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Abstract. This paper presents a technique called Improved Squeaky Wheel Op-

timisation (ISWO) for driver scheduling problems. It improves the original 

Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by 

incorporating two additional steps of Selection and Mutation which implement 

evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-

Mutation-Prioritization-Construction continues until stopping conditions are 

reached. The Analysis step first computes the fitness of a current solution to 

identify troublesome components. The Selection step then discards these trou-

blesome components probabilistically by using the fitness measure, and the Mu-
tation step follows to further discard a small number of components at random. 

After the above steps, an input solution becomes partial and thus the resulting 

partial solution needs to be repaired. The repair is carried out by using the Pri-
oritization step to first produce priorities that determine an order by which the 

following Construction step then schedules the remaining components. There-

fore, the optimisation in the ISWO is achieved by solution disruption, iterative 

improvement and an iterative constructive repair process performed. Encourag-

ing experimental results are reported. 

1 Introduction 

Personnel scheduling problems have been addressed by mangers, operational re-

searchers and computer scientists over the past forty years. During this period, there 

has been a wealth of literature on automated personnel scheduling including several 

survey papers that generalise the problem classification and the associated approaches 

(Burke et al., 2004; Ernst et al., 2004). 

In brief, personnel scheduling is the problem of assigning staff members to shifts 

or duties over a scheduling period (typically a week or a month) so that certain con-

straints (organizational and personal) are satisfied. The scheduling process normally 

consists of two stages: the first stage involves determining how many staff must be 
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employed in order to meet the service demand; the second stage involves allocating 

individual staff members to shifts and then assigning duties to individuals for each 

shift. Throughout the process, all industrial regulations associated with the relevant 

workplace agreements must be complied with. 

Since personnel scheduling problems are general NP-hard combinatorial problems 

(Garey and Johnson, 1979) which are unlikely to be solved optimally in polynomial 

time, various methods such as local search-based heuristics (Li and Kwan, 2005), 

knowledge based systems (Scott and Simpson, 1998)  and hyper-heuristics (Burke, 

Kendall, and Soubeiga, 2003) have been studied. Over the last few years, meta-

heuristics have attracted the most attention. Genetic Algorithms (GAs) form an im-

portant class of meta-heuristics (Aickelin 2002), and have been extensively applied to 

personnel scheduling problems (Aickelin and Dowsland 2000 & 2003; Aickelin and 

White, 2004; Easton and Mansour, 1999 Li and Kwan, 2003; Wren and Wren, 1995). 

A number of attempts have also been made using other meta-heuristics (Shen and 

Kwan, 2001; Aickelin and Li 2006). The methods and techniques that have been used 

over the years to tackle personnel scheduling problems have tended to draw on prob-

lem-specific information and particular heuristics. In this paper, we are trying to deal 

with the goal of developing more general personnel scheduling systems, i.e. a method 

which is not designed with one particular problem in mind, but is instead applicable to 

a range of problems and domains. 

The work that is presented here is based on the observation that, in most real world 

problems, the solutions consist of components which are intricately woven together. 

Each solution component, e.g. a shift pattern assigned to a particular employee, may 

be a strong candidate in its own right, but it also has to fit well with other compo-

nents. To deal with these components, Joslin and Clements (1999) proposed a tech-

nique called Squeaky Wheel Optimisation (SWO), and claimed it could be a general 

approach for various combinatorial optimisation problems. In this paper, we analyse 

the limitations of the original SWO and revise it by incorporating some evolutionary 

features into the searching process. We term the revised version the improved SWO 

(ISWO). Its general idea is to break a solution down into its components and assign a 

score to each by an evaluation function working under dynamic environments. The 

scores are employed in two ways: first as fitness values which determine the chances 

for the components to survive in the current solution, and then they are sorted to ob-

tain an order in which a greedy algorithm reschedules deleted components. 

2 A General Description of the ISWO 

SWO belongs to the class of non-systematic search techniques. In SWO, a priority or-

dering of problem components is given to a greedy algorithm that constructs a solu-

tion. That solution is then analyzed to find trouble spots, i.e. those components that 

are not handled as well as they could be, relative to some lower bound. The priority of 

the components that are trouble spots is then increased. All components, sorted in the 

new priority ordering are then given to the greedy constructor, with the likely result 

that those components will be handled better in the next solution. This construct-

analyze-prioritize cycle continues until a stopping condition is reached. Joslin and 
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Clements (1999) applied this technique on production line scheduling problems and 

graph colouring problems with some satisfactory results. Burke and Newall (2004) 

developed an adaptive heuristic framework for examination timetabling problems 

which was based on SWO. A hybridisation of this method (Burke and Newall, 2002) 

with an exam timetabling methodology based upon the Great Deluge algorithm was 

shown to be effective on benchmark problems (Burke et al 2004). 

In essence, SWO finds good quality solutions quickly by searching in two spaces 

simultaneously: the traditional solution space and the new priority space. Hence it 

avoids many problems that other local search methods often encounter. These features 

allow SWO to effectively make large coherent moves to escape from unpromising re-

gions in the search space. The construct-analyze-prioritize loop learns as it executes: 

problem components that are hard to handle tend to rise in the priority queue, and 

components that are easy to handle tend to sink. 

Although SWO has achieved success in certain problems of realistic size, there ex-

ist two limitations which restrict its wider applications in domains with large problem 

sizes, such as many practical scheduling and rostering problems. The first limitation 

lies in its scalability, which is caused by SWO’s construction step using greedy algo-

rithms to construct a solution from scratch at each iteration. If the construction proc-

ess could start from partial solutions which contain information of past solutions, the 

optimisation process would speed up significantly. 

The second limitation lies in its aspect of convergence: although SWO has the abil-

ity to make large coherent moves, it is, however, poor at making small tuning moves 

in the solution space. Ironically, this weakness is caused by its feature of operating on 

dual search spaces (a “strength”). Compared to the solution of the previous iteration, a 

small change in the sequence of components generated by the Prioritization step may 

correspond to a large change in the corresponding solution generated by the Construc-
tion step. For example, moving a component forward in the sequence can signifi-

cantly change its state in the actual solution, because any components occurring after 

it in the sequence must accommodate that component’s state. However, if it was pos-

sible to restrict changes of components to the trouble-makers, e.g. by delaying part of 

the sequence without going through the full Analysis and Prioritization cycle, then the 

changes in the corresponding solutions would be relatively small. 

To address the above two issues, this paper presents a new technique called ISWO, 

which incorporates two additional steps of Selection and Mutation into the loop. 

These two steps enable the ISWO to implement search by simulating an evolutionary 

process on a single solution. Each component in the solution has to continuously 

demonstrate its worthiness to stay in the solution. Hence in each iteration, a number 

of components will be deemed not worth keeping. The evolutionary strategy adopted 

may also throw out, with a low probability, some worthy components. Any deleted 

component is then rescheduled by using a greedy algorithm one at a time, in the order 

they occur in the priority sequence. Of key importance is that the admittance of a new 

component is analyzed by a dynamic evaluation function, which takes account of how 

well the prospective component will fit in with others already in the solution. The 

above processes are iterated together with the remainder of the classical SWO. Thus 

the global optimisation procedure is based on solution disruption and iterative im-

provement, while a constructive process is performed within. 
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As outlined, our proposed algorithm operates a sequence of Analysis, Selection, 

Mutation, Prioritization and Construction steps in a loop on one solution. Besides 

these five steps, some input parameters (e.g. stopping conditions) and a valid starting 

solution are initialized. In the Analysis step, the fitness of each component in the cur-

rent solution is computed. By analyzing a solution, well-fitting and ill-fitting compo-

nents can be identified. The fitness measure is then used probabilistically to select 

components to be discarded in the Selection step. Components with high fitness have 

a lower probability of being discarded. To get out of local optima in the solution 

space, it is necessary to incorporate the ability to make for uphill moves. This is 

achieved by the Mutation step which probabilistically discards even superior compo-

nents of the solution. 

After the above steps, a previously complete solution becomes partial due to the 

removal of some components, and thus the resulting partial solution needs to be re-

paired. Before making any repairs, the Prioritization step uses the results of the 

Analysis step to create priorities that in turn determine the scheduling order for the re-

cently removed components. In this step, the previous sequence of ‘trouble’ compo-

nents (i.e. recently removed ones) is modified: problem components with lower fit-

ness values (i.e. more trouble-making ones) are moved towards the front of the 

sequence: The lower the value, the further the component is moved towards the front 

of the sequence. Finally, the Construction step repairs a broken solution by applying a 

greedy algorithm to reschedule the removed components, in the order that they appear 

in the component sequence produced by the Prioritization. Throughout the iteration, 

the best solution is retained and finally presented as the final solution. 

3 ISWO for Driver Scheduling 

3.1 Problem description 

Bus and rail driver scheduling is represents process of partitioning blocks of work, 

each of which is serviced by one vehicle, into a set of legal driver shifts. The main ob-

jectives are to minimize the total number of shifts and the total shift costs. This prob-

lem has attracted much interest since the 1960’s. Wren and Rousseau (1995) gave an 

overview of the main approaches, many of which have been reported in a series of in-

ternational workshop conferences, e.g. (Voß and Daduna, 2001). 

To clarify the problem, we start by introducing some terminologies used in driver 

scheduling (Li and Kwan, 2003). A Relief Opportunity (RO) is a time and place 

where a driver can leave the current vehicle, for reasons such as taking a meal-break, 

or transferring to another vehicle. The work between two consecutive ROs on the 

same vehicle is called a piece of work. The work that a single driver carries out in a 

day is called a shift, which is composed of several spells of work. A spell contains a 

number of consecutive pieces of work on the same vehicle, and a schedule is a solu-

tion that contains a set of shifts that cover all the required work. The subsequent 

packaging of work for actual drivers is usually performed on a weekly basis, allowing 

for rest days and taking into account issues such as fairness and safety regulations. 
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The driver scheduling problem can be formulated as a set covering integer linear 

programming problem: all the legal potential shifts are first constructed by heuristics 

that are usually highly parameterized to reflect on the driver work rules of individual 

companies, and then a least cost subset covering all the work is selected to form a so-

lution schedule. In practice, the model has been extended to cater for other practical 

objectives and constraints (Fores et al., 2002). A typical problem may have a solution 

schedule requiring over 100 shifts chosen from a potential set of about 50,000. 

3.2 Implementation 

This section details how to apply the ISWO to the driver scheduling problem. Based 

on our problem-specific knowledge, we first set up five criteria to evaluate the struc-

ture of a shift from different aspects. Since each criterion bears some degree of uncer-

tainty, we characterize them as individual fuzzy membership functions and aggre-

gated these membership functions together by the way of fuzzy evaluation. The 

resulting aggregated function is used in a general evaluation function to analyze the 

fitness of each solution component (i.e. shift), and then incorporated into a construct-

ing heuristic to enable shift selection. The steps of Analysis, Selection, Mutation, Pri-
oritization and Construction are executed in a loop to improve a given initial solution 

iteratively. During each iteration, an unfit portion of the working schedule is removed. 

Broken schedules are repaired by the constructing heuristic. Throughout the itera-

tions, the best is retained and finally returned as the preserved solution. 

3.2.1 Analysis 

The first Analysis step is to evaluate the current arrangement for each shift in a sched-

ule. In this step, the fitness of the individual shift in a complete schedule is computed. 

The purpose of computing this measure is to determine, besides the structural fitness 

of shifts, which shifts are in positions that lead to less overlapping work time, and 

which shifts contribute unnecessarily to large amounts of overlapping work time. 

Hence we can formulate a normalized evaluation function as 

JjSfSfSF
jjj

∈∀×=   ),()()(
21

 (1) 

where Sj denotes the shift contained in the current schedule J with an index number j, 
0 ≤ f1(Sj) ≤ 1 is the structural coefficient of shift Sj, and 0 ≤ f2(Sj) ≤ 1 is the over-

cover penalty which reflects the coverage status for shift Sj. 

1) Structural coefficient 
Five fuzzified criteria ui (i= 1 ,…, 5), characterized by associated membership func-

tions, have been abstracted for the evaluation of the shift structure (Li 2002): Total 

work-time u1, the ratio u2 of total work-time to spreadover (i.e. the paid hours for a 

driver from sign on to sign off), the number of pieces of work u3, the number of spells 

u4 contained in a shift, and the fractional cover u5 which is given by a linear pro-

gramming relaxation. Since the evaluations by individual criteria refer to the local 

features of each criterion, an overall evaluation (i.e. the calculation of the structural 

coefficient f1(Sj) for shift Sj) could be made by the aggregation of these five criteria as 



 6 

},...,1{,)( ~

5

1

1 njwSf
iA

i

ij ∈∀= ∑
=

µ  
(2) 

where Ãi is the fuzzy subset on the i-th criterion and wi is the weight of criterion ui, s.t. 

0,1
5

1

≥=∑
=

i

i

i
ww  

(3) 

The design of the membership functions for these five criteria can be briefly described 

as follows. Since the fitness of shift Sj generally increases with the total work-time, 

ratio of total work-time to spreadover and number of pieces of work, respectively, the 

membership function μÃi (i = 1, 2, 3) for these three factors takes the same form as 
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where x1 is the total work-time of Sj, a1 is the maximum total work-time, b1 is the 

minimum total work-time, x2 is the ratio of total work-time to spreadover for Sj, a2 is 

the maximum ratio, b2 is the minimum ratio, x3 is the number of pieces of work con-

tained in Sj, a3 is the maximum number of pieces of work and b3 is the minimum 

number of pieces of work. 

With respect to the criterion u4, in most practical problems, the number of spells in 

a shift is limited to be at most four. 2-spell shifts are generally more effective than 

others, and 3-spell shifts are more desirable than 1-spell or 4-spell shifts. Hence, the 

membership function μÃ4 is defined as 
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where x4 is the number of spells contained in Sj. 

With respect to the last criterion u5, extensive studies have shown that the frac-

tional cover by linear programming relaxation provides some useful information 

about the significance of some of the shifts identified in the relaxed solution. In gen-

eral, the higher the fractional value of the variable for a shift, the higher chance that it 

is present in the integer solution (Kwan et al., 2001). We use the following Gaussian 

distribution function μÃ5 to define criterion u5. More details about this criterion can be 

found in (Li 2002). 
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where x5 is the fractional value of Sj in the relaxed LP solution, a is the maximum 

value in fractional cover and b is the minimum value in fractional cover. 
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2) Over-cover penalty 
The ratio of the overlapped work time to total work time in Sj, is also regarded as an 

important criterion, which can be formulated as over-cover penalty 0 ≤ f2(Sj) ≤ 1, 
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where |Sj| is the number of pieces of work in Sj, μjk is 0 if work piece k in Sj has been 

covered by any other shifts Si in J and 1 otherwise, and μjk is the work-time for work 

pieces k  in Sj. 

3.2.2 Selection 

This step is to decide whether a shift in a current schedule should be retained or dis-

carded. The decision is made by comparing its fitness value F(Sj) to (ps – p) where ps 

is a variable generated randomly for each iteration satisfying 0 ≤ ps ≤ 1, and p is a 

constant no larger than 1. If F(Sj) is larger than (ps – p), then Si will remain in its pre-

sent allocation, otherwise Sj will be removed from the current schedule. The pieces of 

work that Sj covers are then released unless they are also covered by other remaining 

shifts in the schedule. By using Selection, shift Sj with larger fitness F(Sj) has higher 

probability to survive in the current schedule. Note that the purpose of subtracting p 

from ps is to improve the efficiency of Selection. Without this operator, for example, 

almost all shifts in the current schedule will be removed when ps is close to 1. 

3.2.3 Mutation 

The Mutation step follows to mutate the retained shifts Sj, i.e. randomly discarding 

them from the partial solution at a small rate pm. The pieces of work that Sj covers are 

then released unless they are also covered by other remaining shifts in the schedule. 

Compared with the selection rate which is randomly generated for each iteration, the 

mutation rate pm should be much smaller to ensure convergence. 

3.2.4 Prioritization 

The Prioritization step first generates a sequence of problem shifts that need to be re-

scheduled (i.e. the ones that have been removed by the previous steps of Selection and 

Mutation). Using the results of Analysis, the problem shifts are sorted in ascending 

order of their fitness values, with poor-scheduled shifts being earlier in the sequence. 

The obtained sequence of problem shifts is then used indirectly to determine the 

order in which a new solution is constructed. Since each shift constitutes a number of 

pieces of work, the sequence of shifts can be transformed into a longer sequence of 

pieces of work, with pieces that have already been covered by earlier shifts not ap-

pearing again. Thus, the new sequence consists of all the uncovered pieces of work, in 

the order that they would be covered by the construction heuristic described below. 

3.2.5 Construction 

The Construction task is to assign shifts to all uncovered pieces of work to repair a 

broken schedule. By considering all potential shifts with respect to the pieces of work 

to be covered, it is possible to build a coverage list for each piece containing all shifts 
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that are able to cover it. The greedy constructor assumes that the desirability of adding 

shift Sj(j) into the partial schedule increases with its function value F(Sj). The recon-

structing heuristic is to assign shifts until every piece of work is covered. Candidate 

shifts are then assigned to the unassigned pieces of work sequentially. The criterion of 

choosing the next uncovered piece of work for assignment is to locate the first piece 

of work appearing in the priority sequence, obtain its corresponding coverage list, and 

randomly select a shift with one of the k-largest function value F(Sj). For a feasible 

solution obtained in such a way, over-cover is often inevitable and ultimately has to 

be resolved by manual editing before the schedule is implemented: In practise, the in-

tervention is simply to decide a shift that should contain the over-covered pieces of 

work and then remove this piece from the other shifts. 

Note that the evaluation function used in the Constructing heuristic takes the same 

form as the one used in the Analysis step. The major difference is that the former one 

needs to evaluate all unused shifts from the large possible legal shift set, for the pur-

pose of selecting some shifts to form a feasible schedule, while the latter only evalu-

ates shifts in the current schedule. 

3.3 Experimental results 

Among various heuristic and meta-heuristic approaches developed in recent years for 

driver scheduling, the Self-Adjusting Approach (SAA) performs generally best on a 

set of standard test problems (Li and Kwan, 2005). It uses the following weighted-

sum objective function, which combines the two main objectives of minimizing total 

cost and number of shifts into a weighted-sum cost function: 

Minimize ∑
=

+
L

i

Ji
c

1

)2000(  
(8) 

where L is the number of shifts in the schedule, cJi is the cost of the i-th shift, and 

2000 is used to give priority to the first objective of minimizing the number of shifts. 

For a benchmark comparison, the same objective function is used in the ISWO 

coded in C++ and implemented on a Pentium IV 2.1 GHz machine under Window 

XP. Thirteen real world instances from medium to very large size are used as the test-

bed. Starting from an initial solution generated by a genetic algorithm (Li and Kwan, 

2003), we set the stopping criterion equal to 1000 iterations without further improve-

ment. Also, we apply a fixed weight distribution of membership functions, W=(0.20, 

0.10, 0.10, 0.20, 0.40), in equation (3) to all thirteen data instances. In addition, we set 

parameter ps in Section 3.2.2 to be 0.3, the mutation rate pm in Section 3.2.3 to be 

0.05, and the k value in Section 3.2.5 to be 2. For each instance, we run the program 

ten times by using different random seeds. 

Table 1 lists the comparative results of the ISWO against the results of the ILP and 

the SAA, respectively. It also lists the results of the original SWO, which are far from 

optimal. Each data instance was run ten times by fixing the parameters and varying 

the pseudo random number seed at the beginning. Compared with the solutions of the 

ILP approach, our best solutions are 0.78% better in terms of total shift numbers, and 

are only 0.11% more expensive in terms of total cost. However, our results are much 

faster in general, especially for larger cases. Compared with the SAA which outper-
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forms other meta-heuristics available in the literature (Li and Kwan, 2005), our ISWO 

performs better for all data instances using similar execution times. 

 
 SAA 

S 
SAA 

C 
SAA 

CPU 
SWO 

S 
SWO 

C 
SWO 

CPU 
ISWO 

S 
ISWO 

C 
ISWO 

CPU 
μS 
% 

μC 
% 

B1 35 294 28 37 321 >999 34 292 121 0.0 1.2 

B2 35 294 26 36 319 >999 35 291 61 2.9 0.5 

B3 74 830 216 81 908 >999 73 828 203 -2.7 -2.7 

T1 62 507 131 67 554 >999 62 507 141 0.0 0.4 

T2 117 998 167 124 1097 >999 116 994 176 0.0 -0.9 

T3 51 406 11 56 455 >999 50 403 19 0.0 -0.2 

T4 62 572 530 67 632 >999 61 569 536 -4.7 1.2 

T5 243 2249 981 262 2488 >999 242 2248 873 0.0 0.0 

T6 271 2102 130 314 2410 >999 270 2082 135 -2.2 -0.0 

T7 343 2662 358 399 3091 >999 342 2662 318 -2.0 0.0 

T8 390 3239 986 447 3686 >999 389 3200 928 -1.5 2.0 

R1 49 420 23 53 444 >999 49 420 27 0.0 0.0 

R2 49 414 59 54 437 >999 49 411 74 0.0 0.6 

M 137 1153 280 154 1295 >999 136 1147 278 -0.8 0.1 

Table 1.   Comparative results.   B – Bus, T – Train, R – Tram, M – Mean.   S – best shift, 
C – best cost, CPU – mean CPU time in seconds.   SAA – Self-Adjusting Approach, SWO - 

Squeaky Wheel Optimisation, ISWO – Improved Squeaky Wheel Optimisation, TRACS – 

TRACS II by Fores et al.   The last two columns show % between ISWO and TRACS II. 

4 Conclusions 

This paper presents a new technique to solve personnel scheduling problems by using 

the original idea of SWO but by adding two steps of Selection and Mutation into its 

loop of Analysis / Prioritization / Construction. With these two additional steps, the 

drawbacks of the original SWO in terms of optimisation ability and execution speed 

are successfully dealt with. Taken as a whole, the ISWO implements evolution on a 

single solution and carries out search by solution disruption, iterative improvement 

and an iterative constructive process. The experiments have demonstrated that the 

ISWO performs very efficiently and competitively. In general, it outperforms the pre-

vious best-performing approaches reported in the literature. 

The architecture of the ISWO is innovative, and thus there is still some room for 

further improvement. For example, we currently only use one fixed rule. We believe 

that by adding some more flexible rules into the search, solution quality could be im-

proved further. This would be particularly interesting if we have more difficult in-

stances to solve. In the future, we are also looking at more advanced methods of 

Analysis, Selection and Mutation. 
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