

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:

This is an author produced version of a paper published in:

Graph Transformations: Third International Conference, ICGT 2006 Natal,

Rio Grande do Norte, Brazil, September 17-23, 2006 Proceedings. Lecture

Notes in Computer Science, Volumen 4178. Springer 2006. 122-137

DOI: http://dx.doi.org/10.1007/11841883_10

Copyright: © 2006 Springer-Verlag

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://repositorio.uam.es/
https://repositorio.uam.es/
http://dx.doi.org/10.1007/11841883_10

Matrix Approach To Graph Transformation: Matching
and Sequences

Pedro Pablo Ṕerez Velasco, Juan de Lara

Escuela Polit́ecnica Superior
Universidad Aut́onoma de Madrid

{pedro.perez, juan.delara }@uam.es

Abstract. In this work we present our approach to (simple di-)graph transforma-
tion based on an algebra of boolean matrices. Rules are represented as boolean
matrices for nodes and edges and derivations can be efficiently characterized
with boolean operations only. Our objective is to analyze properties inherent
to rules themselves (without considering an initial graph), so this information
can be calculated at specification time. We present basic results concerning well-
formedness of rules and derivations (compatibility), as well as concatenation of
rules, the conditions under which they are applicable (coherence) and permuta-
tions. We introduce thematch, which permits the identification of a grammar rule
left hand side inside a graph. We follow a similar approach to the single pushout
approach (SPO), where dangling edges are deleted, but we first adapt the rule in
order to take into account any deleted edge. To this end, a notation borrowed from
functional analysis is used. We study the conditions under which the calculated
data at specification time can be used when the match is considered.

1 Introduction

Graph Transformation [11] is becoming increasingly popular in computer science as it
provides a formal basis for graph manipulation. Transformations of this data structure
are central to many application areas, such as visual languages, visual simulation, pic-
ture processing and model transformation (see [5] and [11] vol.2 for some applications).

The classical algebraic approach to graph transformation is based oncategory the-
ory [3], and provides a rich body of theoretical results(see [11] vol.1). Thus, graph trans-
formations expressed as graph rewriting become not only graphical and intuitive but
also formal, declarative and high-level models, subject themselves to analysis [11] [5]
[6]. Nonetheless, methods to increase efficiency and new analysis techniques that can
be efficiently implemented in tools are needed for real industrial applications.

In contrast to the categorical-algebraic approach, we propose an algebraic character-
ization based on boolean matrix algebra. In this way, simple digraphs can be represented
as boolean matrices and productions as matrices for edge and node deletion and addi-
tion, together with a graphL (also represented with matrices) that must be present in the
host graph in order for the rule to be applicable. Therefore, the effects of a production
p : L → R can be modelled using boolean matrix operations only. This purely algebraic
approach constitutes a different perspective from algebraic-categorical approaches, as

it provides an operational characterization of most concepts (closer to implementation)
and has the potential for efficient implementation and parallelization.

In our work [10], most analysis is made independently of the host graph. The advan-
tages of this approach are twofold. First, all properties under study areinherentto the
graph transformation system and second, it has the practical advantage that the analysis
can be performed by a tool in the phase of specification of the grammar, independently
of any host graph. We present concepts such as coherence (potential applicability of
a sequence), minimal initial digraph (smallest graph with enough elements to execute
a sequence), rule permutation coherence and G-congruence (potential sequential inde-
pendence). These concepts provide a rich amount of information about productions and
how they are related to each other, including limitation in their application, dependen-
cies and dynamical behaviour. To the best of our knowledge, some of these results are
new, for example we have studied conditions for coherence of rule advancement and de-
lay an arbitrary number of positions in a sequence. For space limitations, some proofs
are omitted, but can be found in [10].

In addition, we introduce the match as anoperatormodifying the rule byincluding
the context in which it is applied. We use a similar approach to SPO [4], where the
dangling edges are deleted. Thus, the rule is adapted to include the edges that would
become dangling and explicitly delete them. Our goal is to use the information calcu-
lated about the grammar at specification time once the initial host graph is considered.
In this work, we study how this information is modified when a host graph is taken
into account. We also introduce a bra-ket operational notation for rules similar to that
of functional analysis for operators (also known asDirac Notation) [1]. Thus, produc-
tions can be depicted asR = 〈L, p〉, splitting the static part (initial state,L) from the
dynamics (element addition and deletion,p).

The paper is organized as follows. Section 2 presents the characterization of graphs
and productions in our approach, together with rule sequences, minimal initial digraph,
permutation and G-congruence. Section 3 presents our approach to handle the match.
Section 4 revisits the properties calculated for rules in section 2, and study how they are
affected by the match. Section 5 presents the conclusions and future work.

2 Characterization and Basic Properties

This section presents an informal introduction to the basic concepts in our approach. In
subsection 2.1, we start defining simple digraphs, which can be represented as boolean
matrices, introduce basic operations on these matrices and show a characterization of
graph transformation rules using them. We formulate the conditions for a production to
be compatible(i.e. it defines a simple digraph) and the concept ofcompletion, where
matrices representing graphs are modified –arranged– to permit operations between
them. In subsection 2.2, we present production concatenation together with the con-
cept ofcoherence. We present the minimal initial digraph, the conditions for sequence
permutations to be coherent and the concept of potential sequential independence.

2.1 Simple Digraphs and Productions

A graphG = (V, E) consists of two sets, one of nodesV = {Vi | i ∈ I} and one of
edgesE = {(Vi, Vj) ∈ V × V }. In this paper we are concerned withsimple digraphs,
“simple” meaning that only two arrows are allowed between two nodes (one in each
direction), and “di-” because arrows have a direction. A simple digraphG is uniquely
determined by itsadjacency matrixAG, whose elementaij is one if (i, j) ∈ E, and
zero otherwise. As we will delete and add edges and nodes, anodes vectorVG is also
associated to our digraphG, with its elements equal to one if the corresponding node is
present inG and zero otherwise.

2: C 3: C 4: C

1: S

(a) (b)

Fig. 1. (a) A Simple Digraph Representing a Client-Server System (b) Matrix Representation.

Fig. 1(a) shows a digraph representing a client-server system. Links between the
clients and the server represent that the client is connected to a server. Links between
clients represent a directed communication channel, while a loop link represents a mes-
sage. The matrix representation of the previous graph is shown in Fig.1(b).

The boolean product between two adjacency matricesMG = (gij)i,j∈{1,...,n} and

MH = (hij)i,j∈{1,...,n} is defined as(MG ¯MH)ij =
∨n

k=1 (gik ∧ hkj).
Next, we are interested in formulating the properties (that we callcompatibility) that

should be fulfilled by a boolean matrix and a vector of nodes to define a simple digraph.
We want to forbid edges incident to nodes that do not belong to the digraph. We first
define the norm‖·‖1 of a vectorN = (v1, . . . , vn) as‖N‖1 =

∨n
i=1 vi.

Proposition 1. A pair (M,N), whereM is an adjacency matrix andN a vector of
nodes, is compatible if and only if they verify

∥∥(M ∨M t)¯N
∥∥

1
= 0. 1

Now we consider productions and their characterization. We define a production
as a morphism – in the sense of category theory – which transforms a simple digraph
into another one,p : L → R. We can describe a productionp with two matrices for
edges and two vectors for nodes. Therefore a production can be specified as functions
between boolean matrices and vectors.

Definition 1 (Production) A productionp is a morphism between two simple digraphs
L andR, and can be specified by the tuplep =

(
LE , RE ; LN , RN

)
whereE stands for

edgeandN for node. L is theleft hand side(LHS) andR is theright hand side(RHS).

1 wheret denotes transposition.

A production models deletion and addition of edges and nodes, carried out in the
order just mentioned, i.e., first deletion and then addition. These actions can be repre-
sented with two matrices for edges (eE , rE) and two vectors for nodes (eN , rN), which
can be calculated as:2e = L (LR) = L R andr = R (LR) = R L.

Fig. 2 shows a rule that creates a communication channel between two clients con-
nected to the same server. The deletion matrixeE (and vectoreN) is zero, while the
addition matrixrE has a unique non-zero element at position(2, 3) and the addition
vector for nodes is zero. From previous definitions, a number of conditions are immedi-

1: S

channel
create

2: C 3: C

1: S

2: C 3: C

(a) (b)

Fig. 2. (a) Create Channel Rule (b) Matrix Representation of Rule (only for edges).

ate (see next proposition). The first two state that elements cannot be rewritten (erased
and created or vice versa) by a rule application. This is a consequence of the way in
which matricese andr are calculated.3 The last two conditions say that if an element is
in the RHS, then it is not deleted, and that if the element is in the LHS, it is not created.

Proposition 2. Let p : L → R be a production, the following identities hold for both
edges and nodes:r e = r, e r = e, R e = R, L r = L.

Finally we are ready to characterize a productionp : L → R using deletion and
addition matrices, starting from its LHS:R = r ∨ eL (for both edges and nodes).
It could be the case that the production erases a node but leaves some incident edges
(dangling edges). Some conditions have to be imposed on matrices and vectors of nodes
and edges to keep compatibility when a rule is applied (i.e., to avoid dangling edges):

1. An incoming edge cannot be added to a node that is going to be deleted or, using the

norm,
∥∥rE ¯ eN

∥∥
1

= 0. Similarly, for outgoing edges:
∥∥∥
(
rE

)t ¯ eN
∥∥∥

1
= 0. Note

how, vectoreN has a1 in positioni, if the node has to be deleted. Rowi in matrix
rE depicts the outgoing edges for nodei, and has a1 in columnj if edge(i, j) has
to be added. Therefore vectorrE ¯ eN contains elements(∨n

j=1r
E
ij ∧ eN

j)i∈{1,...,n}
with a 1 in positioni, if there is some newly added edge from nodei to some node
j which is deleted by the production. The transposition ofrE checks for new edges
starting from deleted nodes.

2 SuperindicesE andN shall be omitted if, for example, the formula applies to both cases or if it
is clear from context which we refer to. Moreover, theand operator (∧) will also be omitted.

3 This contrasts with the DPO approach, in which edges and nodes can be rewritten in a single
rule. This can be useful to forbid the rule application if the dangling condition is violated.
Section 3 explains how to deal with dangling edges in this approach.

2. Deleting a node with some incoming edge is forbidden, if the edge is not deleted as

well:
∥∥∥eE LE ¯ eN

∥∥∥
1

= 0. For outgoing edges:

∥∥∥∥
(
eE LE

)t

¯ eN

∥∥∥∥
1

= 0. Matrix

eE LE contains the edges in the rule’s LHS that are not deleted, thereforeeE LE ¯
eN results in a vector with a one in positioni if some nodej is deleted and has
an incident edge coming fromi (and the edge is not deleted). The transposition of
eE LE checks for outgoing edges from deleted nodes.

3. It is not possible to add an incoming edge to a node which is neither present in the

LHS nor added by the production:
∥∥∥rE ¯

(
rN LN

)∥∥∥
1

= 0. Similarly, for edges

starting in a given node:
∥∥∥
(
rE

)t ¯
(
rN LN

)∥∥∥
1

= 0. In this case,rN LN is a vector

containing a 1 in positioni if nodei does not belong to the LHS and is not going to
be added.

4. It is not possible for an edge to reach a node which does not belong to the LHS

and which is not going to be added:
∥∥∥
(
eELE

)
¯

(
rN LN

)∥∥∥
1

= 0. For outgoing

edges:

∥∥∥∥
(
eELE

)t

¯
(
rN LN

)∥∥∥∥
1

= 0. In this case,eELE is a matrix with a 1 in

the edges that are in the LHS and not deleted.

Thus we arrive naturally at the next proposition:

Proposition 3. Let p : L → R be a production, if previous conditions in items 1-4 are

fulfilled thenRE = rE ∨
(
eE LE

)
andRN = rN ∨

(
eN LN

)
are compatible.

which is easily proved, as we have to check that
∥∥(M ∨M t)¯N

∥∥
1

= 0, with

M = rE ∨ eELE andN = rN
(
eN ∨ LN

)
. Therefore,

(
M ∨M t

)¯N =
[(

rE ∨ eELE
)
∨

(
rE ∨ eELE

)t
]
¯

[
rN

(
eN ∨ LN

)]
=

=
[
rE ∨ eELE ∨ (

rE
)t ∨

(
eELE

)t
]
¯

(
eN ∨ rN LN

)
(1)

Conditions in items 1-4 are taken from this identity.
For the rule in Fig. 2, it is easy to check that(RE , RN) are compatible, as vectorN

has all elements equal to zero (becauseeN andLN are zero).
Up to now we have assumed that when operating with matrices and vectors these

had the same size, but in general matrices and vectors represent graphs with different
sets of nodes or edges, although probably with some common subsets. Moreover, the el-
ements in both matrices can appear in a different order. An operation calledcompletion
modifies matrices (and vectors) to allow some specified operation. Suppose we want to
operate with two matrices representing the edges of two graphs (a similar operation can
be defined for vectors of nodes). In this way, first a common subsetC of elements are
identified, and it is moved up in the matrices, maintaining the order. Then, the common
subset is sorted in the second matrix to obtain the same order as in the first one. Then,

the elements present in the first matrix but not in the second one are added to the second
one (i.e. rows and columns of zeros), sorted like in the first one. Similarly, the elements
present in the second matrix but not in the first one are added to the first one (i.e. rows
and columns of zeros), sorted like in the second one.

For example, if we have to operate the graph in Fig. 1 with the LHS of rule in Fig. 2,
then the matrix of edges and the vector of nodes of the rule have to be enlarged. If we
identify nodes and edges with the same label, we get the following result:

L′ECC =




0 0 0 0 1
1 0 0 0 2
1 0 0 0 3
0 0 0 0 4


 ; L′NCC =




1 1
1 2
1 3
0 4




where an additional column and row has been added to the edge matrix and an
additional element has been added to the nodes vector. In this case, the matrices for the
graph in Fig. 1 remain the same. Note how, if we had assumed other identification of
nodes in the different graphs, the completion procedure would have produced a different
result. Once the matrices and vectors of the two graphs are completed, we can define any
graph transformation (i.e. any morphism on simple digraphs) as two boolean functions
(for the edges matrix and for the nodes vector, which we have modelled withe andr).
These functions may change arbitrarily 0’s and 1’s in the matrix of edges and vector of
nodes (and thus we have to check compatibilty after their application).

2.2 Concatenation, Permutations and Minimal Initial Digraph

It is possible to define sequences of rules and the order in which they are to be applied.

Definition 2 (Concatenation) Given a set of productions{p1, . . . , pn}, the notation
sn = pn; pn−1; . . . ; p1 defines a sequence of productions establishing an order in their
application, starting withp1 and ending withpn.

A concatenation is said to becoherentif actions carried out by one production do not
prevent4 the application of those coming afterwards. Fig. 3 shows more rules for the ex-
ample. Messages are depicted as self-loops, which can be sent through channels. For ex-
ample sequenceremove channel; send; message ready; create channel is coher-
ent, as link(2, 3) is created by the first rule (create channel), used by rulesend and
then deleted by the last rule. We assume an identification of nodes in the different rules
having the same numbers, but other combinations could be studied as well.5

The conditions for coherence of a concatenation of two ruless2 = p2; p1 are:

1. The first production –p1 – does not delete any edge used byp2: eE
1 LE

2 = 0.
2. p2 does not add any edge used, but not deleted, byp1: rE

2 LE
1 eE

1 = 0.
3. No common edges are added by both productions:rE

1 rE
2 = 0.

4 Potentially, because no actual application of productions to a host graph is considered.
5 Hence, completion is not unique – there may exist several ways to identify nodes across pro-

ductions – depending on how rules are defined or the operation to be performed.

1: C
connect2
server

message
ready

2: C

1: S

2: C

1: S

send

down
server down

client
remove
channel

1: S

2: C 3: C

1: S

2: C 3: C

1: S

2: C 2: C

1: S

2: C
3: C

1: S 1: S

2: C 3: C

1: S

Fig. 3. Additional Rules for the Client-Server Example

The first condition is needed because ifp1 deletes one edge used byp2, thenp2

is not applicable. The last two conditions are needed in order to obtain a simple di-
graph (with at most one edge in each direction between two nodes). Applying the first
two identities in proposition 2, the three previous equalities can be transformed into
RE

1 eE
2 rE

2 ∨ LE
2 eE

1 rE
1 = 0 and similar for nodes.

Our objective is to obtain a closed formula to represent these conditions for the case
with n productions. For this purpose, we introduce a graphical notation for boolean
equations: a single arrow means∧, while a fork (more than one arrow starting in the
same node) stands for∨. These diagrams are useful to understand how the formulas
change depending on the number of productions. As an example, the representation of
coherence equations for two productions (for edges) is shown in Fig. 4(left). The figure
also shows the equations for three and five productions.

Fig. 4. Graph for Sequence of Length 2 (left), 3(middle) and 5(right).

Analysing the graphs for sequences of increasing size, we arrive at the following
theorem concerning sequences of arbitrary size. The proof is not included here, it can
be found at [10].

Theorem 1 (Sequence Coherence).The concatenationsn = pn; . . . ; p1 is coherent if

n∨

i=1

(
Ri 5n

i+1 (ex ry) ∨ Li 4i−1
1 (ey rx)

)
= 0 (2)

where

4t1
t0 (F (x, y)) =

t1∨
y=t0

(
t1∧

x=y

(F (x, y))

)
;5t1

t0 (G(x, y)) =
t1∨

y=t0

(
y∧

x=t0

(G(x, y))

)

E.g., sequences1 = remove channel; send;message ready; create channel is co-
herent butsend; message ready; remove channel is not, because the first production
(remove channel) deletes edge(2, 3) needed bysend one step afterwards. The result-
ing matrix of the coherence formula has a one in such position and zeros elsewhere. In
this way, the resulting matrix of the formula is useful to indicate where the potential
coherence problems are. On the other hand, sequences2 = remove channel; send;
create channel is coherent, but it is worth stressing that edge(2, 2) needs to be sup-
plied by the host graph, because rulesend needs a self loop representing a message and
we know that such element is not added by any rule beforesend. Altogether, coherence
allows the grammar designer to check dependencies between rules, and to realize pos-
sible conflicts, some of which can be solved if the initial graph provides enough edges
and nodes. This is related to the notion ofminimal initial digraph, which is a graph
containing the necessary nodes and edges for a rule (or sequence) to be applicable.

Theorem 2 (Minimal Initial Digraph). Given a coherent concatenation of produc-
tionssn = pn; . . . ; p1, its minimal initial digraph is defined by:Mn = 5n

1 (rxLy).

One graph is easily obtained which contains enough nodes and edges to execute a
coherent sequence:

∨n
i=1 Li. However, this graph can be made smaller, so for example,

for productionp1 we only include inMn elements which are in the LHS, but not added.
In a similar way, forp2 we include elements in its LHS if they are not added byp2

norp1. Therefore, we haveMn = (r1L1) ∨ (r1L2)(r2L2) ∨ · · · ∨ (r1Ln) · · · (rnLn),
which is the expanded form of5n

1 (rxLy). Note how, we assume a given identification
of nodes and edges in the different productions of the sequence, that is, a certain way
of completing each matrix. The calculation of the minimal initial digaph for sequence
s2 = remove channel; send; create channel is shown in Fig.5 as an example.

3: C

11

1: S

2: C 3: C
r L

31
r L

33
r L

32r L
21

r L
22

1: S

2: C 3: C

1: S

2: C 3: C

1: S

2: C 3: C
=

1: S

2: C 3: C

=
1: S

2: C
r L

Fig. 5. Minimal Digraph for Sequences2.

The image of a concatenationsn = pn; . . . ; p1 (please, refer to [10]) almost can
be seen as a productionsn = (rs, es), wherers = 4n

1 (ex ry) andes =
∨n

i=1 ei, i.e.,

sn (Mn) =
n∧

i=1

(eiMn) ∨4n
1 (ex ry) = rs ∨ es Mn (3)

However, in this case, it is not true thatrs es = rs, which in particular implies that
it is important todeleteelements (applyes) beforeadditiontakes place (rs application).

The following result states conditions to keep coherence in case of permuting one
production inside a sequence [10].

Theorem 3 (Production Permutations).Consider coherent productionstn = pα; pn;
pn−1; . . . ; p1 andsn = pn; pn−1; . . . ; p1; pβ and permutationsφ andδ.

1. φ (tn) is coherent if:eE
α 5n

1

(
rE
x LE

y

)
∨RE

α 5n
1

(
eE
x rE

y

)
= 0.

2. δ (sn) is coherent if:LE
β 4n

1

(
rE
x eE

y

)
∨ rE

β 4n
1

(
eE
x RE

y

)
= 0.

whereφ advances the last production to the front, that is, moves the left-most rule to the
right n− 1 positions in a sequence ofn rules. Thus,φ has associated permutationφ =
[1 n n−1 . . . 3 2]. In a similar way,δ delays the first productionn−1 positions in
a sequence ofn rules, moving it to the last position. Thus,δ = [1 2 . . . n−1 n]. For
sequencet2 = send; create channel; remove channel, φ(t2) = create channel;
remove channel; send is coherent.

G-congruenceguarantees that two coherent and compatible concatenations have the
same output starting withG as minimal initial digraph. The conditions to be fulfilled are
known asCongruence Conditions(CC). A coherent and compatible concatenationsn

and a coherent and compatible permutation of it,σ (sn), which besides have the same
minimal initial digraphG (G-congruent) are potentially sequential independent. For
advancement and delaying of productions, the congruence conditions are (see [10]):

CC (φ, sn) = Ln∇n−1
1 (ex ry) ∨ rn∇n−1

1 (rx Ly) = 0 (4)

CC (δ, sn) = L1∇n
2 (ex ry) ∨ r1∇n

2 (rx Ly) = 0 (5)

For sequences = send; create channel; remove channel, CC(φ, s) = 0, there-
fore we obtain the same result by advancingsend twice. Ass andφ(s) have the same
initial digraph (the one in Fig. 5, plus edge(2, 3)), they are potential sequential in-
dependent. Symbol⊥ denotes potential sequence independence, thus we can write
send⊥(create channel; remove channel) in previous example. Note that it is pos-
sible to check sequential independence between a rule and a sequence, in contrast with
results in the algebraic-categorical approach.

3 Match, Extended Match and Production Transformation

Matching is the operation of identifying the LHS of a rule inside a host graph. This
identification is not necessarily unique, thus becoming a source of non determinism.

Definition 3 (Match) Given a productionp : L → R and a simple digraphG, any
m : L → G total injective morphism is known as a match (forp in G).

Recalling the notion ofcompletion, a match can be interpreted as one of the possible
ways tocompleteL in G. We do not explicitly care about types or labels in our matrices
(“S” and “C” in the examples), but this can be thought as restrictions for thecompletion
procedure, which cannot identify elements with different types.

Fig.6(a) displays a productionp and a matchm for p in G. It is possible to close the
diagram, making it commutative(m∗ ◦ p = p∗ ◦m), using the pushout construction [5]
on categoryPfn(Graph) of simple digraphs and partial functions (see [9]). This cate-
gorical construction for relational graph rewiting is carried out in [9] in their Theorem
3.2 and Corollary 3.3. Proposition 3.5 in [9] gives a sufficient condition to decide if a
given rewriting square like the one in Fig.6(a) can be closed.

L

m

²²

p // R

m∗
²²

G p∗
// H

L

m

²²

p // R

m∗

²²
G

mε

²²

p∗
// H

m∗ε
²²

G bp∗
// H

L

iL

²²

mG

¹¹-
--

--
--

--
--

--
--

--
-- m

##GG
GG

GG
GG

p // R

iR

²²

m∗

##GG
GG

GG
GG

GiG

{{xxxxxxx

mε

²²

p∗ // H

iH{{
m∗ε

²²

L×G

bm ##FFFFFFF bp
// R×H

bm∗

##
G

bp∗ // H

Fig. 6. (a) Production plus Match. (b) Neighbourhood. (c) Extended Match and Production.

Definition 4 (Direct Derivation) Givenp : L → R andm : L → G as in Fig.6(a),
d = (p, m) is called a direct derivation with resultH = p∗ (G).

If a concatenationsn = pn; . . . ; p1 is considered together with the set of matchings
mn = {m1, . . . ,mn}, thendn = (sn, mn) is aderivation.

When applying a rule to a host graph, the main problem to concentrate on is that
of so-calleddangling edges, which is differently addressed in SPO and DPO. In DPO,
if an edge comes to be dangling then the rule is not applicable (for that match), while
SPO allows the production to be applied, deleting any dangling edge. In this paper we
propose an SPO-like behaviour. Fig.6(b) shows our strategy to handle dangling edges:

1. Morphismm shall identify rule’s left hand side in the host graph.
2. A neighbourhood ofm(L) ⊆ G covering all relevant extra elements is selected

(performed bymε
6), taking into account all dangling edges not considered by

matchm with their corresponding source and target nodes.
3. Finally,p is enlarged (through operatorTε, see definition below) erasing any other-

wise dangling edge.

Definition 5 (Extended Match) Given a productionp : L → R, a host graphG and
a matchm : L → G, the extended matcĥm : L×G → G is a morphism whose image
is m (L)

⋃
ε, whereε is the set of dangling edges and their source and target nodes.

Coproduct (see Fig.6(c)) is used for couplingL andG, being the first embedded

into the second by morphismm. We use the notationL
def
= mG (L)

def
= (mε ◦m) (L)

i.e., extended digraphs are underlined and defined by composingm andmε.
Example.¤Consider the digraphL, the host graphG and the morphism match de-

picted on the left side of Fig. 7. On the top right side in the same figure,m(L) is drawn,
andmG (L) on the bottom right side. Nodes 2 and 3 and edges(2, 1), (2, 3) and(2, 2)
have been added tomG (L). The edges would become dangling in the image “graph”
of G by p, p (G). Note how this composition is possible, asm andmε are functions
between boolean matrices which have been completed.¥

Once we are able to complete the rule’s LHS, we have to do the same for the rest
of the rule. To this end we define an operatorTε : G → G′, whereG is the original

6 Recall that morphisms are functions on boolean matrices and vectors.

m (L)
2: C down

client

2: C 3: C 4: C

1: SG

2: C 3: C 4: C

1: SG

mε m*ε
3: C 4: C

1: SH

3: C 4: C

1: SH

down
client *

2: C

1: S

2: C 3: C

m (G)ε

G
m (L) = (m o m) (L)ε

1: S

2: C 3: C

L

m

R

m*

Fig. 7. Matching and Extended Match.

grammar andG′ is the grammar transformed onceTε has modified the production. The
notation that we use from now on is borrowed from functional analysis [1]. Bringing this
notation to graph grammar rules, a rule is written asR = 〈L, p〉 (separating the static
and dynamic parts of the production) while the grammar rule transformation including
matchings is:R = 〈mG (L) , Tεp〉.
Proposition 4. With notation as above, productionp can be extended to consider any
dangling edge,R = 〈mG (L) , Tεp〉.
Proof
¤What we do is to split the identity operator in such a way that any problematic element
is taken into account (erased) by the production. In some sense, we first add elements
to p’s LHS and afterwards enlargep to erase them. Otherwise stated,m∗

G = T−1
ε and

T ∗ε = m−1
G , so in fact we haveR = 〈L, p〉 =

〈
L,

(
T−1

ε ◦ Tε

)
p
〉

= 〈mG (L) , Tε (p)〉 =
R. The equalityR = R is valid strictly for edges.¥

The effect of considering a match can be interpreted as a new production concate-

nated to the original production. Letpε
def
= T ∗ε ,

R = 〈mG (L) , Tε (p)〉 = 〈T ∗ε (mG (L)) , (p)〉 = (6)

= p (T ∗ε (mG (L))) = p ; pε ; mG (L) = p ; pε (L)

Considering the match can be interpreted as a temporary modification of the grammar,
so it can be said that the grammar modifies the host graph and – temporarily – the host
graph interacts with the grammar.

If we think of mG andT ∗ε as productions respectively applied toL andmG (L), it
is necessary to specify their erasing and addition matrices. To this end, we introduce
matrix ε, with elements in rowi and columni equal to one if nodei is to be erased by
p, and zero otherwise (see definition 5). This matrix considers any potential dangling
edge.

For mG we have thateN = eE = 0, andr = L L (for both nodes and edges),
as the production has to add the elements inL that are not present inL. Let pε =(
eE
Tε

, rE
Tε

; eN
Tε

, rN
Tε

)
, theneN

Tε
= rE

Tε
= rN

Tε
= 0 andeE

Tε
= ε ∧ LE .

Example.¤Consider rules depicted in Fig. 8, in whichserver down is applied to
model a server failure. We have

eE = rE = LE =
[
0 1

]
eN =

[
1 1

]
; rN =

[
0 1

]
; LN =

[
1 1

]
; RE = RN = ∅

ε

1: S

2: C 3: C 4: C

down
server*

down
server

2: C 3: C 4: C

R

m*

H

2: C 3: C

L ε 1: S

2: C 3: C

Rε

L

2: C 3: C

R

3: C2: C

down
server

down
server

L

m

G 1: S

1: S down
server

Tε

1: S
T

Fig. 8. Full Production and Application.

OncemG and operatorTε have been applied, the resulting matrices are

rE =




0 0 0 1
1 0 0 2
1 0 0 3


 ; LE =




0 0 0 1
1 0 0 2
1 0 0 3


 ; RE =

[
0 0 2
0 0 3

]
; eE

Tε
=




0 0 0 1
1 0 0 2
1 0 0 3




Matrix rE , besides edges added by the production, specifies those to be added bymG to
the LHS in order to consider any potential dangling edge (in this case(2, 1) and(3, 1)).
As neithermG nor productionserver down delete any element,eE = 0. Finally, pε

removes all potential dangling edges (check out matrixeE
Tε

) but it does not add any, so
rE
Tε

= 0. Vectors for nodes have been omitted.¥
LetT ∗ε =

(
T ∗ε

N , T ∗ε
E

)
be the adjoint operator ofTε. DefineeE

ε andrE
ε respectively

as the erasing and addition matrices ofTε (p). It is clear thatrE
ε = rE = rE and

eE
ε = eE ∨ εLE , so

RE =
〈
LE , Tε (p)

〉
= rE

ε ∨ eE
ε LE = rE ∨ (

eE ∨ εLE
)
LE =

= rE ∨
(
ε ∨ LE

)
eELE = rE ∨ eE ε LE

The previous identities show thatRE =
〈
LE , TE

ε

(
pE

)〉
=

〈
εLE , pE

〉
, which proves

thatT ∗ε =
(
T ∗ε

N , T ∗ε
E

)
= (id, ε).

Summarizing, when a given matchm is considered for a productionp, the pro-
duction itself is first modified in order to consider all potential dangling edges.m is
automatically transformed into a match which is free from any dangling element and,
in a second step, a pre-productionpε is appended to form the concatenationp̂∗ = p∗ ; p∗ε

4 Revision and Extension of Basic Concepts

In this section we brush over all concepts and theorems introduced in section 2, com-
pleting them by considering matchings.

Let sn = pn; . . . ; p1 be a concatenation. As there is a match for every production
in the sequence, it is eventually transformed intos∗n = pn ; pε,n; . . . ; p1; pε,1. Fig.9
displays the corresponding derivation. Forcompatibility , the main difference when
considering matchings is that the sequence is increased in the number of productions so
it shall be necessary to check more conditions.

L1

mG,1

²²

pε,1 // L1

!!CC
CC

CC
CC

L1

m1

²²

p1 // R1

ÃÃA
AA

AA
AA

A L2

mG,2

²²

pε,2 // L2

!!CC
CC

CC
CC

L2

m2

²²

p2 // . . .

G
p∗ε,1

// Gε,1
p∗1

// G1
p∗ε,2

// Gε,2
p∗2

// . . .

Fig. 9. Productions andε-productions in a Concatenation.

4.1 Initial Digraph Set

Concerning theminimal initial digraph, one may have different ways of completing the
rule matrices, depending on the matches. Therefore, we no longer have a unique initial
digraph, but a set.

Definition 6 (Initial Digraph Set) Givensn a sequence, its associated initial digraph
setM (sn) is the set of simple digraphsMi such that

1. Mi has enough nodes and edges for every production of the concatenation to be
applied in the specified order, and

2. Mi has no proper subgraph with previous property

∀Mi ∈ M (sn). Every elementMi ∈ M (sn) is said to be an initial digraph forsn.

It is easy to see thatM (sn) 6= ∅, ∀sn finite sequence of productions. The initial
digraph set contains all graphs that can potentially be identified by matches in concrete
host graphs. In section 2.1, coherence was used in an absolute way but now, due to
matching, coherence is a property depending on the given initial digraph. Hence, we
now say thatsn is coherent with respect to initial digraphMi.

For the initial digraph set, we can define themaximal initial digraphas the element
Mn ∈ M (sn) which considers all nodes inpi to be different. This element is unique
up to isomorphism, and corresponds to considering the parallel application of every
production in the sequence. In a similar way,Mi ∈ M (sn) in which all possible iden-
tifications are performed are known asminimal initial digraphs, which in general are
not unique. As an example, left of Fig. 10 shows the minimal digraph set for sequence
s2 = remove channel; remove channel, which is not coherent, as the link between
two clients is deleted twice. In this way, the initial digraphs should provide two links.
It is possible to provide some structureT (sn) to setM (sn) (see the right of Fig. 10).
Every node inT represents an element ofM, and a directed edge from one node to
another stands for one operation of identification between corresponding nodes in LHS
and RHS of productions of the sequencesn. NodeM7 is the maximal initial digraph, as
it only has outgoing edges. The structureT is known as graph-structured stack, in our
case with single root node.

4.2 Coherence

Coherence formulas do not change, except that now there are conditions for allε-
productions. When considering the match, coherence is similar to conflict detection in

1=5

5 1: S

3: C 4: C

5: S M7

6:C

4:S

3:C

1:S

M6 1:S

2:C 3:C 4:C 5:C

M3 1:S

2:C 4:C3:C

M2

3:C

1:S

4:C2:C

M4 1: S

3: C 4: C

5: S

M1

2: C 3: C

1: S 7M

4M 6M 5M

2M 3M

1M2: C 5:C2:C2: C

3=5 3=6

3=5

2=4 2=4

1=4

1=5 3=4

M

Fig. 10. Initial Digraph Set fors2 = remove channel; remove channel.

critical pairs [5] [6], where an important issue is efficiency [8]. We believe our approach
is a contribution in improving the efficiency in finding this kind of conflicts.

The functional notation introduced so far can be used to re-enunciate Theorem 1
for coherence, deriving conditions which resemble those of perpendicular vectors and
kernel of a function. LetqLi

= 4n−1
1 (rx ey) and qRi

= 5n
i+1 (ex ry), thensn =

pn; . . . ; p1 is coherent if〈Li, qLi〉 = 〈Ri, qRi〉 = 0.
In addition, when the host graph is not considered, if nodes are identified across

rules, it can be the case that some dangling edge appears in the concatenation. For
example, givenp2; p1, suppose that rulep1 uses but does not delete edge(4, 1), that
rule p2 specifies the deletion of node1 and that we have identified both nodes1. It
is mandatory to add oneε-productionpε,2 to the grammar, which conceptually is of
a different nature than those previously discussed. The latter dangling edges appear in
the context where the rule is applied, but not in other rules. We have an unavoidable
problem of coherence betweenp1 andpε,2 if we wanted to advance the application of
pε,2 to p1. Hence, we split the set of edges deleted byε-productions into two disjoint
classes:

– External. Any edge not appearing explicitly in the grammar rules, i.e., edges of the
host graph “in the surroundings” of the actual initial digraph. Examples are edges
(2, 1) and(3, 1) in Fig.8.

– Internal . Any edge used or appended by a previous production in the concatena-
tion. One example is the previously mentioned edge(4, 1).

ε-productions can be classified accordingly ininternal ε-productions if any of its
edges is internal andexternal ε-production otherwise. Externalε-productions cannot
be considered during rule specification which, in turn, may spoil coherence, compati-
bility, etc. One way to handle this problem is to check the conditions under which all
ε-productions can be advanced to the front of the sequence. Given a host graphG in
which sn – coherent and compatible – is to be applied, and assuming a match which
identifiessn’s actual initial digraph (Mn) in G, we check whether for somêm andT̂ε,
which respectively represent all changes to be done toMn and all modifications tosn,

it is correct to writeHn =
〈
m̂ (Mn) , T̂ε (sn)

〉
, whereHn would be the piece of the

final state graphH corresponding to the image ofMn.
Example.¤Let s2 = p2; p1 be a coherent and compatible concatenation. Using

operators we can writeH = 〈mG,2 (〈mG,1 (M2) , Tε,1 (p1)〉) , Tε,2 (p2)〉, which is
equivalent toH = p2; pε,2; p1; pε,1

(
M2

)
, with actual initial digraph twice modified

M2 = mG,2 (mG,1 (M2)) = (mG,2 ◦mG,1) (M2).¥

Definition 7 (Exact Derivation) Letdn = (sn,mn) be a derivation with actual initial
digraphMn, concatenationsn = pn; . . . ; p1, matchesmn = {mG,1, . . . ,mG,n} and

ε-productions{pε,1, . . . , pε,n}. It is an exactderivation if there exist̂m and T̂ε such

thatHn = dn (Mn) =
〈
m̂ (Mn) , T̂ε (sn)

〉
.

Previous equation might be satisfied if once all matches are calculated, the following
identity holds:pn; pε,n; . . . ; p1; pε,1 = pn; . . . ; p1; pε,n; . . . ; pε,1. Equation (3) allows
us to consider a concatenation almost as a production, justifying operatorsT̂ε andm̂ and
our abuse of the notation (recall that brakets apply to productions and not to sequences).

Proposition 5. With notation as before, ifpε,j⊥ (pj−1; . . . ; p1), ∀j, thendn is exact.

Proof
¤Operator̂Tε modifies the sequence adding a uniqueε-production, the composition7

of all ε-productionspε,i. To see this, if one edge is to dangle, it should be eliminated by
the correspondingε-production, so no otherε-production deletes it unless it is added by
a subsequent production. But by hypothesis there is sequential independence of every
pε,j with respect to all preceeding productions and hencepε,j does not delete any edge
used bypj−1, . . . , p1. In particular no edge added by any of these productions is erased.

In definition 7,m̂ is the extension of the matchm which identifies the actual initial
digraph in the host graph, so it adds tom (Mn) all nodes and edges to distance one to
nodes that are going to be erased. A symmetrical reasoning to that ofT̂ε shows that̂m
is the composition of allmG,i.¥

With definition 7 and proposition 5 it is feasible to get a concatenation where allε-
productions are applied first, and all grammar rules afterwards, recovering the original
concatenation. Despite some obvious advantages, all dangling edges are deleted at the
beginning, which may be counterintuitive or even undesired. For example, if the dele-
tion of a particular edge is used for synchronization purposes. The following corollary
states that exactness can only be ruined by internalε-productions. Letsn be a sequence
to be applied to a host graphG andMk ∈ M (sn).

Corollary 1. With notation as above, assume there exists at least one match inG for
Mk that does not add any internalε-production. Then,dn is exact.

Proof (sketch)
¤All potential dangling elements are edges surrounding the actual initial digraph. It
is thus possible to adapt the part of the host graph modified by the sequence at the
beginning, so applying proposition 5 we get exacteness.¥

5 Conclusions and Future Work

In this paper we have presented a new approach to simple digraph transformation based
on an algebra of boolean matrices. We have shown some results (coherence, minimal

7 Given a sequence of productions, their composition is one production which performs the same
operations, see [10] for the formal definition.

initial digraphs, permutation,G-congruence) that can be calculated on the graph trans-
formation system, independent of the host graph. We have introduced the match, and
how to handle dangling edges by generatingε-productions which are applied previous
to the original rule in order to delete dangling edges.

We believe that the main difference of our approach with respect to others is that
we use boolean operators to represent graph manipulations. Other approaches such as
DPO and SPO use a categorical representation of the operations, which, on the one hand
makes the approach more general, but on the other, makes bigger the gap between spec-
ification and implementation on tools. In addition, we believe that concepts like initial
digraph, coherence, arbitrary sequences of finite length are easier to express and study
in our framework than using category theory. Concerning additional related work, the
relational approach of [9] uses also exclusively a categorical approach for operations.
Other approaches such as logic-based [12], algebraic-logic [2], relation-algebraic [7]
are more distant from ours.

With respect to future work, we are working on application conditions, studying the
structure ofM(sn), bringing to our framework techinques from Petri nets, considering
more general types of graphs and implementing the current concepts in a tool.

Acknowledgements:This work has been sponsored by the Spanish Ministry of Sci-
ence and Education, project TSI2005-08225-C07-06. The authors would like to thank
the referees for their useful comments.

References

1. Braket notation intro:http://en.wikipedia.org/wiki/Bra-ket notation .
2. Courcelle, B. 1990.Graph Rewriting: An Algebraic and Logic ApproachHandbook of The-

oretical Computer Science, Vol. B. pp.: 193-242.
3. Ehrig, H. 1979.Introduction to the Algebraic Theory of Graph Grammars.In V. Claus, H.

Ehrig, and G. Rozenberg (eds.), 1st Graph Grammar Workshop, pages 1-69. LNCS 73.
4. Ehrig, H., Heckel, R., Korff, M., L̈owe, M., Ribeiro, L., Wagner, A., Corradini, A. 1999.

Algebraic Approaches to Graph Transformation - Part II: Single Pushout Approach and
Comparison with Double Pushout Approach.In [11] Vol.1, pp.: 247-312.

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006.Fundamentals of Algebraic Graph Trans-
formation. Springer.

6. Heckel, R., K̈uster, J. M., Taentzer, G. 2002.Confluence of Typed Attributed Graph Trans-
formation Systems. Proc. ICGT’2002. LNCS 2505, pp.: 161-176. Springer.

7. Kahl, W. 2002.A Relational Algebraic Approach to Graph Structure Transformation
Tech.Rep. 2002-03. Universität der Bundeswehr M̈unchen.

8. Lambers, L., Ehrig, H., Orejas, F. 2006.Efficient Conflict Detection in Graph Transformation
Systems by Essential Critical Pairs. Proc. GT-VMT’06, to appear in ENTCS (Elsevier).

9. Mizoguchi, Y., Kuwahara, Y. 1995. Relational Graph Rewritings. Theoretical Computer Sci-
ence, Vol 141, pp. 311-328.

10. Ṕerez Velasco, P. P., de Lara, J. 2006.Towards a New Algebraic Approach to Graph Trans-
formation: Long Version. Tech. Rep. of the School of Comp. Sci., Univ. Autónoma Madrid.
http://www.ii.uam.es/ ∼jlara/investigacion/techrep 03 06.pdf .

11. Rozenberg, G. (managing ed.) 1999.Handbook of Graph Grammars and Computing by
Graph Transformation. Vol.1 (Foundations), Vol.2(Applications, Languages and Tools),
Vol.3., (Concurrency, Parallelism and Distribution).World Scientific.

12. Scḧurr, A. Programmed Graph Replacement Systems.In [11], Vol.1, pp.: 479 - 546.

