
A Multi-Level Memetic/Exact Hybrid
Algorithm for the Still Life Problem

José E. Gallardo, Carlos Cotta, and Antonio J. Fernández

Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain.

{pepeg,ccottap,afdez}@lcc.uma.es

Abstract. Bucket elimination (BE) is an exact technique based on vari-
able elimination. It has been recently used with encouraging results as
a mechanism for recombining solutions in a memetic algorithm (MA)
for the still life problem, a hard constraint optimization problem based
on Conway’s game of life. This paper studies expanded multi-level mod-
els in which this exact/metaheuristic hybrid is further hybridized with
branch-and-bound techniques. A novel variable clustering based recom-
bination operator is also explored, with the aim of reducing the inherent
time complexity of BE. Multi-parent recombination issues are analyzed
as well. The obtained results are of higher quality than any previous
metaheuristic approach, with large instances being solved to optimality.

1 Introduction

Conway’s game of life [1] consists of an infinite checkerboard in which the only
player places checkers on some of its squares. Each square has eight neighbors:
the eight cells that share one or two corners with it. A cell is alive if there is
a checker on it, and dead otherwise. The state of the board evolves iteratively
according to three rules: (i) if a cell has exactly two living neighbors then its
state remains the same in the next iteration, (ii) if a cell has exactly three living
neighbors then it is alive in the next iteration, and (iii) if a cell has fewer than
two or more than three living neighbors, then it is dead in the next iteration.
The maximum density still life problem (MDSLP) is a challenging constraint
optimization problem based on Conway’s game. The problem is to find stable
configurations, called still lifes, consisting of finite board configurations (of size
n × n) with a maximum number of living cells not changing along time. This
problem has many practical applications in the control of discrete systems [2,
3] and is very hard to solve; though it has not been proven to be NP-hard, no
polynomial-time algorithm for it is known.

The MDSLP has been tackled using different approaches. Bosch and Trick
[4] used a hybrid approach mixing integer programming and constraint pro-
gramming to solve the cases for n = 14 and n = 15 in about 6 and 8 days
of CPU time respectively. Smith [5] considered a pure constraint programming
approach to tackle the problem and proposed a formulation of the problem as
a constraint satisfaction problem with 0-1 variables and non-binary constraints.

A dual formulation of the problem was also considered, and it was proven that
this dual representation outperformed the initial one (although it could only
solve instances up to n = 10). The best results for this problem were reported
in [6], showing the usefulness of bucket elimination (BE). Their basic approach
could solve the problem for n = 14 in about 105 seconds. Further improvements
pushed the solvability boundary forward to n = 20 in about the same time. At
any rate, it is clear that these exact approaches are inherently limited for in-
creasing problem sizes, and their capabilities as anytime algorithms are unclear.
Later, Cheng and Yap [7] tackled the problem via the use of ad-hoc constraints,
but their results are far from the ones obtained previously by Larrosa et al.

To the best of our knowledge, the only evolutionary approach to the problem
has been proposed by Gallardo et al. [8]. Their work showed that a MA endowed
with BE could provide optimal or near-optimal solutions at an acceptable com-
putational cost. A study of partial Lamarckism was also conducted, revealing
that applying always the BE operator provides the best results. In this paper,
we consider extended hybrid models in which the hybridization with exact tech-
niques takes place at two levels: inside the MA, as an embedded operator, and
outside it, in a cooperative model. We also study variants based on an alternative
recombination operator, and on multi-parent recombination [9]. Experimental
results reveal that the performance of the algorithm is improved significantly,
showing that MAs stand as a practical alternative to exact techniques employed
so far to obtain still-life patterns.

2 Bucket Elimination and the Still Life Problem

Bucket elimination [10] is a generic algorithm particularly adequate for solving
weighted constraint satisfaction problems (WCSPs) [11]. A WCSP is defined by
a set X = {x1, · · · , xn} of variables taking values from a set D of finite domains
(Di ∈ D is the domain of xi) and a set F of cost functions (also called soft
constraints). Each f ∈ F is defined over a subset of variables var(f) ⊆ X, called
its scope. For each assignment t of all variables in the scope of a soft constraint
f , t ∈ f (i.e., t is permitted) if, and only if, t is allowed by the soft constraint. A
complete assignment that satisfies every soft constraint represents a solution to
the WCSP. The valuation of an assignment t is defined as the sum of costs of all
functions whose scope is assigned by t. Permitted assignments receive finite costs
expressing their degree of preference and forbidden assignments receive cost ∞.
The optimization goal consists of finding the solution with the lowest valuation.

BE is based upon two operators over functions: (1) the sum of two functions f
and g denoted (f +g) is a new function with scope var(f)∪var(g) which returns
for each tuple the sum of costs of f and g defined as (f + g)(t) = f(t) + g(t);
(2) the elimination of variable xi from f , denoted f ⇓ i, is a new function with
scope var(f)− {xi} which returns for each tuple t the minimum cost extension
of t to xi, defined as (f · i)(t) = mina∈Di{f(t · (xi, a))} where t · (xi, a) means
the extension of t to the assignment of a to xi. Observe that when f is a unary
function, eliminating the only variable in its scope produces a constant.

BE works in two phases. In the first phase, the algorithm eliminates variables
one at a time in reverse order according to an arbitrary variable ordering o. In
the second phase, the optimal assignment is computed processing variables in
increasing order. The elimination of variable xi is done as follows: initially, all
cost functions in F having xi in their scope are stored in Bi (the so called bucket
of xi). Next, BE creates a new function gi defined as the sum of all functions
in Bi in which variable xi has been eliminated. Then, this function is added to
F , which is also updated by removing the functions in Bi. The consequence is
that the new F does not contain xi (all functions mentioning xi were removed)
but preserves the value of the optimal cost. The elimination of the last variable
produces an empty scope function (i.e., a constant) which is the optimal cost of
the problem. The second phase generates an optimal assignment of variables. It
uses the set of buckets that were computed in the first phase: starting from an
empty assignment t, variables are assigned from first to last according to o. The
optimal value for xi is the best value regarding the extension of t with respect
to the sum of functions in Bi.

In order to apply the general BE template to the MDSLP, let us first intro-
duce some notation. A board configuration for a n×n instance will be represented
by a n-dimensional vector (r1, r2, . . . , rn). Each vector component encodes (as a
binary string) a row, so that the j-th bit of row ri (noted rij) indicates the state
of the j-th cell of the i-th row (a value of 1 represents an alive cell and a value of
0 a dead cell). Let Zeroes(r) be the number of zeroes in binary string r and let
Adjacents(r) be the maximum number of adjacent living cells in row r. If ri is a
row and ri−1 and ri+1 are the rows above and below r, then Stable(ri−1, r, ri+1)
is a predicate satisfied if, and only if, all cells in r are stable.

The formulation has n cost functions fi (i ∈ {1..n}). For i ∈ {2..n− 1}, fi is
ternary with scope var(fi) = {ri−1, ri, ri+1} and is defined as:

fi(a, b, c) =





∞ : ¬Stable(a, b, c)
∞ : a1 = b1 = c1 = 1
∞ : an = bn = cn = 1

Zeroes(b) : otherwise

(1)

As to f1 and fn, they are binary with scopes var(f1) = {r1, r2} and var(fn) =
{rn−1, rn}, and are defined similarly to fi(·), assuming a boundary of dead cells.
Notice in these definitions that stability is not only required within the pattern,
but also in the surrounding dead cells.

Due to the sequential structure of the corresponding constraint graph [6], the
model can be readily approached with BE. Figure 1 shows the corresponding
algorithm. Function BE takes two parameters: n, the size of the instance to be
solved, and D, the domain for each variable (row) in the solution. If domain
D is set to {0..2n − 1} (i.e., a set containing all possible rows) the function
implements an exact method that returns the optimal solution for the problem
instance (as the number of dead cells) and a vector corresponding to the rows
of that solution.

function BE(n, D)
1: for a, b ∈ D do
2: gn(a, b) := minc∈D{fn−1(a, b, c) + fn(b, c)}
3: end for
4: for i := n− 1 downto 3 do
5: for a, b ∈ D do
6: gi(a, b) := minc∈D{fi−1(a, b, c) + gi+1(b, c)}
7: end for
8: end for
9: (r1, r2) := argmina,b∈D{g3(a, b) + f1(a, b)}

10: opt := g3(r1, r2) + f1(r1, r2)
11: for i := 3 to n− 1 do
12: ri := argminc∈D{fi−1(ri−2, ri−1, c) + gi+1(ri−1, c)}
13: end for
14: rn := argminc∈D{fn−1(rn−2, rn−1, c) + fn(rn−1, c)}
15: return (opt, (r1, r2, . . . , rn))

end function

Fig. 1. Bucket Elimination for the MDSLP.

3 Memetic and Hybrid Algorithms for the MDSLP

As mentioned before, the algorithmic model we consider is based on the hy-
bridization of MAs with exact techniques at two levels: within the MA (as an
embedded operator), and outside it (in a cooperative model). An overall de-
scription of the basic hybridization scheme at the first level is provided in next
subsection. Subsequently, we will explore some variants based on variable clus-
tering and multi-parent recombination, before proceeding to the second level of
hybridization.

3.1 A Memetic Algorithm with BE for the MDSLP

The MA described in [8] evolves configurations represented as binary n×n matri-
ces; infeasible solutions are dealt via a stratified penalty-based fitness function:

f(r) = n2 −
n∑

i=1

n∑

j=1

rij + K

n+1∑

i=0

n+1∑

j=0

[
r′ijφ1(ηij) + (1− r′ij)φ0(ηij)

]
(2)

where r′ is an (n + 2) × (n + 2) binary matrix obtained by embedding r in a
frame of dead cells, K and K ′ are constants, ηij is the number of alive neighbors
of cell (i, j), and φ0, φ1 : N −→ N are two functions that take the number of
alive neighbors of a cell, and return how many of them should be flipped to have
a stable configuration (depending on whether the central cell is alive or not).
Constants K and K ′ are set with the primary goal of decreasing the number of
cells in an unstable state; if this were not possible, the secondary goal was to
decrease the level of instability of these cells.

It turns out that this fitness function is easily decomposable, a fact that
is exploited within the MA by means of a local improvement strategy based
on tabu search (TS). This TS strategy explores the neighborhood N (r) =

{s | Hamming(r, s) = 1}, i.e., the set of solutions obtained by flipping exactly
one cell in the configuration.

The binary representation allows the use of standard recombination operators
for binary strings, but these blind operators performed poorly. Hence, problem-
aware operators were considered. To be precise, BE was used to implement
a recombination operator that explored the dynastic potential [12] (possible
children) of the solutions being recombined, providing the best solution that
could be constructed without introducing implicit mutation. That is, let x =
(x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two board configurations for a n× n
instance of the MDSLP. Then, BE(n, {x1, x2, · · · , xn, y1, y2, · · · , yn}) calculates
the best feasible configuration that can be obtained by combining rows in any of
the parents (x and y). Notice that the described operator can be generalized to
recombine any number of board configurations like BE(n,∪x∈S{xi | i ∈ {1..n}})
where S is a set comprising the solutions to be recombined. This is one of the
algorithmic variants that will be explored next.

3.2 Variable Clustering and Multi-Parent Recombination

The complexity of BE depends on the problem structure (as captured by its
constraint graph G) and the ordering o of variable elimination. According to [13],
the complexity of BE along ordering o is time Θ(Q × n × dw∗(o)+1) and space
Θ(n×dw∗(o)), where d is the largest domain size, Q is the cost of evaluating cost
functions (usually assumed Θ(1)), and w∗(o) is the maximum width of nodes in
the induced graph of G relative to o (check [13] for details).

A well-known technique for reducing this computational cost in the context
of constraint processing is variable clustering [14]. This approach merges several
variables into a metavariable preserving the problem semantics. Inspired by this
technique, variables corresponding to consecutive rows in a MDSLP solution can
be clustered. We will denote by CiBE the recombination operator that performs
bucket elimination on a new domain obtained by clustering every group of i
consecutive rows in a metavariable. This recombination operator thus provides
the best feasible configuration that can be obtained by combining groups of i
rows taken from the parents. Figure 2 shows the resulting algorithm for C2BE
when n is even. The procedure starts by defining the new domain for variables
obtained by grouping every two consecutive rows in the original domain. Then,
bucket elimination is performed for the new domain. The number of iterations
of the loop in line 5 is reduced to one half with respect to the original algorithm,
and the range for loops instantiating variables is also halved, thus reducing the
time complexity of the algorithm at the expense of losing information.

One of the possibilities for alleviating the loss of alternatives for combining
the information is the consideration of multi-parent recombination [9]. Follow-
ing the scheme depicted in Section 3.1, an arbitrary number of solutions can
contribute their constituent rows for constructing a new solution. In the worst
case, this results in a linear increase in the size of domains, and thus does not
affect the asymptotical complexity of BE, as long as the number of parents is
bounded by a constant. One of the goals of the experimentation has been to

function C2BE (n, D)

1: D′ := { {D2i−1, D2i} | i ← {1..
|D|
2 } }

2: for a, b ∈ D′ do
3: gn(a, b) := minc∈D′{fn−4(a1, a2, b1) + fn−3(a2, b1, b2) + fn−2(b1, b2, c1)+

fn−1(b2, c1, c2) + fn(c1, c2)}
4: end for

5: for i := 1 to n−6
2 do

6: for a, b ∈ D′ do
7: gn−i(a, b) := minc∈D′{ fn−2(i+2)+1(a1, a2, b1) + fn−2(i+2)(a2, b1, b2)+

gn−i+1(b, c)}
8: end for
9: end for

10: κ := n− n−6
2

11: (α, β) := argmina,b∈D′{gκ(a, b) + f1(a1, a2)}
12: r1 := α1; r2 := α2; r3 := β1; r4 := β2
13: opt := gκ(α, β) + f1(r1, r2)
14: for i := 5 to n− 3 step 2 do
15: κ := κ + 1
16: α := argmina∈D′{fi−1(ri−3, ri−2, ri−1) + gκ(ri−1, a)}
17: ri := α1; ri+1 := α2
18: end for
19: α := argmina∈D′{fn−1(rn−2, a1, a2) + fn(a1, a2)}
20: rn−1 := α1; rn := α2
21: return (opt, (r1, r2, . . . , rn))

end function

Fig. 2. BE with clusters formed by two rows for even sizes for the MDSLP.

check whether there exists some optimal tradeoff between these two strategies
(variable clustering and multi-parent recombination), and indeed whether any
of them can contribute to the global improvement of the hybrid algorithm.

3.3 A Beam Search Hybrid Algorithm

Gallardo et al. [15] have shown that hybridizing a MA with a branch-and-bound-
based Beam Search (BS) algorithm can provide excellent results for some com-
binatorial optimization problems. We show here that this is also the case for
the MDSLP. We consider a hybrid algorithm that executes the BS and the MA
in an interleaved way. The goal is combining synergistically these two different
approaches, exploiting the capability of BS for identifying provably good regions
of the search space, and the strength of the MA for exploring these.

The resulting algorithm is depicted in Figure 3. Here, r denotes the reflection
value of r, and v++r is the vector obtained by concatenating r to the end of v.
Function Hybrid(n, k, l0) constructs a branch and bound tree whose leaves are
all possible n×n board configurations whose rows are symmetric (this symmetry
constraint is required to keep the branching factor at a manageable level for the
range of instance sizes considered). Internal nodes at level i represent partially
specified (up to the ith row) board configurations. The tree is traversed using
a BS algorithm that explores the tree in a breadth-first way maintaining only
the best k nodes at each level of the tree. In order to rank nodes, a quality
measure is defined on them, whose value is either ∞ if the partial configuration
is unstable, or its number of dead cells otherwise. Parameter l0 indicates how

function Hybrid (n, k, l0)
1: sol := ∞
2: q := { () }
3: for i := 1 to n do
4: q′ := {}
5: for c ∈ q do

6: for r := 0 to 2dn/2e − 1 do
7: q′ := q′ ∪ {c++(r or r)}
8: end for
9: end for

10: q := select best k nodes from q′

11: if (i ≥ l0) then
12: initialize MA population with best nodes from q’
13: run MA
14: sol := min (sol, MA solution)
15: end if
16: end for
17: return sol

end function

Fig. 3. Hybrid algorithm for the MDSLP.

many levels the BS descends before starting running the MA, and can be used to
control the balance between the MA and the BS. For each execution of the MA,
its population is initialized using the best popsize nodes in the current level
of exploration. Since these are partial solutions, they must be first converted
into full solutions, e.g., by completing remaining rows randomly. After running
the MA, its solution is used to update the incumbent solution. This process is
repeated until the search tree is exhausted.

4 Experimental Results

A set of experiments for problem sizes from n = 12 up to n = 20 has been realized
(recall that optimal solutions are known up to n = 20). The experiments were
done in all cases using a steady-state MA (popsize = 100, pm = 1/n2, pX =
0.9, binary tournament selection). Aiming to maintaining diversity, duplicated
individuals were not allowed in the population. For the different versions of
the hybrid algorithm described in Section 3.3, the setting of parameters was
k = 2000 and l0 = 0.3n, i.e, the best 2000 nodes were kept on each level of the
BS algorithm, and 30% of the levels of the BS tree were initially descended before
starting running the MA. All algorithms were run until an optimal solution was
found or a time limit was exceeded. This time limit was set to 3 minutes —on
a P4 (2.4GHz and 512MB RAM) under SuSE Linux— for problem instances of
size 12 and were gradually incremented by 60 seconds for each size increment.
For each algorithm and each instance size, 20 independent executions were run.

First of all, experiments have been done to explore the effects of multi-parent
recombination in a MA endowed with BE for performing recombination as de-
scribed in Section 3.1 (MA-BE). Figure 4 (left) shows the results obtained by
MA-BE for different number of parents being recombined (arities 2, 4 and 8).
For arity = 2, the algorithm was able to find the optimum solution for all in-

12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

Arity=2
Arity=4
Arity=8

12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

Arity=2
Arity=4
Arity=8

Fig. 4. Relative distances to optimum for different arities for MA-BE (left) and HYB-
MA-BE (right) for sizes ranging from 12 up to 20. Each box summarizes 20 runs.

12 13 14 15 16 17 18 19 20
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

Arity=2
Arity=4
Arity=8

12 13 14 15 16 17 18 19 20
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um
Arity=2
Arity=4
Arity=8

Fig. 5. Relative distances to optimum for different arities for MA-C2BE (left) and
HYB-MA-C2BE (right) for sizes from 12 up to 20. Each box summarizes 20 runs.

stances except for n = 18 and n = 20 (the relative distance to the optimum is
less than 1.04% in these cases). Note that results for n = 19 and n = 20 were
obtained in just 10 and 11 minutes per run respectively. As a comparison, recall
that the approach in [6] respectively requires over 15 hours and over 2 days for
these same instances, and that other approaches are unaffordable for n > 15.
Executions with arity = 4 cannot find optimum solutions for the remaining
instances, but note that the distribution always improves. Clearly, the perfor-
mance of the algorithm degrades when combining more than 4 parents due to
the higher computational cost.

Subsequent experiments were conducted to evaluate the CiBE recombina-
tion operator for i ∈ {2, 3}. Results are shown in Figure 5 (left) and 6 (left), and
reveal that the performance of the algorithm is worse, as it only finds the opti-
mal solution for the smallest instance sizes. The computational costs saved by
clustering variables does not compensate the loss of information induced, even

12 13 14 15 16 17 18 19 20
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

Arity=2
Arity=4
Arity=8

12 13 14 15 16 17 18 19 20
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

instance size

%
 d

is
ta

nc
e

to
 o

pt
im

um

Arity=2
Arity=4
Arity=8

Fig. 6. Relative distances to optimum for different arities for MA-C3BE (left) and
HYB-MA-C3BE (right) for sizes from 12 up to 20. Each box summarizes 20 runs.

in the presence of multi-parent recombination, and the combination of these two
strategies is counter-productive.

We finally approach the two-level hybrid algorithm. Figures 4 (right), 5
(right), and 6 (right) show the results obtained using MA-BE, MA-C2BE, and
MA-C3BE in the MA part. The performance is significantly improved over the
original MA. Note that HYB-MA-BE using an arity of 2 parents is able to
find the optimum for all cases except for n = 18 (this instance is solved with
arity = 4). All distributions for different instance sizes are improved in an sig-
nificant manner. For n < 17 and arity ∈ {2, 4}, the algorithm consistently finds
the optimum in all runs. For other instances and arity = 2, the solution provided
by the algorithm is always within a 1.05 % of the optimum, except for n = 18,
for which the relative distance to the optimum for the worst solution is 1.3%.
The results of HYB-MA-C2BE and HYB-MA-C3BE are worse than those of
HYB-MA-BE, but note however that the hybridization with the BS algorithm
is beneficial also in this case, as it improves the distributions with respect to
MA-C2BE and MA-C3BE.

5 Conclusions and Future Work

The high space complexity of BE as an exact technique [10], makes this approach
impractical for large instances. In this work, we have presented several propos-
als for the hybridization of Bucket Elimination (BE) with MAs and BS, and
showed that it represents a worthwhile model. The experimental results have
been very positive, solving to optimality large instances of a hard constrained
problem. We have also studied the influence that variable clustering and multi-
parent recombination have on the performance of the algorithm. The results
indicate that variable clustering is detrimental in this problem, but multi-parent
recombination can help to improve the results obtained by previous approaches.

One interesting extension to this work is to improve the bounds used in the
BS algorithm. To do so, we are currently considering the technique of mini–
buckets [16]. Work is in progress in this area.

Acknowledgements. This work was partially supported by Spanish MCyT
under contracts TIN2004-7943-C04-01 and TIN2005-08818-C04-01.

References

1. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game.
Scientific American 223 (1970) 120–123

2. Gardner, M.: On cellular automata, self-reproduction, the garden of Eden and the
game of “life”. Scientific American 224 (1971) 112–117

3. Gardner, M.: Wheels, Life, and Other Mathematical Amusements. W.H. Freeman,
New York (1983)

4. Bosch, R., Trick, M.: Constraint programming and hybrid formulations for three
life designs. In: CP-AI-OR. (2002) 77–91

5. Smith, B.M.: A dual graph translation of a problem in ‘life’. In Hentenryck, P.V.,
ed.: Principles and Practice of Constraint Programming - CP’2002. Volume 2470
of Lecture Notes in Computer Science., Ithaca, NY, USA, Springer (2002) 402–414

6. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination in
constraint optimization problems: ‘still life’ as a case study. Journal of Artificial
Intelligence Research 23 (2005) 421–440

7. Cheng, K., Yap, R.: Ad-hoc global constraints for life. In van Beek, P., ed.:
Principles and Practice of Constraint Programming – CP’2005. Volume 3709 of
Lecture Notes in Computer Science., Sitges, Spain, Springer (2005) 182–195

8. Gallardo, J.E., Cotta, C., Fernández, A.J.: A memetic algorithm with bucket
elimination for the still life problem. In Gottlieb, J., Raidl, G.R., eds.: EvoCOP.
Volume 3906 of Lecture Notes in Computer Science., Springer (2006) 73–85

9. Eiben, A., Raue, P.E., Ruttkay, Z.: Genetic algorithms with multi-parent recombi-
nation. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: Parallel Problem Solving
From Nature III. Springer-Verlag (1994) 78–87, LNCS 866

10. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113 (1999) 41–85

11. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44 (1997) 201–236

12. Radcliffe, N.: The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence 10 (1994) 339–384

13. Larrosa, J., Morancho, E.: Solving ‘still life’ with soft constraints and bucket
elimination. In Rossi, F., ed.: Principles and Practice of Constraint Programming
- CP 2003. Volume 2833 of Lecture Notes in Computer Science., Kinsale, Ireland,
Springer (2003) 466–479

14. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
(1989) 353–366

15. Gallardo, J., Cotta, C., Fernández, A.: On the hybridization of memetic algo-
rithms with branch-and-bound techniques. IEEE Transactions on Systems, Man
and Cybernetics, part B (2006) (to appear).

16. Dechter, R.: Mini-buckets: A general scheme for generating approximations in au-
tomated reasoning. In: Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, Nagoya, Japan, Morgan Kaufmann (1997) 1297–1303

