete
dependencies are determined by the hierarchical structuring of the E/E system.
Consequently, a process structure may have to be adapted if the corresponding
product structure changes. For example, when adding a subsystem (e.g., a nav-
igation system) to the product structure, new processes (e.g., for testing and
releasing the new component) must be added and synchronized with the other
ones. This is a complex task to be accomplished in a consistent and semanti-
cally correct manner. Finally, knowledge about the relations between process and
data structures is helpful in the context of exception handling. When real-world
exceptions related to a product component (e.g., failures in ECUs) occur, excep-
tion handling at the process level (e.g., abortion of the process) might become
necessary.

This paper shows the high potential of BPM technology when being ap-
plied to product-driven processes in car development. We elaborate fundamen-
tal requirements for the IT support of automotive development processes taking
release management (RLM) as characteristic example. To evaluate these require-

ments and to elaborate shortcomings of existing technology, we apply the process
engine of a product data and process management system to RLM processes.
We summarize the results of this evaluation and discuss which challenges remain
with respect to the IT support of RLM processes.

Section 2 discusses characteristics of RLM processes and Section 3 elaborates
basic requirements for their IT support. In Section 4 we highlight fundamental
challenges based on the results of an implementation of RLM processes with the
tool UGS Teamcenter Engineering. Section 5 discusses solution approaches in
literature and Section 6 closes with a summary.

2 Release Management Processes

Release management (RLM) is an important part of the overall development
process. Major goal of RLM is to systematically release the different product
components at a specific point in time, for example, when a certain quality
gate (i.e., milestone) or production start are reached. RLM covers configuration
management, testing and finally the release of all necessary ECUs.

Different hardware and software versions as well as different variants of ECUs
complicate RLM significantly. As an example for a product component with vari-
ants consider the air condition unit, where each variant is adapted to a specific
climate region. These variants are realized by ECU configurations (when talking
about ECUs we mean ECU configurations) consisting of different software or
hardware. Fast implementation and change of ECU software result in about 100
changes of the total car system per day in early development phases [5]. How-
ever, proper functioning of every single variant as well as the total car system
(based on combinations of all variants) have to be ensured. Thus, testing and
release constitute complex tasks within the overall development process.

So far, ECUs often have been released without relying on a formal process
that considers their complex dependencies. Due to the missing synchronization
of the RLM processes for the different product components, costs as well as du-
ration for integrating and testing have significantly increased. For this reason,
configuration-based RLM has been introduced. The overall goal is to explicitly
consider the dependencies between product components by defining hierarchical
product configurations (cf. Fig. 2). These configurations represent the techni-
cal, logical, organizational or electrical view on the product [1]. The creation
of configurations for E/E subsystems (e.g., the air condition unit) also helps
encapsulating ECUs that realize functionality in common. As a result, we ob-
tain a hierarchical configuration structure. Fig. 2 shows the encapsulation of the
dependent ECUs 1, 2 and 3 by the configuration Subsystem 2.

Instead of performing RLM processes in an isolated fashion and solely at
the level of single ECUs, we need improved process coordination and process
synchronization. Case studies pointed out that the ordering structure of the
RLM processes is determined by the configuration structure. We denote this
phenomenon as configuration-driven process structure. The example in Fig. 2
shows a configuration-based release process. The creation of these RLM processes

ECU 2

Total System

Subsystem 3

ECU 1 ECU 3

Development Processes

Hierarchical Configuration-Driven Process

e.g. Supplier Development e.g. Release Management e.g. Logistics

Hierarchical structure
according to the configuration

structure

Subprocesses in hierarchical
process structure

Process on ECU-Level, e.g.
concrete testing process for

ECU 3

Workflow with actitvities

Process step, e.g. Testing
with SubprocessesConfiguration Structure

Total System

Subsystem 1

Subsystem 2

Subsystem 3

ECU 1

ECU 2

ECU 3

Total System
Level

Subsystem
Level

ECU
Level

Subsystem 1

Subsystem 2

External Synchronizations

Fig. 2. Configuration-driven process structure

demands in-depth knowledge about the total car system and its configurations as
well as existing dependencies between them [6]. Thus RLM processes cannot be
fully automated, but consist of manually executed steps as well. The procedure
to create a total system release (cf. Fig. 3), for example, starts with the following
steps to gain the current ECU versions for a new release:

Configuration-Driven Process

SM 1 SM 2 SM 3

CM

1.3

ED 1 ED 2 ED 3

5.2

1.3
System 2

1.25.22.4
ECU CECU BECU A

1.3
System 2

1.25.22.4
ECU CECU BECU A

QG E
Release

1.3
System 3System 2System 1

QG E
Release

1.3
System 3System 2System 1

2.4 1.2

Total System
Level

Subsystem
Level

ECU
Level

Actor with role
SubsystemManager

Process executed for
configuration Subsystem 3

Total System

Subsystem 1

Subsystem 2

Subsystem 3

ECU 1

ECU 2

ECU 3

Total system configuration
including subsystems with

latest versions

Reported ECU version

Notification

Report version

Configuration Structure

Fig. 3. Procedure to create a configuration-based release

1. With the given configuration structure, the actor with role configuration
manager (CM) notifies the subsystem managers (SM) who are responsible
for the subsystem level (e.g., SM1, SM2 and SM3 in Fig. 3).

2. All Actors with role subsystem manager(SM) also notify ECU level actors
(ED) to retrieve the versions of their components (e.g., in Fig. 3 subsystem
manager SM2 asks ECU level actors ED1, ED2 and ED3).

3. The actors working at the ECU level report the latest working ECU version
to the corresponding SM (e.g., ED1 reports ECU version 2.4 in Fig. 3).
After synchronizing the ECU versions, the SM generates a new version for
the subsystem and reports it to the CM.

4. After completing the subprocesses and synchronizing the reported subsystem
versions, further steps can be taken (e.g., triggering of external logistics
processes for ordering the ECUs needed for testing).

The long duration of RLM processes amplifies the need for flexible adaptation
of process structures during runtime. As an example, consider the removal of

the configuration Subsystem 2 from the configuration structure as shown in
Fig. 2. Several adaptations of the process structure become necessary, such as
the termination and removal of the processes for Subsystem 2 as well as its
subprocesses ECU 1 and ECU 2. The process for ECU 3 is still needed since this
component is also linked with Subsystem 3. To ensure consistent and semantically
correct process results, dependent processes in the process structure have to be
notified (e.g., the superior process Total System in Fig. 2). In addition, also
external processes, which are synchronized with the configuration-driven process
structure have to be informed about the change (e.g., the logistics department
might have to cancel orders for removed ECUs). Similar reactions will become
necessary if the process structure is modified by changing the process definition
(e.g., due to optimization) or when adapting the running processes to deal with
exceptional events.

Adaptation procedures must enable adequate runtime reactions to external
events as well. A process exception will occur, for example, if an actor on ECU
level (e.g., ED1) does not report the ECU version the actor on the superior level
(SM2) in time (cf. Fig. 3). Then the actor on the superior level (SM2) has to
react, e.g., by sending a notification to ED1 or by exchanging this actor. Further,
exceptions caused by exogenous events (e.g., failures found in ECUs) have to be
handled by the process management (cf. Fig. 4). If a minor error appears, such
as a failure in the multimedia component, one possible reaction will be to stop
the execution in this subtree of the process structure, to fix the error at ECU
level, and to continue (or restart) the execution of the dependent processes. By
contrast, a severe fault in the braking subsystem has extensive consequences,
necessitating, for example, the abortion of the complete process (including all
dependencies) and marking the release as faulty. In this case, the RLM processes
for the respective ECU, the encapsulating subsystem and the total car system
have to be restarted after error correction (cf. Fig. 4).

ECU 2

Total System

Subsystem 3

ECU 1 ECU 3

Development Processes

Hierarchical Configuration-Driven Process

e.g. Supplier Development e.g. Release Management e.g. Logistics

Subsystem 1

Subsystem 2

Exception Handling

4. If necesseary extend exception
handling to further processes, e.g. Total
System and Logistics.

2. Inform dependent acitivities. Start error
detection on ECUs 1,2 and 3.
3. Error in ECU 3 detected. Mark ECU 3 as
faulty and inform dependent processes.
Exception Handling in dependent
subsystems 2 and 3.

1. Error in Subsystem 2 detected.
Configuration Structure

Total System

Subsystem 1

Subsystem 2

Subsystem 3

ECU 1

ECU 2

ECU 3

Total System
Level

Subsystem
Level

ECU
Level

Fig. 4. Exception handling in configuration-driven process structures

The more complex configuration structures are the more difficult exception
handling becomes. In case of an exception, all dependent processes have to be
notified even if they have been already finished. The latter becomes necessary
since external processes might also be affected by the exception. In large and
highly coupled process structures, ad hoc reactions in conjunction with hierarchi-

cal and external dependencies may cause serious consequences up to deadlocks.
Exception handling mechanisms must ensure process consistency as well as se-
mantically correct and efficient process enactment.

3 Requirements for IT support

The high number of product variants, versions and component dependencies as
well as dynamic adaptations of product structures make manual synchronization
of related RLM processes almost impossible. The major goal for the IT support
of RLM processes is therefore to assist process participants in managing the com-
plex dependencies among configuration-driven process structures at the different
configuration levels (cf. Fig. 4); the focus is less on the complete automation of
all activities of a particular RLM process. Based on the experience we gained
during our case studies, we distinguish four categories of requirements as shown
in Table 1.

A. IT Landscape
A1) Product data and configuration management functionality
A2) Process management and data exchange

B. Process Control
B1) Configuration driven process structures
B2) Flexible subprocess execution
B3) External synchronizations

C. Process Enactment Support
C1) Flexible adaptation of process structures
C2) Exception Handling

D. Usability
D1) Visualization
D2) Logging, monitoring and forecasts
D3) Semantical merge of processes

Table 1. Requirements for IT support

3.1 IT infrastructure

IT support for RLM processes demands basic features and interfaces on IT
infrastructure. First, there is a need for integrated product data management
(PDM) in order to store and manage engineering data (e.g., component infor-
mation, technical documents and software) and their dependencies in a consis-
tent manner, and to make this information available for development processes
(Req. A1). This includes support for product configuration management with
the ability to manage a large number of product variants and versions [7]. Sec-
ond, the IT system must also provide standard process management functions
and support the controlled exchange of data between the PDM and the process
management system (PMS) (Req. A2). This is required, for example, to transfer
configuration-related results from the PMS to the PDM system (e.g., to flag a
component as released after completing a RLM process). Further, user informa-
tion needed for role resolution by the PMS is usually stored inside documents of
the PDM system and therefore has to be made available for the PMS.

3.2 Process control

To enable process control, we have to implement the configuration-driven process
structures (Req. B1). First, standard modeling concepts are needed for de-
scribing the different aspects of a process (e.g., control and data flow, reuse

of process fragments). Second, appropriate concepts for modeling hierarchical
process structures become necessary to realize superior processes depending on
the result of subprocesses; i.e., nested processes must fulfill a condition (e.g.,
provide a specified data quality or simply finish) until processes on higher lev-
els are able to continue their execution. We call this mechanism hierarchical
synchronization (cf. Fig. 4). As opposed to the common definition of hierarchi-
cal processes, where a subprocess is considered as a refinement of a superior
process activity [8], we define a process activity as a placeholder for a set of
subprocesses according to the configuration structure. These subprocesses con-
stitute instances of different process definitions (e.g., different testing processes
for multimedia and safety subsystems). Additional dependencies in hierarchical
structures or exception handling constraints have to be applied to the hierarchi-
cal process structure.

Another requirement for synchronizing hierarchical processes concerns auton-
omy in terms of flexible execution of the subprocesses (Req. B2). As opposed to
strict hierarchical process structures, there is a need to start single (and already
instantiated) subprocesses independently of their superior processes. For exam-
ple, the RLM process for ECU 1 in Fig. 3 may be started independent from the
RLM process of Subsystem 2. The synchronization of the hierarchical structure
(cf. Req. B1) must be ensured for this case as well. In order to meet Req. B1
subprocesses have to fulfill the defined condition before superior processes can be
started. Further, there are dependencies to external processes (e.g., Subsystem
3 is connected to an independent process outside the hierarchical structure in
Fig. 4), which we call external synchronizations (Req. B3).

3.3 Process enactment support

As described in Section 2, the flexible adaptation of configuration-driven process
structures is a must. If a configuration change occurs, the hierarchical process
structure has to be dynamically adapted (e.g., by adding or removing sub-
processes) to ensure consistent results [9]. Thereby, hierarchical as well as exter-
nal synchronizations have to be considered (irrespective of their execution state)
and - if necessary - be adapted to ensure semantically consistent results (Req.
C1). Changes of process definitions also affect running process instances. Due to
the long execution time, proper adaptation might become necessary.

Further - and this is probably the most challenging issue - exception han-
dling, in the sense of reacting on real-world exceptions, must be enabled. These
exceptions are expected (to some extent), but require flexible handling mecha-
nisms due to the large number of concurrently executed, dependent processes.
Process reactions (executed automatically or by human interaction) depend on
the error classification (comp. Section 2). Among other things, it must be possi-
ble to abort, redo and restart subprocesses in an efficient way. Thereby results of
finished processes must be preserved, if they are not affected by the exception.
Semantically consistent configuration structures and consistent process execu-
tion must be ensured in any case (Req. C2).

3.4 Usability

To enable the user-friendly execution of configuration-driven process structures,
visualization support with partial, abstract, data- and process-centric views is
required as well as the presentation of process changes and exceptions in a user
friendly way (Req. D1). To ensure data privacy, authorization mechanisms with
access control have to be implemented. For instance, engineers need technical
views on configurations (and corresponding processes), while external suppliers
shall only have restricted access to activities of assigned configurations (with
exceptions being hidden). Managers want to have high-level views on the process,
which are enriched with forecasts of process and product performance (e.g.,
execution duration, costs or the product quality). Basic to this kind of process
intelligence is the creation and analysis of execution and change logs (Req. D2).

Regarding usability, we want to highlight the semantical merge of processes
on ECU level (Req. D3). Generally, developers may be responsible for several
ECUs. Considering the process in Fig. 3, the developer has to report the current
version for every single ECU. From his point of view, it is sufficient to report
all of his ECUs in one step. To realize this demand the execution of several
processes has to be semantically merged.

4 Evaluation of current technology

The defined requirements in mind, we evaluated IT systems currently used in
the automotive domain. For this purpose, we implemented the RLM process
from Fig. 3 based on the PDM system UGS Teamcenter Engineering and its
underlying process engine. This tool supports the management of engineering
and product data, enables configuration management, and allows for process
modeling and execution. Due to lack of space, we focus on the most important
results of our evaluation (cf. Table 2).

A. IT Landscape
A1) Product data and configuration management functionality
A2) Process management and data exchange

B. Process Control
B1) Configuration driven processes structures
B2) Flexible subprocess execution
B3) External synchronizations

C. Process Enactment Support
C1) Flexible adaptation of process structures
C2) Exception Handling

D. Usability
D1) Visualization
D2) Logging, monitoring and forecasts
D3) Semantical merge of processes

+ = supported o = partially supported – = not supported

Rating
+
+

Rating
–
o

Rating
–
–
o

Rating
o
o
–

Table 2. Summary rating of Teamcenter Engineering

Teamcenter Engineering provides full product and configuration management
support and meets the requirement for the exchange of data between PDM sys-
tem and PMS (Req. A1 + A2). Basic mechanisms for modeling processes with
sequential and parallel routing are available. Though hierarchical processes are
supported, there is no possibility to create hierarchically synchronized processes
as needed for configuration-driven process structures (Req. B1). Thus, flexible
subprocess execution (Req. B2) also remains unsupported. Synchronization with

external processes is enabled by a predefined activity (so called sync task). How-
ever this concept is too inflexible (e.g., synchronization based on data quality is
unsupported) to meet Req. B3.

Adaptations of (hierarchical) process structures are not supported at all (Req.
C1). The same applies to flexible exception handling (Req. C2). Though the
process engine supports some ad hoc actions, like aborting the execution of
an activity or revoking the whole process, the consideration of dependencies to
realize exception handling in hierarchical process structures remains a challenge.

Visualization mechanisms like the ones set out by Req. D1 are also not pro-
vided. While basic logging mechanisms are available (Req. D2), further concepts
like automatic evaluation of the derived data and forecasts based on this data
stay unsupported. The realization of semantical merge of processes (Req. D3) is
also not possible using standard features.

5 Related Work

Based on the described requirements and the results of our PDM system evalu-
ation we have investigated solution approaches from literature.

Workflow systems define fixed control flows to manage the execution of ac-
tivities. In contrast, case handling [10] describes the coordination based on data
objects. This enables less rigid process execution and shall make dynamic changes
obsolete. Case handling also provides a way to create direct links between data
objects and processes (denoted as product-driven case handling). A commercial
implementation is provided by the FLOWer system [11]. Data-driven process
modeling is an interesting approach for development processes. However, our fo-
cus is on process synchronization rather than on the coordination of single activ-
ities. Further, we identified several approaches that handle parts of our require-
ments. A solution approach meeting Req. B1 is product-based workflow design
[12], a method for redesigning process structures based on product structures.
Further, approaches for adaptive process management enable flexible process
changes during runtime [13].

Related approaches are provided by AHEAD and SIMNET. AHEAD [14]
deals with dynamic (software) development processes. It offers dynamic sup-
port for project management, process management, and engineering data man-
agement. The authors assume that development processes cannot be planned
in detail in advance. Based on the modeled relationships between data and
processes, dynamic task nets are generated. Even though the goals of this ap-
proach are closely related to ours, there are many differences. In contrast to
software processes, car development is more complex and needs fixed processes
to guarantee evolving and mature processes and thus high quality.

SIMNET [4, 15] is an approach for managing engineering workflows. Its goal
is to enhance the communication between the participating parties in engineering
processes by linking product data and workflow management (denoted as product
data-driven process). SIMNET focuses on the provision of an evolutionary data
model; extensive and flexible process control has not been considered.

6 Summary and Conclusion

Car manufacturers are more and more recognizing that process management
is crucial not only for car production but also for the support of the complex
development processes. Fast changes in technology and increasing complexity
of development processes in the automotive domain are the challenges for an
IT supported process management. As shown in this paper, current technology
meets the requirements of car development processes only to a small degree.
Especially the lack of flexibility and the non-availability of configuration-driven
BPM tools prevent the usage of current process engines for development process
support or necessitate a high degree of customization. New mechanism and par-
adigms for flexibility in configuration-driven process structures are required to
enable IT support for process coordination not only in the automotive industry.

References

1. Knippel, E., Schulz, A.: Lessons learned from implementing configuration manage-
ment within E/E development of an automotive OEM. In: INCOSE ’04. (2004)

2. DaimlerChrysler AG, Research and Technology: Hightech report 01/2002 (2002)
3. VDI (Association of German Engineers): VDI 2006 - Design methodology for

mechatronic systems. (2004)
4. Rouibah, K., Caskey, K.: A workflow system for the management of inter-company

collaborative engineering process. Engineering Design 14(3) (2003) 273–293
5. Wehlitz, P.: Nutzenorientierte Einführung eines Produktdatenmanagement-

Systems. PhD thesis, TU Munich (2000)
6. Heinisch, C., Feil, V., Simons, M.: Efficient configuration management of automo-

tive software. In: ERTS ’04. (2004)
7. Crnkovic, I., Asklund, U., Dahlqvist, A.P.: Implementing and Integrating Prod-

uct Data Management and Software Configuration Management. Artech House
Publishers (2003) ISBN 1-58053-498-8.

8. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques.
Prentice-Hall PTR (2000) ISBN 0-13-021753-0.

9. Müller, D., Reichert, M., Herbst, J.: Flexibility of data-driven process structures.
In: DPM ’06. (2006)

10. Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for business
process support. DKE 53(2) (2005) 129–162

11. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case
handling. In: GROUP 2001. (2001) 42–51

12. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. Management
Information Systems 20(1) (2003) 229–262

13. Reichert, M., Dadam, P.: ADEPTflex: Supporting dynamic changes of workflow
without loosing control. JIIS 10(2) (1998) 93–129

14. Jäger, D., Schleicher, A., Westfechtel, B.: AHEAD: A graph-based system for
modeling and managing development processes. In: AGTIVE. (1999) 325–339

15. Goltz, M., Schmitt, R.: Simnet - workflow management for simultaneous engineer-
ing networks. IMV Institutsmitteilung 23 (1998) 97–100

