UNIVERSIDAD_AUTONOVA
[oE MR |

Biblos - [Ax:c;hiv::iTii

Repositorio Institucional de la Universidad Autonoma de Madrid

https://repositorio.uam.es

Esta es la version de autor de la comunicacién de congreso publicada en:
This is an author produced version of a paper published in:

Graph Transformations: Third International Conference, ICGT 2006 Natal,
Rio Grande do Norte, Brazil, September 17-23, 2006 Proceedings. Lecture
Notes in Computer Science, Volumen 4178. Springer 2006. 122-137

DOI: http://dx.doi.org/10.1007/11841883 10

Copyright: © 2006 Springer-Verlag

El acceso a la version del editor puede requerir la suscripcion del recurso
Access to the published version may require subscription

https://repositorio.uam.es/
https://repositorio.uam.es/
https://repositorio.uam.es/
http://dx.doi.org/10.1007/11841883_10

Matrix Approach To Graph Transformation: Matching
and Sequences

Pedro Pablo &ez \elasco, Juan de Lara

Escuela Poliécnica Superior
Universidad Aubnoma de Madrid
{pedro.perez, juan.delara }@uam.es

Abstract. In this work we present our approach to (simple di-)graph transforma-
tion based on an algebra of boolean matrices. Rules are represented as boolean
matrices for nodes and edges and derivations can be efficiently characterized
with boolean operations only. Our objective is to analyze properties inherent
to rules themselves (without considering an initial graph), so this information
can be calculated at specification time. We present basic results concerning well-
formedness of rules and derivations (compatibility), as well as concatenation of
rules, the conditions under which they are applicable (coherence) and permuta-
tions. We introduce theatch which permits the identification of a grammar rule

left hand side inside a graph. We follow a similar approach to the single pushout
approach (SPO), where dangling edges are deleted, but we first adapt the rule in
order to take into account any deleted edge. To this end, a notation borrowed from
functional analysis is used. We study the conditions under which the calculated
data at specification time can be used when the match is considered.

1 Introduction

Graph Transformation [11] is becoming increasingly popular in computer science as it
provides a formal basis for graph manipulation. Transformations of this data structure
are central to many application areas, such as visual languages, visual simulation, pic-
ture processing and model transformation (see [5] and [11] vol.2 for some applications).

The classical algebraic approach to graph transformation is baseategory the-
ory[3], and provides a rich body of theoretical results(see [11] vol.1). Thus, graph trans-
formations expressed as graph rewriting become not only graphical and intuitive but
also formal, declarative and high-level models, subject themselves to analysis [11] [5]
[6]. Nonetheless, methods to increase efficiency and new analysis techniques that can
be efficiently implemented in tools are needed for real industrial applications.

In contrast to the categorical-algebraic approach, we propose an algebraic character-
ization based on boolean matrix algebra. In this way, simple digraphs can be represented
as boolean matrices and productions as matrices for edge and node deletion and addi-
tion, together with a graph (also represented with matrices) that must be present in the
host graph in order for the rule to be applicable. Therefore, the effects of a production
p: L — R can be modelled using boolean matrix operations only. This purely algebraic
approach constitutes a different perspective from algebraic-categorical approaches, as

it provides an operational characterization of most concepts (closer to implementation)
and has the potential for efficient implementation and parallelization.

In our work [10], most analysis is made independently of the host graph. The advan-
tages of this approach are twofold. First, all properties under studylaeeentto the
graph transformation system and second, it has the practical advantage that the analysis
can be performed by a tool in the phase of specification of the grammatr, independently
of any host graph. We present concepts such as coherence (potential applicability of
a sequence), minimal initial digraph (smallest graph with enough elements to execute
a sequence), rule permutation coherence and G-congruence (potential sequential inde-
pendence). These concepts provide a rich amount of information about productions and
how they are related to each other, including limitation in their application, dependen-
cies and dynamical behaviour. To the best of our knowledge, some of these results are
new, for example we have studied conditions for coherence of rule advancement and de-
lay an arbitrary number of positions in a sequence. For space limitations, some proofs
are omitted, but can be found in [10].

In addition, we introduce the match as@peratormodifying the rule byincluding
the context in which it is applied. We use a similar approach to SPO [4], where the
dangling edges are deleted. Thus, the rule is adapted to include the edges that would
become dangling and explicitly delete them. Our goal is to use the information calcu-
lated about the grammar at specification time once the initial host graph is considered.
In this work, we study how this information is modified when a host graph is taken
into account. We also introduce a bra-ket operational notation for rules similar to that
of functional analysis for operators (also knownzsac Notation) [1]. Thus, produc-
tions can be depicted & = (L, p), splitting the static part (initial statd;) from the
dynamics (element addition and deletipi,

The paper is organized as follows. Section 2 presents the characterization of graphs
and productions in our approach, together with rule sequences, minimal initial digraph,
permutation and G-congruence. Section 3 presents our approach to handle the match.
Section 4 revisits the properties calculated for rules in section 2, and study how they are
affected by the match. Section 5 presents the conclusions and future work.

2 Characterization and Basic Properties

This section presents an informal introduction to the basic concepts in our approach. In
subsection 2.1, we start defining simple digraphs, which can be represented as boolean
matrices, introduce basic operations on these matrices and show a characterization of
graph transformation rules using them. We formulate the conditions for a production to
be compatible(i.e. it defines a simple digraph) and the conceptaipletion where
matrices representing graphs are modifieatranged— to permit operations between
them. In subsection 2.2, we present production concatenation together with the con-
cept ofcoherenceWe present the minimal initial digraph, the conditions for sequence
permutations to be coherent and the concept of potential sequential independence.

2.1 Simple Digraphs and Productions

A graphG = (V, E) consists of two sets, one of nodés= {V;| i € I} and one of
edgest = {(V;,V;) € V x V}. In this paper we are concerned waimple digraphs
“simple” meaning that only two arrows are allowed between two nodes (one in each
direction), and “di-” because arrows have a direction. A simple digr@ps uniquely
determined by itedjacency matrixd., whose element;; is one if (¢, j) € E, and

zero otherwise. As we will delete and add edges and nodesdes vectol; is also
associated to our digrapgh, with its elements equal to one if the corresponding node is
present inG and zero otherwise.

MQ"—sz

oo —o
oo —o
(==l i)
AW N —
B W N —

@) (b)

Fig. 1. (a) A Simple Digraph Representing a Client-Server System (b) Matrix Representation.

Fig. 1(a) shows a digraph representing a client-server system. Links between the
clients and the server represent that the client is connected to a server. Links between
clients represent a directed communication channel, while a loop link represents a mes-
sage. The matrix representation of the previous graph is shown in Fig.1(b).

The boolean product between two adjacency matrides= (gij)i’je{l_’myn} and
My = (hij); jeqr.. .y 1S defined agMe © Mp),; = Vi_, (gik A i)

Next, we are interested in formulating the properties (that wecoatipatibility) that
should be fulfilled by a boolean matrix and a vector of nodes to define a simple digraph.
We want to forbid edges incident to nodes that do not belong to the digraph. We first
define the nornj-||, of a vectorN = (vy,...,v,) as||N||, = Vi, vi.

Proposition 1. A pair (M, N), where M is an adjacency matrix andV a vector of
nodes, is compatible if and only if they verjfyh v M*) © N||, = 0.1

Now we consider productions and their characterization. We define a production
as a morphism — in the sense of category theory — which transforms a simple digraph
into another onep : L — R. We can describe a productignwith two matrices for
edges and two vectors for nodes. Therefore a production can be specified as functions
between boolean matrices and vectors.

Definition 1 (Production) A productionp is a morphism between two simple digraphs
L andR, and can be specified by the tuple= (L¥, R¥; LY, RN') whereE stands for
edgeandN for node L is theleft hand sidgLHS) andR is theright hand sid¢RHS).

! wheret denotes transposition.

A production models deletion and addition of edges and nodes, carried out in the
order just mentioned, i.e., first deletion and then addition. These actions can be repre-
sented with two matrices for edge”(»*) and two vectors for nodes? ,), which
can be calculated &= L (LR) = LRandr = R(LR) = RL.

Fig. 2 shows a rule that creates a communication channel between two clients con-
nected to the same server. The deletion matfix(and vectore?) is zero, while the
addition matrixr” has a unique non-zero element at positi@n3) and the addition
vector for nodes is zero. From previous definitions, a number of conditions are immedi-

1S LS 00 0]1 0001

channel L&:ll 00 2\ Ree=[1 0 1 2]

2:C 3:C 2:C 3:C 1003 100j3
(@) ()

Fig. 2. (a) Create Channel Rule (b) Matrix Representation of Rule (only for edges).

ate (see next proposition). The first two state that elements cannot be rewritten (erased
and created or vice versa) by a rule application. This is a consequence of the way in
which matrices: andr are calculated.The last two conditions say that if an element is

in the RHS, then it is not deleted, and that if the element is in the LHS, it is not created.

Proposition 2. Letp : L — R be a production, the following identities hold for both
edgesandnodes:e =r,er=¢, Re=R, LT = L.

Finally we are ready to characterize a production . — R using deletion and
addition matrices, starting from its LHR = r v e L (for both edges and nodes).
It could be the case that the production erases a node but leaves some incident edges
(dangling edges Some conditions have to be imposed on matrices and vectors of nodes
and edges to keep compatibility when a rule is applied (i.e., to avoid dangling edges):

1. Anincoming edge cannot be added to a node that is going to be deleted or, using the
norm,||r¥ @ V||, = 0. Similarly, for outgoing edgesH(TE)t ©) eNH1 = 0. Note

how, vectore™ has al in positioni, if the node has to be deleted. Réwn matrix
r¥ depicts the outgoing edges for nadand has 4 in columnj if edge(i, j) has
to be added. Therefore vectof © ¢V contains elements//_,r55 A el)icq1,....n}
with a 1 in positior:, if there is some newly added edge from néde some node
j which is deleted by the production. The transposition’othecks for new edges
starting from deleted nodes.

2 Superindice& andN shall be omitted if, for example, the formula applies to both cases or if it
is clear from context which we refer to. Moreover, #ed operator {\) will also be omitted.

8 This contrasts with the DPO approach, in which edges and nodes can be rewritten in a single
rule. This can be useful to forbid the rule application if the dangling condition is violated.
Section 3 explains how to deal with dangling edges in this approach.

2. Deleting a node with some incoming edge is forbidden, if the edge is not deleted as

(eTLE)t ®eN|| = 0. Matrix
1
e® LF contains the edges in the rule’s LHS that are not deleted, therefak&’ ©
eV results in a vector with a one in positiarif some nodej is deleted and has
an incident edge coming from(and the edge is not deleted). The transposition of
eP LF checks for outgoing edges from deleted nodes.
3. Itis not possible to add an incoming edge to a node which is neither present in the

LHS nor added by the productierE ® (ﬁﬁv) H1 = 0. Similarly, for edges

well: “ELE ® eNH = 0. For outgoing edge%
1

starting in a given nodtﬂ:(rE)26 ® (rwﬁ) H = 0. Inthis casey¥ LV is a vector
1
containing a 1 in positionif nodes does not belong to the LHS and is not going to
be added.
4. It is not possible for an edge to reach a node which does not belong to the LHS

and which is not going to be addeHj(?ELE) ® (ﬁﬁ) H1 = 0. For outgoing
S t SR P
(eELE) ©) (rN LN) = 0. In this case¢® L¥ is a matrix with a 1 in

the edges that are in the LHS and not deleted.

edges:

Thus we arrive naturally at the next proposition:

Proposition 3. Letp : L — R be a production, if previous conditions in items 1-4 are
fulfilled thenRE = rZ v (67E LE> andRN =N v (eTV LN) are compatible.

which is easily proved, as we have to check that/ v M") © N||, = 0, with
M = 7P v eELF andN = rN (eN Vv W) Therefore,

(MvM)oN = [(rE\/eELE) v (rE\/eELE)t] ® {TTV (eN vﬁ)] -
= |:TE VeFLE v (rF) v (eELE)t] ® (eN \/TNLT’) 1)

Conditions in items 1-4 are taken from this identity.

For the rule in Fig. 2, it is easy to check thi@”, R"V) are compatible, as vector
has all elements equal to zero (becae¥eand LN are zero).

Up to now we have assumed that when operating with matrices and vectors these
had the same size, but in general matrices and vectors represent graphs with different
sets of nodes or edges, although probably with some common subsets. Moreover, the el-
ements in both matrices can appear in a different order. An operation caltggletion
modifies matrices (and vectors) to allow some specified operation. Suppose we want to
operate with two matrices representing the edges of two graphs (a similar operation can
be defined for vectors of nodes). In this way, first a common sulisdgtelements are
identified, and it is moved up in the matrices, maintaining the order. Then, the common
subset is sorted in the second matrix to obtain the same order as in the first one. Then,

the elements present in the first matrix but not in the second one are added to the second
one (i.e. rows and columns of zeros), sorted like in the first one. Similarly, the elements
present in the second matrix but not in the first one are added to the first one (i.e. rows
and columns of zeros), sorted like in the second one.

For example, if we have to operate the graph in Fig. 1 with the LHS of rule in Fig. 2,
then the matrix of edges and the vector of nodes of the rule have to be enlarged. If we
identify nodes and edges with the same label, we get the following result:

0000[1 1)1
s |1oool2| v |1]2
Lee=|1900/3] Loo= | 1|3

0000[4 0|4

where an additional column and row has been added to the edge matrix and an
additional element has been added to the nodes vector. In this case, the matrices for the
graph in Fig. 1 remain the same. Note how, if we had assumed other identification of
nodes in the different graphs, the completion procedure would have produced a different
result. Once the matrices and vectors of the two graphs are completed, we can define any
graph transformation (i.e. any morphism on simple digraphs) as two boolean functions
(for the edges matrix and for the nodes vector, which we have modellec: itk r).
These functions may change arbitrarily 0’s and 1's in the matrix of edges and vector of
nodes (and thus we have to check compatibilty after their application).

2.2 Concatenation, Permutations and Minimal Initial Digraph

It is possible to define sequences of rules and the order in which they are to be applied.

Definition 2 (Concatenation) Given a set of productionép,...,p,}, the notation
Sn = Dn;Pn—1;- - -; p1 defines a sequence of productions establishing an order in their
application, starting withp; and ending withp,, .

A concatenation is said to lmherentif actions carried out by one production do not
prevent the application of those coming afterwards. Fig. 3 shows more rules for the ex-
ample. Messages are depicted as self-loops, which can be sent through channels. For ex-
ample sequenceemove_channel; send; message_ready; create_channel is coher-
ent, as link(2, 3) is created by the first rule:feate_channel), used by rulesend and
then deleted by the last rule. We assume an identification of nodes in the different rules
having the same numbers, but other combinations could be studied &s well.

The conditions for coherence of a concatenation of two rslles ps; p; are:

1. The first production 4, — does not delete any edge usedbye” LY = 0.

2. py does not add any edge used, but not delete¢,1by2EL{5? = 0.
3. No common edges are added by both producticfis? = 0.

4 potentially, because no actual application of productions to a host graph is considered.
5 Hence, completion is not unique — there may exist several ways to identify nodes across pro-
ductions — depending on how rules are defined or the operation to be performed.

- S 1: S S 1:S 1: S 1. S 1:S 1:S

1 1 .
. . 1c —

e —» [] [4 . 1:S

o e | M:;;;ge@ﬁ AN e el VAN

2:C 2:¢jla:c 2:C 3C 2:C 3icj[_ down 2C3C 2C3C

Fig. 3. Additional Rules for the Client-Server Example

The first condition is needed becauseif deletes one edge used py, thenp,
is not applicable. The last two conditions are needed in order to obtain a simple di-
graph (with at most one edge in each direction between two nodes). Applying the first
two identities in proposition 2, the three previous equalities can be transformed into
RECErE v LEeE P — () and similar for nodes.

Our objective is to obtain a closed formula to represent these conditions for the case
with n productions. For this purpose, we introduce a graphical notation for boolean
equations: a single arrow meanswhile a fork (more than one arrow starting in the
same node) stands fot. These diagrams are useful to understand how the formulas
change depending on the number of productions. As an example, the representation of
coherence equations for two productions (for edges) is shown in Fig. 4(left). The figure
also shows the equations for three and five productions.

Fig. 4. Graph for Sequence of Length 2 (left), 3(middle) and 5(right).

Analysing the graphs for sequences of increasing size, we arrive at the following
theorem concerning sequences of arbitrary size. The proof is not included here, it can
be found at [10].

Theorem 1 (Sequence Coherencejhe concatenation,, = p,;...;p; is coherent if
\/ (Ri Vit (€xry) V L AN (eyT5)) =0 2
=1

where
t1 t1 ty1 Yy

AR (F(zy) = \/ </\ (F(%y))) L (Glz,y) = \/ (/\ (G(x,y)>>
y=to \z=y y=to \x=to

E.g., sequence, = remove_channel; send; message_ready; create_channel is co-

herent bukend; message_ready; remove_channel is not, because the first production
(remove_channel) deletes edg€2, 3) needed byend one step afterwards. The result-

ing matrix of the coherence formula has a one in such position and zeros elsewhere. In
this way, the resulting matrix of the formula is useful to indicate where the potential
coherence problems are. On the other hand, sequgnee-emove_channel; send;
create_channel is coherent, but it is worth stressing that ed@g2) needs to be sup-

plied by the host graph, because reded needs a self loop representing a message and
we know that such element is not added by any rule befend. Altogether, coherence
allows the grammar designer to check dependencies between rules, and to realize pos-
sible conflicts, some of which can be solved if the initial graph provides enough edges
and nodes. This is related to the notionmoinimal initial digraph which is a graph
containing the necessary nodes and edges for a rule (or sequence) to be applicable.

Theorem 2 (Minimal Initial Digraph). Given a coherent concatenation of produc-
tionss,, = py;...;p1, its minimal initial digraph is defined byi/,, = /7 (77 Ly).

One graph is easily obtained which contains enough nodes and edges to execute a
coherent sequenc¥/’_, L;. However, this graph can be made smaller, so for example,
for productionp, we only include inM,, elements which are in the LHS, but not added.
In a similar way, forp, we include elements in its LHS if they are not addedphy
nor p;. Therefore, we have{,, = (F1L1) V (T1L2)(ToLa) V -+ V (F1Ly) - - (FnLy),
which is the expanded form &f} (75 L,). Note how, we assume a given identification
of nodes and edges in the different productions of the sequence, that is, a certain way
of completing each matrix. The calculation of the minimal initial digaph for sequence
s2 = remove_channel; send; create_channel is shown in Fig.5 as an example.

Solato B (o Lrak

2c3c 2C3 22c3C
r, rL

rL TL rL L=

171 172 22 13 2

Fig. 5. Minimal Digraph for Sequence,.

Theimage of a concatenatiorns,, = p,,;...;p1 (please, refer to [10]) almost can
be seen as a productiep = (r,, e;), wherer, = A} (e5r,) ande, = \/?=1 e, i.e.,

= N\ @M,) v A} (E@ry) =7 V & M, (3)
=1

However, in this case, it is not true thate; = r,, which in particular implies that
it is important todeleteelements (apply,) beforeadditiontakes placer(; application).

The following result states conditions to keep coherence in case of permuting one
production inside a sequence [10].

Theorem 3 (Production Permutations).Consider coherent productions = pg; pu;
DPrn—1;...;p1 @Nds, = pp;Pn—1;-..;p1;ps and permutations andd.

1. ¢ (t,)is coherentife? /7 (@ Lf) V RE 7 (@rf) =0.
2. §(sn)is coherentif:LE A7 (@ef) vrg AL (@ Rf) =0.

whereg advances the last production to the front, that is, moves the left-most rule to the
right n — 1 positions in a sequence afrules. Thusg has associated permutation=

[1 n mn-1...3 2].Inasimilarwayy delays the first production—1 positions in

a sequence of rules, moving it to the last position. Thus=[1 2 ...n—1 n].For
sequence, = send; create_channel; remove_channel, ¢(to) = create_channel;
remove_channel; send is coherent.

G-congruencguarantees that two coherent and compatible concatenations have the
same output starting with as minimal initial digraph. The conditions to be fulfilled are
known asCongruence ConditionCC). A coherent and compatible concatenatign
and a coherent and compatible permutation of its,,), which besides have the same
minimal initial digraphG (G-congruent are potentially sequential independeritor
advancement and delaying of productions, the congruence conditions are (see [10]):

CC (¢, 8n) = L,V (Ezry) Vo,V (7 L,) =0 (4)
CC (6,sn) = L1V5 (ezry) VriVy (T Ly) =0 (5)

For sequence = send; create_channel; remove_channel, CC(¢,s) = 0, there-

fore we obtain the same result by advanciagd twice. Ass and¢(s) have the same

initial digraph (the one in Fig. 5, plus edde, 3)), they are potential sequential in-
dependent. Symbal denotes potential sequence independence, thus we can write
send L (create_channel; remove_channel) in previous example. Note that it is pos-

sible to check sequential independence between a rule and a sequence, in contrast with
results in the algebraic-categorical approach.

3 Maitch, Extended Match and Production Transformation

Matching is the operation of identifying the LHS of a rule inside a host graph. This
identification is not necessarily unique, thus becoming a source of non determinism.

Definition 3 (Match) Given a productiorp : L — R and a simple digraphz, any
m : L — G total injective morphism is known as a match (fan G).

Recalling the notion ofompletiona match can be interpreted as one of the possible
ways tocompletel in G. We do not explicitly care about types or labels in our matrices
(“S” and “C” in the examples), but this can be thought as restrictions focahgpletion
procedure, which cannot identify elements with different types.

Fig.6(a) displays a productignand a matchn for p in G. It is possible to close the
diagram, making it commutativen* o p = p* o m), using the pushout construction [5]
on categoryPfn(Graph) of simple digraphs and partial functions (see [9]). This cate-
gorical construction for relational graph rewiting is carried out in [9] in their Theorem
3.2 and Corollary 3.3. Proposition 3.5 in [9] gives a sufficient condition to decide if a
given rewriting square like the one in Fig.6(a) can be closed.

L—>R
o y
L—>nR i
R O

V ’mal ém . e
G-ye> H v -
G o> H N

b H

Fig. 6. (a) Production plus Match. (b) Neighbourhood. (c) Extended Match and Production.

Definition 4 (Direct Derivation) Givenp : L — Randm : L — G as in Fig.6(a),
d = (p,m) is called a direct derivation with resull’ = p* (GQ).

If a concatenation,, = p,;...;p: is considered together with the set of matchings
my, = {mq,...,my}, thend, = (s,, m,) is aderivation.

When applying a rule to a host graph, the main problem to concentrate on is that
of so-calleddangling edgeswhich is differently addressed in SPO and DPO. In DPO,
if an edge comes to be dangling then the rule is not applicable (for that match), while
SPO allows the production to be applied, deleting any dangling edge. In this paper we
propose an SPO-like behaviour. Fig.6(b) shows our strategy to handle dangling edges:

1. Morphismm shall identify rule’s left hand side in the host graph.

2. A neighbourhood ofn(L) C G covering all relevant extra elements is selected
(performed bym.®), taking into account all dangling edges not considered by
matchm with their corresponding source and target nodes.

3. Finally,p is enlarged (through operat®t, see definition below) erasing any other-
wise dangling edge.

Definition 5 (Extended Match) Given a productiorp : L. — R, a host graphZ and
amatchm : L — G, the extended match : L x G — G is a morphism whose image
ism (L) e, wheree is the set of dangling edges and their source and target nodes.

Coproduct (see Fig.6(c)) is used for couplihgand G, being the first embedded

into the second by morphism. We use the notatioh = me (L) = (meom) (L)

i.e., extended digraphs are underlined and defined by composartdm...
ExampleJConsider the digraph, the host grapltz and the morphism match de-
picted on the left side of Fig. 7. On the top right side in the same figu(&,) is drawn,
andmg (L) on the bottom right side. Nodes 2 and 3 and ed@es$), (2, 3) and(2, 2)
have been added ta (L). The edges would become dangling in the image “graph”
of G by p, p (G). Note how this composition is possible, msandm,. are functions
between boolean matrices which have been complilted.
Once we are able to complete the rule’s LHS, we have to do the same for the rest
of the rule. To this end we define an operafor: & — &’, where® is the original

5 Recall that morphisms are functions on boolean matrices and vectors.

-

o down

client R J

2:C
m mﬂ
G 1S HIl:S
(22; 3:C 4C 3C 4C

3 C 4c°(‘,'§{4‘,‘n 3c40

Fig. 7. Matching and Extended Match.

grammar andb’ is the grammar transformed on€ge has modified the production. The
notation that we use from now on is borrowed from functional analysis [1]. Bringing this
notation to graph grammar rules, a rule is writtenfas= (L, p) (separating the static
and dynamic parts of the production) while the grammar rule transformation including
matchings isR = (mq (L), T.p).

Proposition 4. With notation as above, productigncan be extended to consider any
dangling edgeR = (m¢ (L), T:p).

Proof
OWhat we do is to split the identity operator in such a way that any problematic element
is taken into account (erased) by the production. In some sense, we first add elements
to p's LHS and afterwards enlargeto erase them. Otherwise stateef, = 7' and
Tr = mg', soinfactwe havé& = (L,p) = (L, (I=' o T.) p) = (mq (L), T (p)) =
R. The equalityR = R is valid strictly for edgesli

The effect of considering a match can be interpreted as a new production concate-

nated to the original production. Let “</ T,

R = (mg (L), T- (p)) = (T2 (mc (L)), (p)) = (6)
=p (T (mg (L)) = p; pe; ma (L) = p; pe (L)

Considering the match can be interpreted as a temporary modification of the grammar,
so it can be said that the grammar modifies the host graph and — temporarily — the host
graph interacts with the grammar.

If we think of m¢ andT.* as productions respectively appliedk@andmg (L), it
is necessary to specify their erasing and addition matrices. To this end, we introduce
matrix e, with elements in row and columni equal to one if nodeis to be erased by
p, and zero otherwise (see definition 5). This matrix considers any potential dangling
edge.

For mqg we have thaeN = e = 0, andr = L L (for both nodes and edges),
as the production has to add the elementiirhat are not present ih. Let p. =
(ef ,rf el i), thenel =rF =rl =0andef = eANLE.

Example.dJConsider rules depicted in Fig. 8, in whishrver_down is applied to
model a server failure. We have

e =rP=LF =[0]1]eN = [1|1]; PV =[0]1]; LY = [1]1]; RE=RN =90

L server
[down

Fig. 8. Full Production and Application.

Oncemg and operatoff. have been applied, the resulting matrices are

000[1 000[1 00lo 0001
rP=1100{2]; LF=1100|2 ;RE:{Oog];eﬁz 100[2
1003 100(3 100/3

Matrix ¥, besides edges added by the production, specifies those to be addedby
the LHS in order to consider any potential dangling edge (in this (34¢ and(3, 1)).
As neithermg nor productionserver_down delete any element” = 0. Finally, p.
removes all potential dangling edges (check out matﬁx but it does not add any, so
rf = 0. Vectors for nodes have been omitflid.

LetT = (TE*N , TE*E) be the adjoint operator @f.. Definec” andr’ respectively

as the erasing and addition matricesTof(p). It is clear thatr? = r® = r¥ and
ef = eE\/sLE, SO
RF = (LP,T.(p)) =rEVveP LF =rF v (eBVvel?)LF =
=rEy (E\/LE) eELF =rEveEs LF

The previous identities show th&” = (L”, TF (p¥)) = (z L”,p¥), which proves
that T = (T;N ,T;E) = (id,?).

Summarizing, when a given mateh is considered for a productiom the pro-
duction itself is first modified in order to consider all potential dangling edgess
automatically transformed into a match which is free from any dangling element and,
in a second step, a pre-productjanis appended to form the concatenatigin= p* ; p*

4 Revision and Extension of Basic Concepts

In this section we brush over all concepts and theorems introduced in section 2, com-
pleting them by considering matchings.

Lets, = p,;...;p1 be a concatenation. As there is a match for every production
in the sequence, it is eventually transformed i8f0 = py, ; pe,n; - - - P1;Pe1- Fig.9
displays the corresponding derivation. Femmpatibility , the main difference when
considering matchings is that the sequence is increased in the number of productions so
it shall be necessary to check more conditions.

Pe,1 P1 Pe,2 P2

Ly —— 1, Li——= Ry Lo —"5 1, Ly 2.
o \ J«ml \ lmc’z \ lmz
G . Gs,l - Gl " Gs,2 *>
Pe 1 P1 Pe2 D5

Fig. 9. Productions and-productions in a Concatenation.

4.1 Initial Digraph Set

Concerning theninimal initial digraph one may have different ways of completing the
rule matrices, depending on the matches. Therefore, we no longer have a unique initial
digraph, but a set.

Definition 6 (Initial Digraph Set) Givens,, a sequence, its associated initial digraph
set9 (s,,) is the set of simple digraph¥/; such that

1. M; has enough nodes and edges for every production of the concatenation to be
applied in the specified order, and
2. M; has no proper subgraph with previous property

VM, € M (sy,). Every elemends; € M (s,) is said to be an initial digraph fos,,.

It is easy to see thabi (s,,) # 0, Vs, finite sequence of productions. The initial
digraph set contains all graphs that can potentially be identified by matches in concrete
host graphs. In section 2.1, coherence was used in an absolute way but now, due to
matching, coherence is a property depending on the given initial digraph. Hence, we
now say thas,, is coherent with respect to initial digrapi;.

For the initial digraph set, we can define theximal initial digraphas the element
M, € 9 (s,) which considers all nodes iy to be different. This element is unique
up to isomorphism, and corresponds to considering the parallel application of every
production in the sequence. In a similar way; € 9t (s,,) in which all possible iden-
tifications are performed are known aénimal initial digraphs which in general are
not unigue. As an example, left of Fig. 10 shows the minimal digraph set for sequence
so = remove_channel; remove_channel, which is not coherent, as the link between
two clients is deleted twice. In this way, the initial digraphs should provide two links.

It is possible to provide some structutds,,) to setdt (s,,) (see the right of Fig. 10).
Every node in¥ represents an element #f, and a directed edge from one node to
another stands for one operation of identification between corresponding nodes in LHS
and RHS of productions of the sequengeNode M- is the maximal initial digraph, as

it only has outgoing edges. The structt¥és known as graph-structured stack, in our
case with single root node.

4.2 Coherence

Coherence formulas do not change, except that now there are conditions fer all
productions. When considering the match, coherence is similar to conflict detection in

M; 1.S

Z:é 3:C

My 1:s 5.8
AVAN
. C

2:.C 3 4: C

M, 1S M3

2.C 3C 4C &5cC

1:S
@
2:C 3:C 4C

2:C 3:C 4C 1= 1=5

Ms 10s &5
PAVAN

22.C 3:C 4: C

M7 15 4s

VAN

2:C 3:.C 5:C 6:.C

Fig. 10.Initial Digraph Set forsys = remove_channel; remove_channel.

critical pairs [5] [6], where an important issue is efficiency [8]. We believe our approach
is a contribution in improving the efficiency in finding this kind of conflicts.

The functional notation introduced so far can be used to re-enunciate Theorem 1
for coherence, deriving conditions which resemble those of perpendicular vectors and
kernel of a function. Leyy,, = A}™! (Tye,) andgr, = VI, (€5 1y), thens, =
Dn;...;p1is coherentifL;,qr,) = (Ri,qr,) = 0.

In addition, when the host graph is not considered, if nodes are identified across
rules, it can be the case that some dangling edge appears in the concatenation. For
example, giverpy; p1, suppose that rulg; uses but does not delete edgel), that
rule p, specifies the deletion of nodeand that we have identified both nodeslt
is mandatory to add oneproductionp, » to the grammar, which conceptually is of
a different nature than those previously discussed. The latter dangling edges appear in
the context where the rule is applied, but not in other rules. We have an unavoidable
problem of coherence betwegn andp. » if we wanted to advance the application of
De 2 10 p1. Hence, we split the set of edges deleted=hyroductions into two disjoint
classes:

— External. Any edge not appearing explicitly in the grammar rules, i.e., edges of the
host graph “in the surroundings” of the actual initial digraph. Examples are edges
(2,1) and(3,1) in Fig.8.

— Internal. Any edge used or appended by a previous production in the concatena-
tion. One example is the previously mentioned e@igd).

e-productions can be classified accordinglynternal e-productions if any of its
edges is internal aneixternal e-production otherwise. Externat-productions cannot
be considered during rule specification which, in turn, may spoil coherence, compati-
bility, etc. One way to handle this problem is to check the conditions under which all
g-productions can be advanced to the front of the sequence. Given a host(giaph
which s,, — coherent and compatible — is to be applied, and assuming a match which
identifiess,,’s actual initial digraph {7,,) in G, we check whether for some andﬁ,
which respectively represent all changes to be don¥ tcand all modifications ta,,,

it is correct to writeH,, = <m (M,,) ,ﬁ(sn)>, where H,, would be the piece of the

final state grapl corresponding to the image of,,.

Example[JLet s3 = po;p; be a coherent and compatible concatenation. Using
operators we can writdd = (mg.2 ((mag1 (M2),T:1(p1))), Tz 2 (p2)), which is
equivalent tof = pa; p-2;p1; p-,1 (M2), with actual initial digraph twice modified
My =mg,2 (mg,1 (Mz2)) = (mg20mg,1) (M2).R

Definition 7 (Exact Derivation) Letd,, = (s,, m,) be a derivation with actual initial
digraph M,,, concatenatiors,, = p,;...;pi, matchesn,, = {mg1,...,mgn} and
e-productions{p. 1, ...,pen}. It is an exactderivation if there existn and 7. such

that H,, = d,, (M,,) = <m (M), T: (sn)>.

Previous equation might be satisfied if once all matches are calculated, the following
identity holds:p,; pe.n; .- ;P1;Pe,l = Dnj---;P1;Pen; - - - De,1- EQuation (3) allows
us to consider a concatenation almost as a production, justifying opeﬁmmslm and
our abuse of the notation (recall that brakets apply to productions and not to sequences).

Proposition 5. With notation as before, ji. ;L (p;—1;...;p1), Vj, thend,, is exact.

Proof
DOperatoﬁ“; modifies the sequence adding a unigyeroduction, the compositioh
of all e-productionsp, ;. To see this, if one edge is to dangle, it should be eliminated by
the corresponding-production, so no otherproduction deletes it unless it is added by
a subsequent production. But by hypothesis there is sequential independence of every
pe,; With respect to all preceeding productions and hencedoes not delete any edge
used byp;_1, ..., p1. In particular no edge added by any of these productions is erased.
In definition 7,m is the extension of the mateh which identifies the actual initial
digraph in the host graph, so it addsrto(1,,) all nodes and edges to distance one to
nodes that are going to be erased. A symmetrical reasoning to t@shbws thatn
is the composition of altg ;.0
With definition 7 and proposition 5 it is feasible to get a concatenation whete alll
productions are applied first, and all grammar rules afterwards, recovering the original
concatenation. Despite some obvious advantages, all dangling edges are deleted at the
beginning, which may be counterintuitive or even undesired. For example, if the dele-
tion of a particular edge is used for synchronization purposes. The following corollary
states that exactness can only be ruined by intespabductions. Les,, be a sequence
to be applied to a host graghand M, € 9 (s,,).

Corollary 1. With notation as above, assume there exists at least one matgtadn
M, that does not add any internalproduction. Thend,, is exact.

Proof (sketch)
CAIl potential dangling elements are edges surrounding the actual initial digraph. It
is thus possible to adapt the part of the host graph modified by the sequence at the
beginning, so applying proposition 5 we get exacteliss.

5 Conclusions and Future Work

In this paper we have presented a new approach to simple digraph transformation based
on an algebra of boolean matrices. We have shown some results (coherence, minimal

” Given a sequence of productions, their composition is one production which performs the same
operations, see [10] for the formal definition.

initial digraphs, permutatior;-congruence) that can be calculated on the graph trans-
formation system, independent of the host graph. We have introduced the match, and
how to handle dangling edges by generatifgroductions which are applied previous

to the original rule in order to delete dangling edges.

We believe that the main difference of our approach with respect to others is that
we use boolean operators to represent graph manipulations. Other approaches such as
DPO and SPO use a categorical representation of the operations, which, on the one hand
makes the approach more general, but on the other, makes bigger the gap between spec-
ification and implementation on tools. In addition, we believe that concepts like initial
digraph, coherence, arbitrary sequences of finite length are easier to express and study
in our framework than using category theory. Concerning additional related work, the
relational approach of [9] uses also exclusively a categorical approach for operations.
Other approaches such as logic-based [12], algebraic-logic [2], relation-algebraic [7]
are more distant from ours.

With respect to future work, we are working on application conditions, studying the
structure of(s,,), bringing to our framework techinques from Petri nets, considering
more general types of graphs and implementing the current concepts in a tool.

Acknowledgements:This work has been sponsored by the Spanish Ministry of Sci-
ence and Education, project TS12005-08225-C07-06. The authors would like to thank
the referees for their useful comments.

References

1. Braket notation introhttp://en.wikipedia.org/wiki/Bra-ket _notation .

2. Courcelle, B. 1990Graph Rewriting: An Algebraic and Logic Approattandbook of The-
oretical Computer Science, Vol. B. pp.: 193-242.

3. Ebhrig, H. 1979Introduction to the Algebraic Theory of Graph Grammars.V. Claus, H.
Ehrig, and G. Rozenberg (eds.), 1st Graph Grammar Workshop, pages 1-69. LNCS 73.

4. Ehrig, H., Heckel, R., Korff, M., bwe, M., Ribeiro, L., Wagner, A., Corradini, A. 1999.
Algebraic Approaches to Graph Transformation - Part Il: Single Pushout Approach and
Comparison with Double Pushout Approadh[11] Vol.1, pp.: 247-312.

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006ndamentals of Algebraic Graph Trans-
formation Springer.

6. Heckel, R., Kister, J. M., Taentzer, G. 200Qonfluence of Typed Attributed Graph Trans-
formation System®roc. ICGT'2002. LNCS 2505, pp.: 161-176. Springer.

7. Kahl, W. 2002.A Relational Algebraic Approach to Graph Structure Transformation
Tech.Rep. 2002-03. Univeraitder Bundeswehr Mhchen.

8. Lambers, L., Ehrig, H., Orejas, F. 20@ficient Conflict Detection in Graph Transformation
Systems by Essential Critical PaiBroc. GT-VMT'06, to appear in ENTCS (Elsevier).

9. Mizoguchi, Y., Kuwahara, Y. 1995. Relational Graph Rewritings. Theoretical Computer Sci-
ence, Vol 141, pp. 311-328.

10. Rerez Velasco, P. P, de Lara, J. 2006wards a New Algebraic Approach to Graph Trans-
formation: Long VersionTech. Rep. of the School of Comp. Sci., Univ. Anbma Madrid.
http://www.ii.uam.es/ ~jlara/investigacion/techrep 03_06.pdf .

11. Rozenberg, G. (managing ed.) 198&ndbook of Graph Grammars and Computing by
Graph Transformation. Vol.1 (Foundations), Vol.2(Applications, Languages and Tools),
Vol.3., (Concurrency, Parallelism and Distribution)orld Scientific.

12. Sclirr, A. Programmed Graph Replacement Systdm§l1], Vol.1, pp.: 479 - 546.

