
Improved Squeaky Wheel Optimisation for Driver

Scheduling

Uwe Aickelin, Edmund K. Burke and Jingpeng Li*

School of Computer Science and Information Technology

The University of Nottingham

Nottingham, NG8 1BB

United Kingdom

{uxa, ekb, jpl}@cs.nott.ac.uk

*Proceedings of the 9th International Conference on Parallel Problem Solving from Nature

(PPSN IX), Lecture Notes in Computer Science 4193, pp 182-191, Reykjavik, Iceland.

Authors are in alphabetical order. Please send all correspondence to Jingpeng Li

Abstract. This paper presents a technique called Improved Squeaky Wheel Op-

timisation (ISWO) for driver scheduling problems. It improves the original

Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by

incorporating two additional steps of Selection and Mutation which implement

evolution within a single solution. In the ISWO, a cycle of Analysis-Selection-

Mutation-Prioritization-Construction continues until stopping conditions are

reached. The Analysis step first computes the fitness of a current solution to

identify troublesome components. The Selection step then discards these trou-

blesome components probabilistically by using the fitness measure, and the Mu-
tation step follows to further discard a small number of components at random.

After the above steps, an input solution becomes partial and thus the resulting

partial solution needs to be repaired. The repair is carried out by using the Pri-
oritization step to first produce priorities that determine an order by which the

following Construction step then schedules the remaining components. There-

fore, the optimisation in the ISWO is achieved by solution disruption, iterative

improvement and an iterative constructive repair process performed. Encourag-

ing experimental results are reported.

1 Introduction

Personnel scheduling problems have been addressed by mangers, operational re-

searchers and computer scientists over the past forty years. During this period, there

has been a wealth of literature on automated personnel scheduling including several

survey papers that generalise the problem classification and the associated approaches

(Burke et al., 2004; Ernst et al., 2004).

In brief, personnel scheduling is the problem of assigning staff members to shifts

or duties over a scheduling period (typically a week or a month) so that certain con-

straints (organizational and personal) are satisfied. The scheduling process normally

consists of two stages: the first stage involves determining how many staff must be

 2

employed in order to meet the service demand; the second stage involves allocating

individual staff members to shifts and then assigning duties to individuals for each

shift. Throughout the process, all industrial regulations associated with the relevant

workplace agreements must be complied with.

Since personnel scheduling problems are general NP-hard combinatorial problems

(Garey and Johnson, 1979) which are unlikely to be solved optimally in polynomial

time, various methods such as local search-based heuristics (Li and Kwan, 2005),

knowledge based systems (Scott and Simpson, 1998) and hyper-heuristics (Burke,

Kendall, and Soubeiga, 2003) have been studied. Over the last few years, meta-

heuristics have attracted the most attention. Genetic Algorithms (GAs) form an im-

portant class of meta-heuristics (Aickelin 2002), and have been extensively applied to

personnel scheduling problems (Aickelin and Dowsland 2000 & 2003; Aickelin and

White, 2004; Easton and Mansour, 1999 Li and Kwan, 2003; Wren and Wren, 1995).

A number of attempts have also been made using other meta-heuristics (Shen and

Kwan, 2001; Aickelin and Li 2006). The methods and techniques that have been used

over the years to tackle personnel scheduling problems have tended to draw on prob-

lem-specific information and particular heuristics. In this paper, we are trying to deal

with the goal of developing more general personnel scheduling systems, i.e. a method

which is not designed with one particular problem in mind, but is instead applicable to

a range of problems and domains.

The work that is presented here is based on the observation that, in most real world

problems, the solutions consist of components which are intricately woven together.

Each solution component, e.g. a shift pattern assigned to a particular employee, may

be a strong candidate in its own right, but it also has to fit well with other compo-

nents. To deal with these components, Joslin and Clements (1999) proposed a tech-

nique called Squeaky Wheel Optimisation (SWO), and claimed it could be a general

approach for various combinatorial optimisation problems. In this paper, we analyse

the limitations of the original SWO and revise it by incorporating some evolutionary

features into the searching process. We term the revised version the improved SWO

(ISWO). Its general idea is to break a solution down into its components and assign a

score to each by an evaluation function working under dynamic environments. The

scores are employed in two ways: first as fitness values which determine the chances

for the components to survive in the current solution, and then they are sorted to ob-

tain an order in which a greedy algorithm reschedules deleted components.

2 A General Description of the ISWO

SWO belongs to the class of non-systematic search techniques. In SWO, a priority or-

dering of problem components is given to a greedy algorithm that constructs a solu-

tion. That solution is then analyzed to find trouble spots, i.e. those components that

are not handled as well as they could be, relative to some lower bound. The priority of

the components that are trouble spots is then increased. All components, sorted in the

new priority ordering are then given to the greedy constructor, with the likely result

that those components will be handled better in the next solution. This construct-

analyze-prioritize cycle continues until a stopping condition is reached. Joslin and

 3

Clements (1999) applied this technique on production line scheduling problems and

graph colouring problems with some satisfactory results. Burke and Newall (2004)

developed an adaptive heuristic framework for examination timetabling problems

which was based on SWO. A hybridisation of this method (Burke and Newall, 2002)

with an exam timetabling methodology based upon the Great Deluge algorithm was

shown to be effective on benchmark problems (Burke et al 2004).

In essence, SWO finds good quality solutions quickly by searching in two spaces

simultaneously: the traditional solution space and the new priority space. Hence it

avoids many problems that other local search methods often encounter. These features

allow SWO to effectively make large coherent moves to escape from unpromising re-

gions in the search space. The construct-analyze-prioritize loop learns as it executes:

problem components that are hard to handle tend to rise in the priority queue, and

components that are easy to handle tend to sink.

Although SWO has achieved success in certain problems of realistic size, there ex-

ist two limitations which restrict its wider applications in domains with large problem

sizes, such as many practical scheduling and rostering problems. The first limitation

lies in its scalability, which is caused by SWO’s construction step using greedy algo-

rithms to construct a solution from scratch at each iteration. If the construction proc-

ess could start from partial solutions which contain information of past solutions, the

optimisation process would speed up significantly.

The second limitation lies in its aspect of convergence: although SWO has the abil-

ity to make large coherent moves, it is, however, poor at making small tuning moves

in the solution space. Ironically, this weakness is caused by its feature of operating on

dual search spaces (a “strength”). Compared to the solution of the previous iteration, a

small change in the sequence of components generated by the Prioritization step may

correspond to a large change in the corresponding solution generated by the Construc-
tion step. For example, moving a component forward in the sequence can signifi-

cantly change its state in the actual solution, because any components occurring after

it in the sequence must accommodate that component’s state. However, if it was pos-

sible to restrict changes of components to the trouble-makers, e.g. by delaying part of

the sequence without going through the full Analysis and Prioritization cycle, then the

changes in the corresponding solutions would be relatively small.

To address the above two issues, this paper presents a new technique called ISWO,

which incorporates two additional steps of Selection and Mutation into the loop.

These two steps enable the ISWO to implement search by simulating an evolutionary

process on a single solution. Each component in the solution has to continuously

demonstrate its worthiness to stay in the solution. Hence in each iteration, a number

of components will be deemed not worth keeping. The evolutionary strategy adopted

may also throw out, with a low probability, some worthy components. Any deleted

component is then rescheduled by using a greedy algorithm one at a time, in the order

they occur in the priority sequence. Of key importance is that the admittance of a new

component is analyzed by a dynamic evaluation function, which takes account of how

well the prospective component will fit in with others already in the solution. The

above processes are iterated together with the remainder of the classical SWO. Thus

the global optimisation procedure is based on solution disruption and iterative im-

provement, while a constructive process is performed within.

 4

As outlined, our proposed algorithm operates a sequence of Analysis, Selection,

Mutation, Prioritization and Construction steps in a loop on one solution. Besides

these five steps, some input parameters (e.g. stopping conditions) and a valid starting

solution are initialized. In the Analysis step, the fitness of each component in the cur-

rent solution is computed. By analyzing a solution, well-fitting and ill-fitting compo-

nents can be identified. The fitness measure is then used probabilistically to select

components to be discarded in the Selection step. Components with high fitness have

a lower probability of being discarded. To get out of local optima in the solution

space, it is necessary to incorporate the ability to make for uphill moves. This is

achieved by the Mutation step which probabilistically discards even superior compo-

nents of the solution.

After the above steps, a previously complete solution becomes partial due to the

removal of some components, and thus the resulting partial solution needs to be re-

paired. Before making any repairs, the Prioritization step uses the results of the

Analysis step to create priorities that in turn determine the scheduling order for the re-

cently removed components. In this step, the previous sequence of ‘trouble’ compo-

nents (i.e. recently removed ones) is modified: problem components with lower fit-

ness values (i.e. more trouble-making ones) are moved towards the front of the

sequence: The lower the value, the further the component is moved towards the front

of the sequence. Finally, the Construction step repairs a broken solution by applying a

greedy algorithm to reschedule the removed components, in the order that they appear

in the component sequence produced by the Prioritization. Throughout the iteration,

the best solution is retained and finally presented as the final solution.

3 ISWO for Driver Scheduling

3.1 Problem description

Bus and rail driver scheduling is represents process of partitioning blocks of work,

each of which is serviced by one vehicle, into a set of legal driver shifts. The main ob-

jectives are to minimize the total number of shifts and the total shift costs. This prob-

lem has attracted much interest since the 1960’s. Wren and Rousseau (1995) gave an

overview of the main approaches, many of which have been reported in a series of in-

ternational workshop conferences, e.g. (Voß and Daduna, 2001).

To clarify the problem, we start by introducing some terminologies used in driver

scheduling (Li and Kwan, 2003). A Relief Opportunity (RO) is a time and place

where a driver can leave the current vehicle, for reasons such as taking a meal-break,

or transferring to another vehicle. The work between two consecutive ROs on the

same vehicle is called a piece of work. The work that a single driver carries out in a

day is called a shift, which is composed of several spells of work. A spell contains a

number of consecutive pieces of work on the same vehicle, and a schedule is a solu-

tion that contains a set of shifts that cover all the required work. The subsequent

packaging of work for actual drivers is usually performed on a weekly basis, allowing

for rest days and taking into account issues such as fairness and safety regulations.

 5

The driver scheduling problem can be formulated as a set covering integer linear

programming problem: all the legal potential shifts are first constructed by heuristics

that are usually highly parameterized to reflect on the driver work rules of individual

companies, and then a least cost subset covering all the work is selected to form a so-

lution schedule. In practice, the model has been extended to cater for other practical

objectives and constraints (Fores et al., 2002). A typical problem may have a solution

schedule requiring over 100 shifts chosen from a potential set of about 50,000.

3.2 Implementation

This section details how to apply the ISWO to the driver scheduling problem. Based

on our problem-specific knowledge, we first set up five criteria to evaluate the struc-

ture of a shift from different aspects. Since each criterion bears some degree of uncer-

tainty, we characterize them as individual fuzzy membership functions and aggre-

gated these membership functions together by the way of fuzzy evaluation. The

resulting aggregated function is used in a general evaluation function to analyze the

fitness of each solution component (i.e. shift), and then incorporated into a construct-

ing heuristic to enable shift selection. The steps of Analysis, Selection, Mutation, Pri-
oritization and Construction are executed in a loop to improve a given initial solution

iteratively. During each iteration, an unfit portion of the working schedule is removed.

Broken schedules are repaired by the constructing heuristic. Throughout the itera-

tions, the best is retained and finally returned as the preserved solution.

3.2.1 Analysis

The first Analysis step is to evaluate the current arrangement for each shift in a sched-

ule. In this step, the fitness of the individual shift in a complete schedule is computed.

The purpose of computing this measure is to determine, besides the structural fitness

of shifts, which shifts are in positions that lead to less overlapping work time, and

which shifts contribute unnecessarily to large amounts of overlapping work time.

Hence we can formulate a normalized evaluation function as

JjSfSfSF
jjj

∈∀×=),()()(
21

 (1)

where Sj denotes the shift contained in the current schedule J with an index number j,
0 ≤ f1(Sj) ≤ 1 is the structural coefficient of shift Sj, and 0 ≤ f2(Sj) ≤ 1 is the over-

cover penalty which reflects the coverage status for shift Sj.

1) Structural coefficient
Five fuzzified criteria ui (i= 1 ,…, 5), characterized by associated membership func-

tions, have been abstracted for the evaluation of the shift structure (Li 2002): Total

work-time u1, the ratio u2 of total work-time to spreadover (i.e. the paid hours for a

driver from sign on to sign off), the number of pieces of work u3, the number of spells

u4 contained in a shift, and the fractional cover u5 which is given by a linear pro-

gramming relaxation. Since the evaluations by individual criteria refer to the local

features of each criterion, an overall evaluation (i.e. the calculation of the structural

coefficient f1(Sj) for shift Sj) could be made by the aggregation of these five criteria as

 6

},...,1{,)(~

5

1

1 njwSf
iA

i

ij ∈∀= ∑
=

µ
(2)

where Ãi is the fuzzy subset on the i-th criterion and wi is the weight of criterion ui, s.t.

0,1
5

1

≥=∑
=

i

i

i
ww

(3)

The design of the membership functions for these five criteria can be briefly described

as follows. Since the fitness of shift Sj generally increases with the total work-time,

ratio of total work-time to spreadover and number of pieces of work, respectively, the

membership function μÃi (i = 1, 2, 3) for these three factors takes the same form as













≤≤
+










−

−
−

+
<≤









−

−

=

ii

ii

ii

ii

ii

ii

ii

ii

A

ax
ba

ba

ax

ba
xa

ba

bx

i

2
 ,21

2
 ,2

2

2

~µ

(4)

where x1 is the total work-time of Sj, a1 is the maximum total work-time, b1 is the

minimum total work-time, x2 is the ratio of total work-time to spreadover for Sj, a2 is

the maximum ratio, b2 is the minimum ratio, x3 is the number of pieces of work con-

tained in Sj, a3 is the maximum number of pieces of work and b3 is the minimum

number of pieces of work.

With respect to the criterion u4, in most practical problems, the number of spells in

a shift is limited to be at most four. 2-spell shifts are generally more effective than

others, and 3-spell shifts are more desirable than 1-spell or 4-spell shifts. Hence, the

membership function μÃ4 is defined as









=

=

==

=

2 if ,1

3 if ,5.0

4or 1 if ,0

4

4

44

~
4

x

x

xx

A
µ

(5)

where x4 is the number of spells contained in Sj.

With respect to the last criterion u5, extensive studies have shown that the frac-

tional cover by linear programming relaxation provides some useful information

about the significance of some of the shifts identified in the relaxed solution. In gen-

eral, the higher the fractional value of the variable for a shift, the higher chance that it

is present in the integer solution (Kwan et al., 2001). We use the following Gaussian

distribution function μÃ5 to define criterion u5. More details about this criterion can be

found in (Li 2002).







=
−

−

otherwise , 0

cover fractional in the is if ,

2
52

5

)(
)(

01.0ln

~ j

ax
ba

A

Seµ
(6)

where x5 is the fractional value of Sj in the relaxed LP solution, a is the maximum

value in fractional cover and b is the minimum value in fractional cover.

 7

2) Over-cover penalty
The ratio of the overlapped work time to total work time in Sj, is also regarded as an

important criterion, which can be formulated as over-cover penalty 0 ≤ f2(Sj) ≤ 1,

JjSf
jj S

k

jk

S

k

jkjkj
∈∀×= ∑∑

==

 ,)()(
11

2
ββα

(7)

where |Sj| is the number of pieces of work in Sj, μjk is 0 if work piece k in Sj has been

covered by any other shifts Si in J and 1 otherwise, and μjk is the work-time for work

pieces k in Sj.

3.2.2 Selection

This step is to decide whether a shift in a current schedule should be retained or dis-

carded. The decision is made by comparing its fitness value F(Sj) to (ps – p) where ps

is a variable generated randomly for each iteration satisfying 0 ≤ ps ≤ 1, and p is a

constant no larger than 1. If F(Sj) is larger than (ps – p), then Si will remain in its pre-

sent allocation, otherwise Sj will be removed from the current schedule. The pieces of

work that Sj covers are then released unless they are also covered by other remaining

shifts in the schedule. By using Selection, shift Sj with larger fitness F(Sj) has higher

probability to survive in the current schedule. Note that the purpose of subtracting p

from ps is to improve the efficiency of Selection. Without this operator, for example,

almost all shifts in the current schedule will be removed when ps is close to 1.

3.2.3 Mutation

The Mutation step follows to mutate the retained shifts Sj, i.e. randomly discarding

them from the partial solution at a small rate pm. The pieces of work that Sj covers are

then released unless they are also covered by other remaining shifts in the schedule.

Compared with the selection rate which is randomly generated for each iteration, the

mutation rate pm should be much smaller to ensure convergence.

3.2.4 Prioritization

The Prioritization step first generates a sequence of problem shifts that need to be re-

scheduled (i.e. the ones that have been removed by the previous steps of Selection and

Mutation). Using the results of Analysis, the problem shifts are sorted in ascending

order of their fitness values, with poor-scheduled shifts being earlier in the sequence.

The obtained sequence of problem shifts is then used indirectly to determine the

order in which a new solution is constructed. Since each shift constitutes a number of

pieces of work, the sequence of shifts can be transformed into a longer sequence of

pieces of work, with pieces that have already been covered by earlier shifts not ap-

pearing again. Thus, the new sequence consists of all the uncovered pieces of work, in

the order that they would be covered by the construction heuristic described below.

3.2.5 Construction

The Construction task is to assign shifts to all uncovered pieces of work to repair a

broken schedule. By considering all potential shifts with respect to the pieces of work

to be covered, it is possible to build a coverage list for each piece containing all shifts

 8

that are able to cover it. The greedy constructor assumes that the desirability of adding

shift Sj(j) into the partial schedule increases with its function value F(Sj). The recon-

structing heuristic is to assign shifts until every piece of work is covered. Candidate

shifts are then assigned to the unassigned pieces of work sequentially. The criterion of

choosing the next uncovered piece of work for assignment is to locate the first piece

of work appearing in the priority sequence, obtain its corresponding coverage list, and

randomly select a shift with one of the k-largest function value F(Sj). For a feasible

solution obtained in such a way, over-cover is often inevitable and ultimately has to

be resolved by manual editing before the schedule is implemented: In practise, the in-

tervention is simply to decide a shift that should contain the over-covered pieces of

work and then remove this piece from the other shifts.

Note that the evaluation function used in the Constructing heuristic takes the same

form as the one used in the Analysis step. The major difference is that the former one

needs to evaluate all unused shifts from the large possible legal shift set, for the pur-

pose of selecting some shifts to form a feasible schedule, while the latter only evalu-

ates shifts in the current schedule.

3.3 Experimental results

Among various heuristic and meta-heuristic approaches developed in recent years for

driver scheduling, the Self-Adjusting Approach (SAA) performs generally best on a

set of standard test problems (Li and Kwan, 2005). It uses the following weighted-

sum objective function, which combines the two main objectives of minimizing total

cost and number of shifts into a weighted-sum cost function:

Minimize ∑
=

+
L

i

Ji
c

1

)2000(
(8)

where L is the number of shifts in the schedule, cJi is the cost of the i-th shift, and

2000 is used to give priority to the first objective of minimizing the number of shifts.

For a benchmark comparison, the same objective function is used in the ISWO

coded in C++ and implemented on a Pentium IV 2.1 GHz machine under Window

XP. Thirteen real world instances from medium to very large size are used as the test-

bed. Starting from an initial solution generated by a genetic algorithm (Li and Kwan,

2003), we set the stopping criterion equal to 1000 iterations without further improve-

ment. Also, we apply a fixed weight distribution of membership functions, W=(0.20,

0.10, 0.10, 0.20, 0.40), in equation (3) to all thirteen data instances. In addition, we set

parameter ps in Section 3.2.2 to be 0.3, the mutation rate pm in Section 3.2.3 to be

0.05, and the k value in Section 3.2.5 to be 2. For each instance, we run the program

ten times by using different random seeds.

Table 1 lists the comparative results of the ISWO against the results of the ILP and

the SAA, respectively. It also lists the results of the original SWO, which are far from

optimal. Each data instance was run ten times by fixing the parameters and varying

the pseudo random number seed at the beginning. Compared with the solutions of the

ILP approach, our best solutions are 0.78% better in terms of total shift numbers, and

are only 0.11% more expensive in terms of total cost. However, our results are much

faster in general, especially for larger cases. Compared with the SAA which outper-

 9

forms other meta-heuristics available in the literature (Li and Kwan, 2005), our ISWO

performs better for all data instances using similar execution times.

 SAA

S
SAA

C
SAA

CPU
SWO

S
SWO

C
SWO

CPU
ISWO

S
ISWO

C
ISWO

CPU
μS
%

μC
%

B1 35 294 28 37 321 >999 34 292 121 0.0 1.2

B2 35 294 26 36 319 >999 35 291 61 2.9 0.5

B3 74 830 216 81 908 >999 73 828 203 -2.7 -2.7

T1 62 507 131 67 554 >999 62 507 141 0.0 0.4

T2 117 998 167 124 1097 >999 116 994 176 0.0 -0.9

T3 51 406 11 56 455 >999 50 403 19 0.0 -0.2

T4 62 572 530 67 632 >999 61 569 536 -4.7 1.2

T5 243 2249 981 262 2488 >999 242 2248 873 0.0 0.0

T6 271 2102 130 314 2410 >999 270 2082 135 -2.2 -0.0

T7 343 2662 358 399 3091 >999 342 2662 318 -2.0 0.0

T8 390 3239 986 447 3686 >999 389 3200 928 -1.5 2.0

R1 49 420 23 53 444 >999 49 420 27 0.0 0.0

R2 49 414 59 54 437 >999 49 411 74 0.0 0.6

M 137 1153 280 154 1295 >999 136 1147 278 -0.8 0.1

Table 1. Comparative results. B – Bus, T – Train, R – Tram, M – Mean. S – best shift,
C – best cost, CPU – mean CPU time in seconds. SAA – Self-Adjusting Approach, SWO -

Squeaky Wheel Optimisation, ISWO – Improved Squeaky Wheel Optimisation, TRACS –

TRACS II by Fores et al. The last two columns show % between ISWO and TRACS II.

4 Conclusions

This paper presents a new technique to solve personnel scheduling problems by using

the original idea of SWO but by adding two steps of Selection and Mutation into its

loop of Analysis / Prioritization / Construction. With these two additional steps, the

drawbacks of the original SWO in terms of optimisation ability and execution speed

are successfully dealt with. Taken as a whole, the ISWO implements evolution on a

single solution and carries out search by solution disruption, iterative improvement

and an iterative constructive process. The experiments have demonstrated that the

ISWO performs very efficiently and competitively. In general, it outperforms the pre-

vious best-performing approaches reported in the literature.

The architecture of the ISWO is innovative, and thus there is still some room for

further improvement. For example, we currently only use one fixed rule. We believe

that by adding some more flexible rules into the search, solution quality could be im-

proved further. This would be particularly interesting if we have more difficult in-

stances to solve. In the future, we are also looking at more advanced methods of

Analysis, Selection and Mutation.

 10

Acknowledgements

The research described in this paper was funded by the Engineering and Physical Sci-

ences Research Council (EPSRC), under grant GR/S70197/1.

References

U. Aickelin, “An Indirect Genetic Algorithm for Set Covering Problems,” Journal of the Op-
erational Research Society, 53(10), pp 1118-1126, 2002.

U. Aickelin and J. Li, “An Estimation of Distribution Algorithm for Nurse Scheduling,” Annals
of Operations Research, in print, 2006.

U. Aickelin and K. Dowsland, “Exploiting problem structure in a genetic algorithm approach to

a nurse rostering problem”, Journal of Scheduling, 3(3), pp 139-153, 2000.

U. Aickelin and K. Dowsland, “An indirect genetic algorithm for a nurse scheduling problem,”

Computers and Operations Research, vol. 31, pp. 761-778, 2003.

U. Aickelin and P. White, “Building better nurse scheduling algorithms,” Annals of Operations
Research, vol. 128, pp. 159-177, 2004.

E.K. Burke, Y. Bykov, J.P. Newall and S. Petrovic, “A Time-Predefined Local Search Ap-

proach to Exam Timetabling Problems”, IIE Transactions, 36(6), pp 509-528, 2004.

E.K. Burke, P. Causmaecker, G. Vanden Berghe, and H. Landeghem, “The state of the art of

nurse rostering,” Journal of Scheduling, vol. 7, no. 6, pp. 441-499, 2004.

E.K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic for timetabling and

rostering,” Journal of Heuristics, vol. 9, no. 6, pp. 451-470, 2003.

E.K. Burke and J.P. Newall, “Solving Examination Timetabling Problems through Adaptation

of Heuristic Orderings”, Annals of Operations Research 129, pp 107-134, 2004.

E.K. Burke and J.P. Newall, “Enhancing Timetable Solutions with Local Search Methods”,

Practice and Theory of Automated Timetabling IV, Springer Lecture Notes in Computer

Science 2740, pages 195-206, 2003.

F.F. Easton and N. Mansour, “A distributed genetic algorithm for deterministic and stochastic

labor scheduling problems,” European Journal of Operational Research, 505–523, 1999.

A.T. Ernst, H. Jiang et al, “Staff scheduling and rostering: a review of applications, methods

and models,” European Journal of Operational Research, vol. 153, pp. 3-27, 2004.

S. Fores, L. Proll, and A. Wren, “TRACS II: a hybrid IP/heuristic driver scheduling system for

public transport,” Journal of the OR Society, vol. 53, pp. 1093-1100, 2002.

M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-
Completeness. Freeman, San Francisco, 1979.

R.S.K. Kwan, A.S.K. Kwan, and A. Wren, “Evolutionary driver scheduling with relief chains.”

Evolutionary Computation, vol 9, pp. 445–460, 2001.

J. Li, Fuzzy Evolutionary Approach for Bus and Rail Driver Scheduling. PhD Thesis, Univer-

sity of Leeds, UK, 2002.

J. Li and R.S.K. Kwan, “A fuzzy genetic algorithm for driver scheduling,” European Journal of
Operational Research, vol. 147, pp. 334-344, 2003.

J. Li and R.S.K. Kwan, “A self-adjusting algorithm for driver scheduling,” Journal of Heuris-
tics, vol. 11, pp. 351-367, 2005.

D.E. Joslin and D.P. Clements, “Squeak wheel optimisation,” Journal of Artificial Intelligence,

Morgan Kaufmann Publishers, vol. 10, pp. 353-373, 1999.

S. Scott and R.M. Simpson, “Case-bases incorporating scheduling constraint dimensions: ex-

periences in nurse rostering,” in Smyth and Cunningham (eds.), Advances in Case-Based
Reasoning, vol. 1488, pp. 392-401, Springer LNAI, 1998.

 11

Y. Shen and R.S.K. Kwan, “Tabu search for driver scheduling,” Computer-Aided Scheduling of
Public Transport, pp. 121-135, Springer-Verlag, 2001.

S. Voß and J.R. Daduna (Eds.), Computer-Aided Scheduling of Public Transport, Proceedings,

Berlin, Germany, Springer-Verlag, 2001.

A. Wren and D.O. Wren, “A genetic algorithm for public transport driver scheduling,” Com-
puters and Operations Research, vol. 22, pp. 101-110, 1995.

A. Wren and J.M. Rousseau, “Bus driver scheduling – an overview,” in Computer-Aided Tran-
sit Scheduling, pp. 173-187, Springer-Verlag, 1995.

