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Abstract. Phylogenetic networks are models of the evolution of a set of
organisms that generalize phylogenetic trees. By allowing the existence of
reticulation events (such as recombination, hybridization, or horizontal
gene transfer), the model is no longer a tree but a directed acyclic graph
(DAG). We consider the problem of finding a phylogenetic network to
model a set of sequences of molecular data, using evolutionary algorithms
(EAs). To this end, the algorithm has to be adequately designed to handle
different constraints regarding the structure of the DAG, and the location
of reticulation events. The choice of fitness function is also studied, and
several possibilities for this purpose are presented and compared. The
experimental evaluation indicates that the EA can satisfactorily recover
the underlying evolution model behind the data. A computationally light
fitness function seems to provide the best performance.

1 Introduction

Phylogenies are used to represent the evolutionary history of a collection of or-
ganisms (represented by phenotypical information, or —as assumed throughout
this paper— by molecular sequence data). Typically, this evolutionary history is
represented as a tree, i.e., a hierarchy showing the degree of closeness among
the organisms under study. As it turns out, inferring the best hierarchy is a
formidably difficult task under several formulations [1,2]. This hardness barrier
can be circumvented using heuristic approaches; indeed, evolutionary algorithms
(EAs) have been used in this domain with encouraging results, e.g., [3-7] among
others. At any rate, there is an additional important fact we should not lose
sight of: trees oversimplify our view of evolution, as it has been long recognized
by biologists. There are many events in natural evolution in which the genetic
material is not transferred in a hierarchical way, e.g., hybrid speciation, horizon-
tal gene transfer, etc. These phenomena, usually called reticulations, give rise to
edges that connect nodes from different branches of a tree, creating a directed
acyclic graph structure that is usually called a phylogenetic network [8].

No single methodology for network reconstruction is widely accepted to date
[9]. For example, the detection and identification of reticulation events has been
approached by Hallett et al. [10] (focusing on horizontal gene transfer), and by
Posada et al. [11] (focusing on recombination events). Nakhleh et al. [12] have



proposed a method that combines pre-existing consensus trees into a network
with a single reticulation event. Finally, Gusfield et al. [13,14] have devised
several algorithms for binary input sequences, under different assumptions on
where reticulation events take place, and how they work.

The methods mentioned above are in general based in deterministic ap-
proaches for finding provably good solutions, and hence the well-known limita-
tions arising from the P # N P conjecture apply. To the best of our knowledge,
the inference problem has not been approached with metaheuristic techniques so
far. However, this latter approach seems natural in this domain, given the success
history of these techniques (EAs in particular) on the inference of phylogenetic
trees. In this work, we propose an evolutionary approach to the phylogenetic-
network inference problem, and show that it can be a useful tool in this domain.

2 Phylogenetic Networks

As mentioned in previous section, there exist some evolutionary events that do
not fit in the tree-like view of evolution, e.g., hybrid speciation, recombination,
and horizontal gene transfer. In general, these events require the use of rooted
directed acyclic graphs (DAGs) for representing them. In the following, we will
describe the notation used henceforth, as well as some crucial notions such as
time coexistence, and topological distance metrics on phylogenetic networks.

2.1 Notation

Let G(V, E) be a DAG. We will use the notation E(G) and V(G) to denote
respectively the set of edges and vertices of a DAG G. A directed path P of length
k from w to v in a graph G (u,v € V(G)), is a sequence P = (ug,u1, -+, uk)
of nodes where u = wug, v = ug, and (u;,ur1) € E(G) for 0 < i < k. Let
a(P) = ug, and w(P) = uy be the endpoints of path P. A node v is reachable
from w in G if there exists a directed path from u to v; in that case, v is an
ancestor of v. Unlike trees, there may be more that one directed path between
two nodes in a DAG. These paths are also termed positive time directed paths
for reasons that will be clear at a later point.

We can now define the in-degree §! of a node as the number of edges arriving
to that node, and the out-degree §' as the number of edges that depart from
that node. There are some degree constraints in DAGs representing phylogenetic
networks. To be precise, a node v € V(E) is a tree node if (a) §'(v) = 0 and
§T(v) = 2 [root (unique)], (b) 6'(v) = 1 and 6'(v) = 0 [leaf], or (c) §'(v) = 1
and ' (v) = 2 [internal tree node]. If a node v is not a tree node, then it must
have 6! (v) = 2 and 6'(v) = 1. Such nodes are termed network nodes. An edge
e = (u,v) € E(G) is a tree edge if and only if v is a tree node, and it would be a
network edge otherwise. Notice that tree nodes describe mutations, and network
nodes describe reticulation events. Fig. 1(a) shows an example of phylogenetic
network. If given any edge in the network at least one of its endpoints is a tree
node (and provided some constraints on the structure of reticulation events are
fulfilled, see Sect. 2.2), the network is termed reconstructible [9)].
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Fig.1: (a) A phylogenetic network N on six observed species (and seven ancestral
species). Tree nodes and network nodes are depicted with circles and squares respec-
tively. Likewise, solid lines denote tree edges, and dashed lines denote the network
edges. (b) X and Y cannot coexist in time.

2.2 Time Coexistence

A crucial consideration that must be taken into account in phylogenetic networks
is the fact that each reticulation event defines a simultaneity plane: in order to
have two species recombining their genomes, or having some genetic information
transferred from a species to another, they must coexist in time. This way, the
set of nodes V(G) of a phylogenetic network G are implicitly ordered in time
according to the particular reticulation events existing in GG. To be precise, we
can assign a specific time-stamp ¢(v) to each node v in the network. Actually,
the absolute values of these time-stamps are not relevant; what matters is their
relative ordering. Thus, if there exists a time directed path between node u and
node v, we would logically have t(u) < t(v), i.e., u is an ancestor of v. However,
if e = (u,v) is a network edge, then ¢(u) = t(v) because the reticulation events
are instantaneous in the evolution time scale.

Consider Fig. 1(b). Let t(Y) = t; and t(X) = t4, and let reticulation events
s1 and s, happen at time t5 and t3 respectively. Now notice that there does not
exist a positive time directed path from Y to X. However, even though Y is not
an ancestor of X, it is impossible to have a reticulation event between these two
nodes: Y is an ancestor of A, that coexists with B; B is in turn an ancestor of C
that coexist with D, an ancestor of X. Hence, t; < t3 < t3 < t4. More formally,
we say that two nodes u,v € V(G) cannot coexist in time if:

(a) w is an ancestor of v (or vice versa), or

(b) there is a sequence of positive time directed paths P = { Py, Py, - - -, P} such
that a(P;) = u (resp. v), w(Py) = v (resp. u), and for 1 < i < k, there exists
a network node whose parents are w(P;), and a(P;1).

Time coexistence thus imposes constraints on where reticulation events can take
place, and therefore on which DAGs actually represent a feasible phylogenetic
network. These constraints will have to be observed when evolving networks
within the inference algorithms.



2.3 Topological Distance Metrics on Phylogenetic Networks

Metrics for measuring the topological distance between networks are essential to
interpret the results of an inference algorithm. They can be used to determine to
which extent the features of a target network have been successfully recovered.
For this purpose, we can resort to generalizations of well-known distance metrics
for trees, such as the Robinson-Foulds (RF) distance [15].

The RF distance on trees uses the notion of bipartition: given an edge e
in a tree T, we can partition the leaf set £ of T into two disjoint sets A(e)
and C(e), respectively comprising the leaves in £ that are reachable from the
root (resp. unreachable) through edge e. The notion of bipartition in trees is
readily generalizable to tripartitions in networks. In this latter case, an edge e
induces a tripartition (A(e), B(e), C(e)), where A(e) comprising the leaves that
are reachable from the root only through edge e, B(e) comprises the leaves that
are reachable from the root by a path that goes through e, and at least by
another path that does not pass through e, and C(e) is defined as before.

We denote by ¢(e) = (A(e), B(e),C(e)) the tripartition induced by the e.
Two tripartitions ¢(e1) and ¢(e2) are equivalent (¢(e1) = ¢(eq)) if, and only if,
A(e1) = Ales), B(e1) = Bles), and C(e1) = C(e2). Now, two edges e, es are
compatible (e; = ep) if, and only if, ¢p(e1) = ¢(eq). Let § : B — {0, 1} be defined
as 0(TRUE) = 1 and §(FALSE) = 0. Let I'(G1, G2) be defined as

GG =—— 3 (1= 3 se=e) (1)

|E(Gl)‘ €1€E(G1) EQGE(GQ)

It is then possible to define the false negative rate FN(G,G) = I'(G,G), and
the false positive rate FP(G,G) = I'(G, G) between an inferred network G and
a target network G. Finally, the RF distance for networks can be estimated as
Dgrr(G,G) = (FN(G,G)+FP(G,G))/2. Notice that the RF distance is 0.0 for
two identical networks, and 1.0 for two networks without any compatible edge.

3 EAs for Inferring Phylogenetic Networks

In order to tackle the inference of phylogenetic networks with EAs, we consider
a direct approach in which the search is directly conducted on the space of
all possible phylogenetic networks with given leaf set. Thus, each individual in
the population of the EA represents a feasible phylogenetic network, internally
encoded as an adjacency matrix. This means that (i) an initialization process
producing feasible networks must be used, and (ii) the reproductive operators
used must respect feasibility, i.e., they must always produce feasible offspring.
The details of these operators will be described in Sect. 3.1.

Another central element in this EA is the fitness function. The RF metric
defined in the previous section can be used for the off-line assessment of the
results, but it cannot obviously be used during the evolution. On the contrary,
the fitness function must evaluate a phylogenetic network on the basis of the
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Fig. 2: After deleting node F, the subnetwork in (a) takes the shape shown in (b).

particular dataset of molecular sequences to be modelled. Several choices have
been explored for this purpose. These are described in Sect. 3.2.

3.1 Evolutionary Operators

The first issue to be tackled in the EA is the generation of feasible networks for
insertion in the initial population. To do so, each time a new network is required
a random tree is firstly generated (this is done by firstly constructing a random
permutation of the leaves; then, an initial tree is built with the first two leaves in
the permutation, and the remaining leaves are subsequently inserted at random
points of the partial tree until it is finally completed). Once the tree has been
obtained, network nodes are inserted by randomly selecting pairs of tree nodes
that can coexist in time.

After having generated a population of feasible networks, adequate reproduc-
tive operators must be used. Let us firstly consider the recombination operator.
As usual, this operator takes information pieces from two individuals, and com-
bines them to create a new feasible solution. In this case, these information pieces
take the shape of subnetworks, and hence we can express the process in terms of
pruning and grafting subnetworks. Let G; and G4 be the networks to recombine,
and let trees be represented in LISP notation. The process is as follows:

1. Select a random subnetwork N (rooted at a tree node) from Gj.

2. for each leaf u € N do
(a) Find subnetwork U in G5 such that U = (h, (u),U’) or U = (h,U’, (u)).
(b) Replace U by U’ in Gs.

3. Select a random subnetwork V from Gs.

4. Replace V by V' = (h/, N, V), where b’ is a new internal tree node.

This operator can be regarded as a generalization of the Prune-Delete-Graft
(PDQG) operator for trees [5,6]. Thus, we have termed it NetPDG. Notice that
some network node might be broken during the recombination process. This
could happen either in step 1 (if there were a reticulation event between a node
in N and another node not in N), or in step 2b (if a grandson of a network node
were removed). Fig. 2 shows an example of this latter situation.



As to the mutation operator, it is based on rearranging the topology of
a portion of the network. More precisely, to mutate network G, this operator
(NetSCRAMBLE) selects a random subnetwork N from G, and generates an-
other random network, spanning the same set of leaves, and having the same
number of internal network nodes (network nodes with one parent in N and
other parent outside N are broken). Notice that not only the number of network
nodes in the child might be lower than that of the parental solution(s) (if some
such nodes are broken during recombination —as described before— or during
subnetwork scrambling in mutation); it can be also higher than it if no network
node is broken, and new ones are transferred during recombination. In this work,
we have opted for keeping a fixed, predefined number of network nodes in solu-
tions. Hence, whenever a new solution has a higher or lower number of network
nodes, it is repaired (breaking randomly selected network nodes, or adding new
ones).

3.2 The Fitness Function

As it is the case for phylogenetic trees, the accuracy with which a phylogenetic
network model the evolutionary history of a certain dataset can be computed
via sequence-based methods (i.e., maximum parsimony [16], or maximum likeli-
hood [17]) and distance-based methods [18]. Among these approaches, maximum
likelihood is an appealing way of assessing the quality of a proposed phyloge-
netic model: they consider all possible evolutionary pathways compatible with
the molecular data available, and are known to be asymptotically accurate [19].
We have thus opted for a maximum likelihood approach here.

The general setting is the following: we have a collection D of n sequences,
representing some molecular data from n different species. Here, these sequences
are taken from the alphabet X ={A, C, G, T}, i.e., they represent DNA sequences.
We assume a certain evolution model at the molecular level, indicating the like-
lihood that a certain character (nucleotides in this case) mutates into another
one, say II = {m;;}i jex. Each site in the sequence is assumed to evolve inde-
pendently. Likewise, we assume a certain mechanics for reticulation events, i.e.,
network nodes indicate recombinations, and these produce organisms whose ge-
netic sequence is, e.g., the result of a uniform crossover of the parental sequences.
When this general evolutionary framework is superimposed on a particular net-
work N, we can calculate P(D|N), that is, the likelihood that N gave rise to D.
A potential drawback of this method is its computational cost. Related to this
issue, we have considered several alternative formulations of the fitness function
to estimate P(D|N), as described below.

The first method is based on the formula used for likelihood calculation in
trees. Let Lj . be the likelihood of a network rooted at node k, given that that
node has nucleotide sj in site 7. If node k is the parent of nodes 7 and j in the
network, and both are tree nodes, then,

r _ r T
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In case node i were a network node, the first term in Eq. (2) would have to
be changed accordingly. To be precise, the state of node i would depend on
the state of node k, and also on the state of the other parent, say node z.
This bivariate dependency precludes the fast recursive evaluation of Eq. (2). To
circumvent this issue, we can take into account the fact that, due to the semantics
of recombination, the state of node k propagates with 1/2 probability to node
i. Thus, we approximate this first term as 1/2 - L  , where v is the unique
child of node 4 in the network. The same reasoning would apply to node j were
it a network node. While this is a mere approximation of the exact likelihood
of these network nodes, it allows a very fast recursive evaluation of the overall
likelihood of the complete network. This evaluation is completed by noting that
(i) the likelihood L7, , of a leaf is 1.0 if the r' site of the w'™ sequence is s,
and 0.0 otherwise, and (ii) the complete likelihood of the network for site r
is L" = 25062 TsoLp 5., Where ms is the marginal probability of nucleotide s.
Finally, since sites evolve independently, the likelihood of the network for the
whole data is L = [[\~, L?, m being the length of sequences. We term this
evaluation method ABE (after approximate bayesian estimation).

Monte Carlo (MC) methods constitute an alternative to ABE providing an
asymptotically exact numerical estimation of the network likelihood. This esti-
mation is obtained by constructing N samples of the states of internal nodes in
the network, and computing

N
L" = % Z Hﬂsfv,,sw (3)
=1 w
where the inner product ranges over all leaves w of the network, w’ is the parent
node of a certain w, siv, is the i*" sampled state in the " site for node w’, and
Sw 1s the actual state in the 7*" site of the w'™ sequence. In order to have a
correct MC integration, the probability of each sample must be proportional to
its real likelihood. This can be easily accomplished by assuming a random state
at the network root (following the marginal probabilities ), and simulating the
evolution of this site along the network, using the stochastic model IT considered.
The MC method provides an asymptotically more accurate estimation of the
exact likelihood, but it has a much higher computational cost than ABE. In order
to alleviate this cost partially, a combined method (CMB) has been considered.
The basic idea is identifying all the subtrees in the network (that is, maximal
subgraphs without network nodes), using the MC method just to sample the
states for the remaining nodes. Subsequently,

N
L= NZHLZ,% Hﬂ-sfu/,sw (4)
=1 v w
where the first product ranges over all internal nodes v being the root of a
maximal subtree, s is the corresponding value in the i*" sample, the second
product ranges over all leaves that are not part of a maximal subtree, and w’, s¢,,,
and s, are interpreted as before. Thus, the exact likelihood value is computed

for maximal subtrees, and the cost of the MC component is reduced.



4 Experimental Results

The data used in the experiments have been synthetically generated from known
evolution models, in order to allow an objective measurement of the extent to
which the inference algorithms were capable of recovering the underlying model.
The process consists of generating a random network with the desired number
of leaves (n) and network nodes (k), and then constructing nucleotide sequences
by simulating the evolution of r sites throughout the network. The stochastic
evolution of sequences is done assuming the Kimura 2-parameter model [20] with
transition rate o = 0.05 and transversion rate 3 = .025. We have considered net-
works with n € {10,25} leaves, k € {0, 1,2} network nodes, and r € {100, 250}
sites per sequence. Both the procedure for generating the dataset, and the pa-
rameters used are similar in related woks [12, 16].

A steady-state EA with standard parameters (popsize = 100, px = .9,
pm = 1/£, ¢ being the number of nodes, mazxevals = 1000n, binary tournament
selection) has been used in the experiments. No fine tuning of these parameters
has been attempted. To allow a wider exploration of the capabilities of the EA,
a different problem instance has been used in each run. This way we are eval-
uating the algorithm on many samples of the whole problem class, rather than
just on a couple of instances. Results have been obtained for the three fitness
functions described in Sect. 3.2. Twenty runs have been done for each parameter
set for functions MC and CMB. Function ABE turns out to be around 50 times
faster than MC (using 500 samples per evaluation), so we have conducted 1000
runs for it per parameter set. The best networks found are evaluated in terms
of the RF distance with respect to the “real” network. For the network model
considered, the most related approach in the literature is [12]. Unfortunately, the
SPNET program used there is not available. For this reason, we have devised an
combination of greedy-exhaustive heuristic for comparison purposes: we firstly
construct a tree using an agglomerative technique such as complete-link (CL)
or single-link (SL), and then exhaustively check all locations where to place the
network nodes (one at a time), keeping the best network.

Complete results are shown in Fig. 3. As expected, the ABE function per-
forms very well in the k = 0 case (i.e., tree models) since it captures the exact
likelihood of each tentative solution. For n = 10, & > 0, the MC function provides
better results than ABE (the MC estimation may be better than the approxi-
mation used in ABE); however, for n = 25, k > 0, the differences are negligible
(not statistically significant, using a Wilcoxon ranksum test [21] since data is not
normally distributed), and the best results of ABE are even better than those
of MC for k = 1. In general, CMB performs similarly to ABE, and all three
evolutionary approaches are much better (statistically significant) than CL and
SL. Notice also that ABE can recover the original network in at least one run
for all parameter settings except n = 25, k = 2. We have also conducted similar
experiments with networks generated with an additional constraint: the parents
of network nodes must be located at the same depth. The results are essentially
the same as depicted in Fig. 3 for unconstrained networks.
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Fig. 3: Results for different instance sizes (from left to right in each group of five boxes:
ABE, MC, CMB, CL, and SL). The boxes comprise the second and third quartile,
and the whiskers indicate the range of the data. (a) Sequences of 100 nucleotides. (b)
Sequences of 250 nucleotides.

5 Conclusions

We have analyzed several evolutionary approaches for the inference of phylo-
genetic networks from molecular data. The results indicate that EAs can be a
useful tool in this domain, since it has been shown that they can provide network
models very close to the real evolutionary model hidden in the data (sometimes
recovering it in full), outperforming some ad-hoc heuristics as well. We have
compared three different fitness functions for guiding the evolution. The ABE
function seems to provide the best tradeoff between the quality of the results,
and the computational cost implied.

Future work will be directed to analyze the generalizability of this evolution-
ary approach to other reticulation events. For example, recombination can be
analyzed on diploid organisms (the offspring would inherit a full DNA sequence
from each of the parents). The approach can be also readily adapted to tackle
alternative assessment models such as maximum parsimony.
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supported by MCyT project TIN2005-08818-C04-01.
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