Formalizing Service Interactions

Gero Decker, Frank Puhlmann, and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute for IT Systems Engineering
at the University of Potsdam
D-14482 Potsdam, Germany
{decker,puhlmann,weske}Chpi.uni-potsdam.de

Abstract. Cross-organizational business processes are gaining increased
attention these days, especially with the service oriented architecture
(SOA) as a realization for business process management (BPM). In SOA,
interaction agreements between business partners are defined as chore-
ographies containing common interaction patterns. However, complex
interactions are difficult to specify, basically because a formal, common
standard supporting all interaction patterns is missing. This paper mo-
tivates the use of the m-calculus for formally representing service inter-
action patterns.

1 Introduction

Service-oriented architectures (SOA) as a realization for business process man-
agement (BPM) aim at closely supporting business processes within a company
and between business partners [IJ2]. Services are employed to perform tasks
within these processes and processes themselves can be exposed as services. It
is distinguished between orchestrations where one business partner enacts a set
of services in a given order and choreographies which represent the interaction
protocols between several business partners [3]. In a setting where the different
business partners encapsulate their business logic as services, service interactions
are at the center of attention. A lot of effort has been undertaken to identify
the most common interaction scenarios from a business perspective, which have
been published as Service Interaction Patterns by Barros et al.[4]. Barros et
al. categorize the patterns according to the number of participants in an inter-
action (bilateral vs. multi-lateral), the maximum number of exchanges (single-
transmission vs. multi-transmission interactions) and whether the receiver of a
response is necessarily the same as the sender of a request (round-trip vs. routed
interactions).

The service interaction patterns are only described textually, together with
business examples and design choices. The authors also come up with implemen-
tation examples using BPEL and other standards from the WS-* stack. However,
the textual descriptions do not allow choreographies to be modeled else than by
using textual descriptions again. The BPEL examples lack support for differ-
ent service interaction patterns, thus leaving the modeler with only a subset

2 Gero Decker, Frank Puhlmann, and Mathias Weske

of possibilities. Furthermore, both kinds of descriptions lack support for for-
mal reasoning on interaction properties like conformance, reliability, or deadlock
freedom.

To overcome the limitations of expressiveness in existing notations and to
allow formal reasoning, we propose formal representations of service interaction
patterns. When looking into BPM literature, Petri nets in all their different
flavors dominate the research community. However, Petri nets lack the ability of
easily representing mobility, a key feature for describing dynamic structures as
required in SOA. Instead, we propose the use of a process algebra, m-calculus,
for formalizing service interaction patterns. Interaction and mobility form the
core aspects of m-calculus and are also at the heart of the service interaction
patterns.

The remainder of this paper is organized as follows. It starts by investigating
related work. This is followed by discussing a subset of interesting interaction
patterns in the 7-calculus. Finally, a conclusion is drawn and an outlook is given.

2 Related Work

Recently several papers have been published that deal with formalizing web ser-
vice choreographies, e.g. [Bl6], or Busi et al. [7]. All these approaches are based
on process algebras other than 7-calculus. Busi et al. argue that mobility, a key
feature of the m-calculus, is not needed for describing service choreographies.
They assume that all interaction participants are known at design-time. Petri
net based approaches from Martens [8] or van der Aalst et al. [0 make the
same assumptions. Moreover, Petri nets already fail in representing all work-
flow patterns [I0], leading to the development of a new orchestration language
called YAWL [11]. However, all these publications and standards like WS-CDL
consider only one-way- and simple request-response-interactions. This is heavily
criticized by Barros et al in [3]. Puhlmann and Weske have formalized all the
workflow patterns [I0] using the 7-calculus [I2]. This allows for translating ser-
vice orchestrations into m-processes. Puhlmann et al. have already sketched in
[13] how m-calculus can be used for formalizing service invocations and repre-
sent correlations. There has not been a formalization of the service interaction
patterns so far.

3 Formalizing Interaction Patterns using Pi-Calculus

At the center of m-calculus are processes that interact with each other. The
communication channels as well as the messages sent over these channels are
called names. Channels can be passed as messages to other processes and be used
for interaction later on. This capability is called link passing mobility. It allows
smart solutions for formalizing the service interaction patterns. The following
subsections introduce how.

Formalizing Service Interactions 3
3.1 The Pi-Calculus

The m-calculus is an algebra for the formal description and analysis of concurrent,
interacting processes with support for link passing mobility. It is based on names
and interactions used by processes defined according to [14]. The syntax of the
m-calculus processes is given by:

Pu=M|P|P"|vzP |!P
M :=0| 7P| M+ M
ma=T() [x(2) [7] [z =ylm.

The informal semantics is as follows: P|P’ is the concurrent execution of P and
P’, vzP is the restriction of the scope of the name z to P, and !P is an infinite
number of copies of P. 0 is inaction, a process that can do nothing, M + M’
is the exclusive choice between M and M’. The output prefix Z(g).P sends a
sequence of names y over the co-name T and then continues as P. The input
prefix x(Z) receives a sequence of names over the name x and then continues
as P with Z replaced by the received names (written as {"*"¢/:}). Matching
input and output prefixes might communicate, thus leading to an interaction.
The unobservable prefix 7.P expresses an internal action of the process, and the
match prefix [z = y|r.P behaves as 7.P, if x equals y. We utilize upper case
letters for process identifiers and lower case letters for names. The abbreviation
S-T'(M) is used to denote the summation of m choices, []]"(P) denotes the com-
position of m parallel copies of P, and {n}{* denotes m subsequent executions
of . Furthermore defined processes are used for parametric recursion, that is

A(Y1y ooy Yn)-

3.2 Interactions in the Pi-Calculus

In the pattern representations each interaction participant is modeled as a 7-
calculus process. In the case of bilateral interactions we named them A and B, in
the case of multi-lateral interactions A, B; and P wherei = 1,2, ---. Since timers
and exception handling are explicitly called for in the patterns, we introduce an
environmental process Ex per interaction participant (X = A, B, B;, P). It is left
open how timeouts and exception handling are implemented. settimerg, (timer)
is supposed to set a new timer where a timeout is thrown by sending on channel
timer. Exceptions can be thrown by sending on channel faulte, .

In the m-calculus a message represented by a name is synchronously sent and
received, resulting in an interaction. l.e. if a process wants to send a message
then it blocks until a receiver actually receives the message. Therefore, the -
calculus assumes synchronous communication as well as reliable and guaranteed
delivery as the default case. The following subsections present formalizations
for selected service interaction pattern. We omit the termination symbol 0 in
process definitions for simplicity. The pattern descriptions can be found at [4].

4 Gero Decker, Frank Puhlmann, and Mathias Weske

3.3 Single-transmission Bilateral Interaction Patterns

Send: A party sends a message to another party. The pattern definition distin-
guishes between blocking send and non-blocking send. In the case of blocking
send the sending process cannot proceed until it can be sure that the message
has been received. As already mentioned above this blocking behavior is inherent
to m-calculus. Blocking send is given by:

A =b{msg).A’
B = b(msg).B" .

This pattern formalization leaves it open if the receiver of the message is
known at design-time or not. If the system is defined as

S=(vb)(A|B)
then A knows the link to B at design-time. If it is defined as
S = (v lookup)(lookup(b).A | (v b)(B | D))

then A would get the link to B at run-time. In this case D could be something
like a UDDI directory where the receiver can be looked up. A’ and B’ represent
the so called continuations mentioned in the pattern descriptions. We continue
with non-blocking send:

Strictly speaking, the formalization for B could be omitted. However, for
illustration purposes one possible implementation for B is provided to have a
valid choreography. Most interaction patterns describe the interactions from the
perspective of one single participant. In order to get a minimal choreography,
several patterns have to be plugged together (e.g. send for A and receive for B).

3.4 Single-transmission Multilateral Interaction Patterns

Racing incoming messages: A party expects to receive one among a set of mes-
sages. These messages may be structurally different (i.e. different types) and may
come from different categories of partners. The way a message is processed de-
pends on its type and/or the category of partner from which it comes. Normally
names are not typed in m-calculus. In order to retrieve the type of a message, a
second name representing the type could be used. We opted for a more elegant
way: for each type a channel is created and thus the channel a message is sent
over determines the message’s type. In the following formalization it is assumed
that there are two different types of messages. Each B; can send messages over
channel a; if it is of the first type or over channel as for the second type. Depend-
ing on the type of the message the continuation for A is either A} or A}. The

Formalizing Service Interactions 5

pattern distinguishes between discarding remaining messages and keeping them
for further interactions. If remaining messages are not discarded, the patterns is
defined by:

A = (a1(msg). A} + az(msg).Al)
B; = (a1 (msg) .B; + a3z (msg) .B}) .

Once again the formalization for B; is just an example. In this case every B;
can sent messages of every type. If it should be modeled that the continuation of
A depends on the category of the sender, we could define B; = a7 (msg) .B} and
introduce another category C; = a3 (msg).C/. A generic formalization for an
arbitrary number of different types/categories would be A = >"" | a;(msg). A

3.5 Routing Patterns

Request with referral: Party A sends a request to party B indicating that any
follow-up response should be sent to a number of other parties (P1, P2,--- | Pn)
depending on the evaluation of certain conditions. While faults are sent by default
to these parties, they could alternatively be sent to another nominated party
(which may be party A). While the pattern descriptions talks about a number
of parties P;, the following formalization only presents the case of one party P
for better readability:

A= (va)bla,p,req) .a(resp).A’
B = (v msg)b(a,x,req).75.T (a, msg) .B’
P =p(a,msg).7p.a resp).P" .

4 Conclusion and Outlook

In this paper we have shown how a selected subset of the service interaction pat-
terns can be formalized. We investigated new directions based on mobile process
algebra represented by the m-calculus. The concept of mobility is required if the
receiver of a message is not known at runtime. Ten out of thirteen interaction
patterns incorporate sending messages, where the receiver might not be known
at design-time. In an extended research, we were able to express all service in-
teraction patterns in m-calculus processes. Therefore, our final conclusion is that
m-calculus is well suited for expressing the service interaction patterns. The full
range of pattern formalizations as well as a direct comparison to Petri nets can
be found at http://pi-workflow.org.

The formalizations presented in this paper can be the starting point for
further work on a complete formal grounding of the intersection of the domains
service oriented architectures and business process management using m-calculus.
The very next step would be to show how the formalizations of the service
interaction patterns can be integrated with the formalizations of the workflow
patterns provided in [I2]. Once we have both a choreography and corresponding

http://pi-workflow.org

Gero Decker, Frank Puhlmann, and Mathias Weske

orchestrations available as m-calculus processes we can proceed with introducing
conformance checking, e.g. verifying if the behavior of individual orchestrations
complies to the choreography. Another area of interest is the investigation of
soundness criteria for choreographies.

References

1.

2.

10.

11.

12.

13.

14.

IBM: Web Services Architecture Overview (2000) http://www-128.ibm.com/
developerworks/webservices/library/w-ovr/.

van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M.: Business Process Manage-
ment: A Survey. In van der Aalst, W.M.P., ter Hofstede, A.H., Weske, M., eds.:
Proceedings of the 1st International Conference on Business Process Management,
volume 2678 of LNCS, Berlin, Springer-Verlag (2003) 1-12

Barros, A., Dumas, M., Oaks, P.: A Critical overview of the Web Services Chore-
ography Description Language (WS-CDL). BPTrends Newsletter 3(3) (2005)
Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business
Process Management. Volume 3649. (2005) 302-318

Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Service Chore-
ographies. In: Proceedings of First International Workshop on Web Services and
Formal Methods, Elsevier (2004)

Gorrieri, R., Guidi, C., Lucchi, R.: Reasoning About Interaction Patterns in Chore-
ography. In: M. Bravetti et al. (Eds.): Second International Workshop on Web
Services and Formal Methods, LNCS 3670, Springer Verlag (2005) 333-348

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration: A Synergic Approach for System Design. In: B. Benatallah, F.
Casati, and P. Traverso (Eds.): ICSOC 2005, LNCS 3826, Springer Verlag (2005)
228-240

Martens, A.: Analyzing Web Service based Business Processes. In Cerioli, M., ed.:
Proceedings of Intl. Conference on Fundamental Approaches to Software Engi-
neering (FASE’05). Volume 3442 of Lecture Notes in Computer Science., Springer-
Verlag (2005)

van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflow. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the
13th International Conference on Advanced Information Systems Engineering
(CAISE’01), volume 2068 of LNCS, Berlin, Springer-Verlag (2001) 140-156

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. Distributed and Parallel Databases 14(3) (2003) 5-51

van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage (Revised version. Technical Report FIT-TR-2003-04, Queensland University
of Technology, Brisbane (2003)

Puhlmann, F., Weske, M.: Using the m-Calculus for Formalizing Workflow Patterns.
In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F., eds.: Business
Process Management. Volume 3649. (2005) 153-168

Overdick, H., Puhlmann, F., Weske, M.: Towards a Formal Model for Agile Service
Discovery and Integration. In Verma, K., Sheth, A., Zaremba, M., Bussler, C., eds.:
Proceedings of the International Workshop on Dynamic Web Processes (DWP
2005). IBM technical report RC23822, Amsterdam (2005)

Sangiorgi, D., Walker, D.: The w-calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2003)

http://www-128.ibm.com/developerworks/webservices/library/w-ovr/
http://www-128.ibm.com/developerworks/webservices/library/w-ovr/

	Formalizing Service Interactions
	Gero Decker, Frank Puhlmann, and Mathias Weske

