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Abstract. Recent research on evolutionary multiobjective optimization has mainly
focused on Pareto-fronts. However, we state that proper behavior of the utilized
algorithms in decision/search space is necessary for obtaining good results if mul-
timodal objective functions are concerned. Therefore, it makes sense to observe
the development of Pareto-sets as well. We do so on a simple, configurable prob-
lem, and detect interesting interactions between induced changes to the Pareto-set
and the ability of three optimization algorithms to keep track of Pareto-fronts.

1 Introduction

In recent years, evolutionary multiobjective optimization (EMO) [1, 2] has developed
from a marginal into one of the most actively pursued areas within evolutionary com-
putation (EC). Many new algorithms and measures have been suggested, and, with
them, concepts like Pareto set and Pareto front have entered the common EC vocabu-
lary [3]. Increasing interest in multiobjective techniques has even evoked new theoreti-
cal approaches that employ multiple objectives to simplify an originally singleobjective
problem [4]. However, most of the current EMO research concentrates on processes
observed in the objective space, which consists of the possibly obtainable value combi-
nations of the considered objective functions. Undoubtedly, approximating the Pareto-
front well is the final aim of EMO algorithms (EMOAs), and the Pareto-set distribution
may be of minor interest for estimating their performances. Nevertheless, for improving
these algorithms, as well as for attaining guidelines on which of the solutions contained
in the approximated Pareto-set shall eventually be implemented in a real-world situa-
tion, a well-founded understanding of Pareto-set distributions is supposed to be a major
advantage.

Research on singleobjective algorithms largely focuses on population behavior in
the decision space, or simplified models thereof, e.g. using basins of attraction as means
of abstraction [5]. Especially for multimodal problems, numerous techniques have been
invented to prevent the populations from converging to a single point too soon. Some
of these, as crowding [6], are also applied in EMOAs. But diversity maintenance is
only sought in objective space, to ensure good coverage of the Pareto-front. However,
for at least one multimodal objective function, it is clear that this coverage cannot
normally be achieved when the whole population is clustered around one local min-
imum of this function. We thus conjecture that a) there are situations—and these are



2

not uncommon—where the Pareto-set does not share the aspired nice properties of the
received Pareto-front the user normally focusses the attention on, and b) that diversity
maintenance is not only needed in objective but also in decision space for successfully
treating multiobjective optimization problems (MOPs): The product designer is mainly
interested in a thorough covering of the Pareto-front for maximum wide scope in se-
lecting solutions according to the (conjectured) customers’ desires. This is the situation
which contemporary EMOAs are designed for. But the product engineer is mainly inter-
ested in a thorough covering of the Pareto-set since it is important to know if a certain
design can be realized by different parameters of the production process: Solutions may
differ in sensitivity or in shorter tooling times and the like. Evidently, contemporary
EMOAs are not geared toward product engineers yet.

These both sides of one medal (Pareto-front in the objective space, Pareto-set in the
decision space) and the conjunction between them has not been studied in detail be-
fore. Only few theoretical results for special classes of search spaces and multiobjective
functions were presented before, cf. Ehrgott [7]. But the handled cases are restricted in
a way that no generalization can be foreseen. Some effort has been made in the devel-
opment of test functions not only with regard to a nice behaving Pareto-front, but also
with aspired properties in the decision space, cf. Okabe et al. [8]. Zhou et al. [9] pro-
pose a specialized EA to implicitly handle and profit from regularities in the objective
as well as in the decision space. Such regularities stem from the test functions proposed
by Okabe et al. [8] and can not be expected generally.

2 Aims and Methods

Our approach is constructive; on a minimalist bimodal bicriteria test problem, we study
structural changes of true Pareto-set and Pareto-front on a set of targeted modifications.
These are derived both analytically and empirically, the latter employing grid-based
and stochastic enumerators. Furthermore, we observe how different EMOAs cope with
the original problem and the changes. More detailed, we try to answer the following
questions:

– How do Pareto-set distributions change when the problem is modified? Are there
unexpected outcomes?

– Are different EMOAs able to cover Pareto-set and Pareto-front well?
– Are there consistent similarities/dissimilarities in the behavior of different EMOAs

due to problem modifications that may highlight distinct capabilities of these?

3 A Simple Test Problem: TWO-ON-ONE

To deepen the insight in behavior and structure of Pareto-sets mapping onto Pareto-
fronts, we define a very simple test problem. It consists of a polynomial function f1 of
degree four with two optima, and the sphere function f2, which is of degree two:

f = (f1, f2) : IR2 → IR2 : f1(x1, x2) = x4
1 + x4

2 − x2
1 + x2

2 − cx1x2 + dx1 + 20,
f2(x1, x2) = (x1 − k)2 + (x2 − l)2
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The level (niveau) of the optima of f1 can be adjusted smoothly via parameter d.
With a positive parameter d, the optimum in the positive x1 domain is lifted up in com-
parison to the optimum in the negative x1 domain. Consequently, the former becomes
a local optimum, while the latter remains a global optimum (asymmetric optima). With
parameter c = 0, both minimizers are located on the x1 axis, but for increasing c, their
connecting line is rotated counterclockwise, until its gradient is nearly 1.

The function f2 is unimodal, the location of its minimizer determined by parameters
k and l. For k = l = 0 it is located in the origin, right between the minimizers of the
bimodal function f1. By variation of k and l the minimizer is moved away from the
connecting line of the minimizers of f1. Next to changing the Pareto-front, this also
effects the Pareto-set.

Table 1: Parameter setting for the five cases of TWO-ON-ONE.

Case 1 2 3 4 5
Parameter

c 10 10 10 10 10
d 0 0 0.25 0.25 0.25
k 0 1 0 1 0
l 0 0 0 0 1

In order to allow for a theoretical analysis of the problem, five parameter settings
have been fixed (Table 1, Figure 1). These result in different placements of the mini-
mizers in search space, two for the symmetric case (both optima of f1 identical), three
for the asymmetric case (optima distinct). While all these settings are expected to lead
to ordinary (generic) Pareto-fronts, the Pareto-sets are expected to look more complex.

The coordinates of the minimizers of f1 can be determined analytically to

(x∗11,2
, x∗21,2

) =
(
±1

2
(
√

101 + 1)1/2,± 1
20

(
√

101− 1)(
√

101 + 1)1/2

)
.

In cases one and two, both optima of f1 are on the same level, ensured by d = 0. In
the former, the minimizer of the sphere function is located in the origin, where f1 has a
saddle point. In the latter, the optimum is moved right on the x1 axis by one unit.

The first two situations are repeated for cases three and four, featuring a global
optimum in the negative x1 and x2 domain, and a local optimum in the positive domain.
It is expected that the Pareto-set establishes a connection between the global optimum
of f1 and the one of f2 in these situations. This is due to the solutions in the global
optimum of f1 being mapped to the extremal part of the Pareto-front. Consequently, the
solutions from the local optimum of f1 may be lost.

The same situation is expected for case five, which is similar, except for a movement
of the minimizer of f2 towards the global minimizer of f2, whereas in case four, it is
brought nearer to the local minimizer.
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Fig. 1: Superposition of functions f1 and f2 (sphere) of TWO-ON-ONE for cases 1 to 5. The
first two are symmetric, the last three asymmetric with the right minimizer of f1 shifted slightly
upwards and the left one downwards.

4 Experimental Investigation of Pareto Sets

Our expectation is that for all symmetrical cases of f1 (f1(optimum1) = f1(optimum2)),
the Pareto sets consist of two curves, connecting either peak with the minimizer of the
sphere function f2. For the asymmetric cases, it seems reasonable that Pareto-sets shall
only contain points on a curve between the global minimizers of f1 and f2. Note that
this expectation stems from thought experiments rather than empirical or analytical
facts.

We employ two simple tools, a grid based and a stochastic enumerator, for obtaining
a first, rough impression of structure and location of the Pareto-sets. Either one samples
points from a given interval and keeps a list of the Pareto-optimal solutions found. As
we shall see, it sometimes makes sense to use both, as the obtained results can subtly
differ.

Experiment 1: Determine Pareto sets and fronts of TWO-ON-ONE.

Pre-experimental planning: First experiments were performed with a grid-based enu-
merator only. They revealed strange artifacts, making the Pareto-set look like consisting
of vertical bars (Figure 2, left). We therefore additionally sampled by means of a sto-
chastic enumerator.

Task: Find location of the Pareto-sets, detect deviations from the expected.

Setup: For each of the 5 cases specified in Table 1, we sample points in the interval
x1, x2 ∈ [−3, 3]. The grid-based enumeration consists of 300 × 300 = 90, 000 points
each, the stochastic enumeration of 500, 000 points each. The difference is intended as
we hope for a better resolution with the latter method, to shed light on the bar-shaped
artifacts. All non-dominated points are archived.
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Fig. 2: Pareto-sets of case 1, obtained with grid and stochastic enumerator.

Experimentation/Visualization: Figures 2 and 3 show the most interesting of the ob-
tained Pareto sets and fronts. All others largely comply with the previously stated ex-
pectations and are omitted due to space limitations.

Observations: The figures clearly show that neither grid nor stochastic sampling pro-
duces a clear-cut picture of the true Pareto-sets. Roughly, case 1 yields a smeared areal,
propeller-like structure (Figure 2). This is surprising as we expected to see a single
curve here. However, the Pareto-set appears narrower under stochastic enumeration.

For case 4 (sphere function f2 moved towards local optimum of f1), the Pareto-
front splits into two parts at f1 ≈ 8, as visualized in Figure 3. Accordingly, the Pareto-
set breaks up into two distinct fragments. Note that no connection exists between the
location of the sphere and the global optimum of f1. At the left edge of its right part,
the grid-based approximated Pareto-set reveals a strange curl which is not visible in
the stochastically approximated Pareto-set. Pareto-fronts of cases 4 and 5 both contain
pieces of very low point densities, at 17 < f1 < 19 in the former, and 15 < f1 < 17 in
the latter case.

Discussion: We regard the obtained Pareto-set approximations for case 1 as rather mis-
leading, and analytical investigation in §5 supports this view. However, considering the
amount of sampled points (90 k and 500 k), and taking into account that the latter (sto-
chastically approximated) Pareto-set is much tighter, one may conclude even from our
empirical data that the true Pareto-set indeed is most likely located on a curve and non-
areal. The enumerators are probably misguided by the huge difference in gradients of f1

and f2 in direction of the connecting line between the two optima of f1 and orthogonal
to it. Following from that, any EMOA will experience the same situation: Practically
identical values of the objective functions can have a large set of preimages and thus
spread in search space.

Results obtained for case 4 show that contrary to our expectation, by far the larger
Pareto-set portion resides in the range between the local optimum of f1 and the optimum
of f2. Only where function values for f1 are better than may be attained at the local
optimum, points from the left fragment can enter the Pareto-set, resulting in a stepped
Pareto-front. The curl found near x1 = 1 seemingly corresponds to the low density part
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Fig. 3: Surprising Pareto sets and fronts for cases 4 and 5.

of the Pareto-front which must be located in proximity of the sphere center as values
for f2 are near 0. The stochastic Pareto-set approximation is again tighter than the grid-
based one, leading to the conjecture that the true Pareto-set is non-areal as in case 1.

Two more conclusions may be drawn from the case 4 results. Firstly, search space
distances between optima of separate objective functions play a major role for the com-
position of Pareto-sets, and secondly, it is necessary to keep the population of EMOAs
spread over several local optima of the treated objective functions during an optimiza-
tion run.

5 Analytical Derivation of Pareto Sets

The Pareto-set for case 1 can be derived analytically but its analytic expression is too
complex and space-consuming to be presented here. Instead, we suggest the linear ap-
proximation(

x1,

√
101− 1

10
x1

)
for x1 ∈

[
−1

2
(
√

101 + 1)1/2,
1
2
(
√

101 + 1)1/2

]
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whose deviation from the true convex-concave curve is less than 0.045 for all x1 above.
In any case, the Pareto-set is a 1-dimensional connected set and not an areal set of higher
dimension as the output of the grid or stochastic enumerator might suggest (see fig. 2).

As can be seen from the symmetry f(x1, x2) = f(−x1,−x2) the entire Pareto-
front can be built solely by positive (or negative) points of the Pareto-set. Thus, it may
happen that an EMOA approximating the Pareto-front quite well with regard to the S-
metric has found only points in the decision space with, say, positive components. As a
consequence, a good value for the S-metric tells only half the story.

The Pareto-sets of the other cases are also amenable to an analytic solution but
the expressions are far away from being manageable easily. This observation is quite
counter-intuitive given the pretended simple expressions and structural design of the
objective functions.

6 Behavior of EMOAs on TWO-ON-ONE

Whereas Pareto-sets and fronts of problem TWO-ON-ONE have been explored in §4
and determined analytically in §5, we now turn to the behavior of different EMOAs in
a second experiment. Note that it is not intended to argue in favor of or against any
algorithm here, but rather to detect possible differences.

Algorithms We invoke two standard techniques next to a new development within the
field. The Pisa framework1 is used to conduct the referred optimization runs. Here,
the TWO-ON-ONE problem has been implemented as a variator, which can be op-
timized with respect to different objectives and multiple selectors. Among the set of
available selectors, NSGA-II and SPEA2 are chosen, because these appear to be the
currently most well-known and commonly used algorithms in the field [1, 2]. Addition-
ally, the more recent SMS-EMOA [10, 11] is tested within this framework. The SMS-
EMOA was designed for featuring a performance measure, namely the hypervolume
or S-metric, as secondary ranking criterion in a NSGA-II like manner. The additional
effort for a third algorithm in the study seems to be justified, because the SMS-EMOA
was found to spread solutions more nicely over Pareto-fronts than the other two algo-
rithms. This is surely due to the different selection criterion employed. We investigate if
this also holds for our simple test problem and especially if it can be recognized within
the generated Pareto-sets.

Measures To detect differences in algorithm behaviors on the most interesting cases,
we define two simple measures. For case 1, we measure if the resulting population P
is fairly distributed over the left and right wings of the Pareto-set by taking the fraction
on the less crowded wing into account:

fair(P ) =
1
2
− min(|{individual ∈ P : x1 < 0}|, |{individual ∈ P : x1 ≥ 0}|)

|P |
(1)

1 PISA - Platform and Programming Language Independent Interface for Search Algorithms,
ETH Zurich, www.tik.ee.ethz.ch/pisa/
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For case 4, we are interested in the fraction of points in proximity of the global
optimum of f1, corresponding to the search points in the left half of the search space:

left(P ) =
|{individual ∈ P : x1 < 0}|

|P |
(2)
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Fig. 4: Pareto-front (left) and Pareto-set (right) of a single SPEA2 run on case 1.

Experiment 2: Search Space Behavior of EMOAs on function TWO-ON-ONE.

Pre-experimental planning: First runs indicated that results on cases 2, 3, and 5 are
comparable for all three algorithms. We thus focused on cases 1 and 4. For case 1 it
was found that at least 50 runs are necessary to get a detailed picture of differences in
measure fair(P ), for case 4, 20 runs seemed sufficient.

Task: Detect differences in the obtained Pareto-sets and fronts that may be related to
test problem properties. We employ bootstrap permutation tests with 49, 999 replicates
and significance level 5% for the measured data.

Setup: The decision space was limited to f1, f2 ∈ [−50, 50], thereby enclosing the
region around the optima of f1 and f2, and a certain amount of space the algorithms
have to bypass to get there. All three algorithms, NSGA-II, SPEA2, and SMS-EMOA,
are run with a population size of 100 for 30, 000 evaluations, otherwise utilizing default
parametrizations. For case 1 and 4, 50 and 20 runs are performed, respectively.

Experimentation/Visualization: Figure 4 depicts a typical outcome for case 1. More
extreme population distributions with almost all individuals on one wing of the Pareto-
set also happen. In figure 5, resulting Pareto-sets for two different algorithms are pre-
sented, again, typical runs are chosen. Figure 6 holds histograms for the distributions of
measures fair(P ) on case 1 and left(P ) on case 4.

Observations: Figure 4 demonstrates that for symmetric optima, the Pareto-front often
contains large chunks of points originating from the proximity of different minimiz-
ers. Accordingly, the approximated Pareto-sets show corresponding clouds of points,
unevenly distributed over the true Pareto-set. For case 4, Figure 5 shows that the algo-
rithms are able to spread their populations over both important parts of the Pareto-set.
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Fig. 5: Pareto-sets of single NSGA-II (left) and SMS-EMOA (right) runs on case 4.

However, the shape of the clouds near the global minimizer of f1 is different: NSGA-II
often forms lines of points in that region, whereas the SMS-EMOA rather builds areal
structures.
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Fig. 6: Histograms for measures fair(P ) on case 1 and left(P ) on case 4.

Discussion: For case 1, hypothesis testing reveals a slight difference between NSGA-II
and SMS-EMOA, p-Value 0.071, and a strong one between NSGA-II and SPEA2, p-
Value 0.030. SMS-EMOA and SPEA2 may be considered behaving relatively similar,
p-Value 0.427. Visual comparison of histograms depicted in Figure 6 sees the SMS-
EMOA as something inbetween NSGA-II and SPEA2. In effect, NSGA-II covers both
wings of the Pareto-set more evenly on average, its fair() measure is 0.110, compared
to 0.149 and 0.152 for SPEA2 and SMS-EMOA, respectively.

All three algorithms cope surprisingly well with case 4. Here, hypothesis tests hint
to a similarity between SMS-EMOA and NSGA-II, p-Value 0.468, and sharp distinction
between SPEA2 and SMS-EMOA, and SPEA2 and NSGA-II, both p-Values 0.001. As
indicated by the histograms, NSGA-II and SMS-EMOA both place more points near
the global optimizer, their left() measures are 0.169 and 0.167, respectively. SPEA2
only puts 13.1% of its final population there. Unfortunately, we are currently not able
to explain what makes the algorithms behave differently in this respect.
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7 Summary and Outlook

The main message of the work presented here is our belief in the fact that a neat covering
of the Pareto-front is not sufficient for meeting the needs of all clients that may use
EMOAs. Therefore, future versions of EMOAs should also take into account a proper
covering of the Pareto-set. Evidently, contemporary EMOAs cannot deliver this kind of
behavior. For this purpose we need also an effective measure for assessing the quality
of a solution set in decision space—similarly to the S-metric in objective space. And
if we have such a measure then it can be integrated into the EMOA for guiding the
search—similarly to the S-metric in the SMS-EOMA.

Needless to say, if we follow this avenue we have to deepen our insights into the be-
havior of EMOAs in the decision space. Such an analysis can be quite counter-intuitive
and surprising as our seemingly simple test problem has revealed. We are convinced that
a thorough analysis of the interaction between Pareto-front and Pareto-set will eventu-
ally lead to new insights, new search operators, and even better EMOAs.
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