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Abstract. Swarm Intelligence is the emergent collective intelligence of
groups of simple agents acting almost independently. Algorithms follow-
ing this paradigm have many desirable properties: flexibility, decentral-
ized control, robustness, and fault tolerance. This paper presents a novel
agent coordination model inspired by the way ants collectively transport
large preys. In our model a swarm of agents, each having a different
destination to reach, moves with no centralized control in the direction
indicated by the majority of agents keeping its initial shape. The model
is used to build an algorithm for the problems of image alignment and
image matching. The novelty of the approach and its effectiveness are
discussed.

1 Introduction

Swarm Intelligence (SI) is the property of a system where the behaviour of sim-
ple quasi-independent agents, interacting locally with their environment, cause
intelligent global behaviour to emerge. Since intelligent behaviour should emerge
from collaboration rather than from individual abilities, each agent is designed
to be very simple. The agents should have a limited knowledge of the environ-
ment, which they should be able to modify only locally, and should be designed
according to the reactive paradigm [1].

A feature distinguishing Swarm Intelligence from classical multi-agent sys-
tems is the concept of stigmergy. While in classical multi-agent systems, the
agents communicate directly between each other, in the SI paradigm the agents
communicate by modifying a shared environment. The alterations of the environ-
ment, amplified through a feedback process, may lead the system to self-organize.
The state reached by the system should correspond to an optimal solution of the
problem. A system with such characteristics is non-linear. The next state of the
system does not depend solely on the current state of every agent. The predic-
tion must be based also on the relationships among the various agents. Such
complexity makes difficult for an agent to determine the action leading to the
desired macroscopic behaviour.



Despite some interesting works [2–4], there is a lack of general theories and
programming methodologies in the SI field. The difficulties have induced re-
searchers to look for inspiration at biological phenomena. Ant Colony Optimiza-
tion (ACO) and Particle Swarm Optimization (PSO) are optimization techniques
inspired to coordination mechanisms used by, respectively, ants gathering for
food [5] and birds flocking [6]. Other examples of biologically-inspired algorithms
can be found in [7–10].

This paper presents a new agent coordination model named Democratic Col-
lective Transportation (DCT). The model is inspired by ants collectively trans-
porting large preys to the nest. In fact, some species of ants are able to trans-
port a heavy prey by coordinating their forces through the prey itself. In our
new model, the constraint that all agents try and move the prey toward the
same destination (the nest) is removed: each agent has a desired destination.
The group moves the prey toward the direction chosen by the majority of agents
with no centralized control. Based on the introduced model, an algorithm for the
Image Alignment problem has been devised. It is a population-based optimiza-
tion algorithm but, unlike ACO and PSO, only one solution, obtained through
a self-organizing mechanism, is generated at each iteration.

The paper is organized as follows. Section 2 describes the biological model.
Section 3 presents the new model. Section 4 describes an algorithm for image
alignment based on the presented coordination model and discusses its results.
Section 5 presents some concluding remarks.

2 Collective Prey Retrieval

In order to overcome the limits imposed by their small size and limited capabil-
ities, many species of ants have evolved by developing collaborative strategies.
The carriage of a large prey into the nest is an example of such process. Some
species of ants have specialized workers able to cut the prey into small pieces
that a single ant can carry, while other species are able to collectively transport
large preys. Experimental results show that the latter strategy, called collective
transportation, is the most efficient one [5]. The species with the most interesting
strategies are Pheidole crassinoda, Myrmica rubra and Myrmica lugubris. They
exhibit the same behavioural patterns in solitary and group transport [11]. An
high level description of collective prey retrieval is summarized below:

1. When an ant finds a prey, it tries to carry it.
2. If the ant does not succeed in moving the prey, it tries to drag it in various

directions (realignment behavior).
3. If the prey does not move, the ant grasps the prey differently, then tries and

drag it in various directions.
4. If the prey still does not move, the ant starts recruiting nest mates. First,

it releases a secretion in the air in order to attract nearby ants (short range
recruitment). If the number of recruited ants is not enough to move the
prey, the ant goes back to the nest leaving a pheromone trail on the ground.



Such trail will lead other ants to the prey (long range recruitment). The
recruitment phase stops as soon as the group is able to move the prey.

Resistance to traction represents a positive feedback mechanism. As specified at
point 4, recruitment stops when resistance to traction ends and the prey starts
moving.

While moving toward the nest, coordination among the ants occurs through
the prey itself. The change of the force applied by a single ant modifies the
stimuli perceived by the other ants (which react accordingly). Such coordination
strategy is an example of stigmergy.

3 A New Coordination Mechanism Based on Collective

Prey Retrieval

The new coordination model introduced in this paper is an extension of the
last phase of the collective prey retrieval strategy: the coordination of forces
during the transportation of the object to the nest. It introduces two significant
differences with respect to the model described in section 2:

– in collective prey retrieval, each ant tries and carry the prey to the same
destination (the nest). In our model each agent has its own destination for
the prey. The group must move in the direction indicated by the majority
of its agents.

– In section 2 the prey is considered a rigid body. A force applied to a rigid
body is perceived instantaneously by all the carrying ants. The inclusion of
a similar propagation mechanism in a model would lead to an unacceptable
level of complexity: either the agents or the preys should be equipped with
a broadcasting mechanism. In the democratic transportation model, the ap-
plication of a force by an agent is immediately notified to its neighbouring
agents only and is perceived by all the other agents after some instants. Such
delayed propagation roughly corresponds to considering the prey as a non-
rigid body. We show how such modification still allows the coordination of
the agents, while keeping simple both the prey and the agent models.

3.1 Model Description

In order to obtain the democratic collective transportation model described in
section 3, the biological model (section 2) is to be modified as follows:

1. each agent constantly applies a force on the prey toward his preferred desti-
nation Vp.

2. The intensity of the applied force is inversely proportional to the angle be-
tween Vp and the direction Vg chosen by the majority of the agents.

3. The direction Vg of the majority of the ants is estimated by each agent by
simply looking at the movements of the prey in the previous time steps.



In the following we outline the functions needed for a formal description of the
democratic collective transportation model.

p denotes a generic agent of the system. The agents are grouped in a set P .
p(t) is the position of agent p at time t. Each p has 0 initial velocity and moves
according to Fn and Fp.

Fn propagates the individual forces applied to the item being transported to
neighbouring agents. Fn is obtained constraining each agent to keep the initial
distance from its neighbours at every time step:

Fn(p) = c ·
∑

q∈P

(

q(t) − p(t)

‖q(t) − p(t)‖

)

· (‖q(t) − p(t)‖ − ‖q(0) − p(0)‖) · δ(p, q) , (1)

with 0 ≤ c ≤ 1. The first factor of eq. (1) is the versor from agent p to agent q.
The second factor is the gap between the current and the initial distance between
p and q. Function δ indicates whether p and q are to be considered neighbours:
δ(p, q) = 1 if q ∈ neigh(p) and 0 otherwise. Function neigh(p) determines the
initial disposition of the agents. The function neigh, used in our work, is defined
as:

neigh(p) =
{

q ∈ P : 0 < ‖p(0) − q(0)‖2 ≤
√

2
}

. (2)

Fp controls the velocity of the agents p moving in their preferred directions.
Fp can be expressed as:

Fp(p(t)) =







0 if Fp(p(t − 1)) + Vp · A < 0
MaxFp

if Fp(p(t − 1)) + Vp · A > MaxFp

Fp(p(t − 1)) + Vp · A otherwise
. (3)

At time t = 0, Fp(p(0)) = 0. The term A in equation 3 represents the increment
in modulus of Fp at time t:

A = λ(Vp · V̂g(p)) . (4)

It is worth noting that Fp and Vp have the same orientation and the same

direction. Since Vp and V̂g(p) are versors, the parameter λ represents the max-
imum value of A. The increment of the modulus of Fp is inversely proportional
to the angle between the direction chosen by the agent, i.e. the versor Vp, and
the direction chosen by the majority of agents, i.e. the versor Vg.

In order to obtain the exact value of Vg, we should know the state of each
agent in any iteration, but such assumption violates SI principles. An estimate
V̂g of Vg can be obtained by using local information only, namely comparing the
current position of an agent to its position at time t − k:

V̂g(p) =
p(t) − p(t − k)

‖p(t) − p(t − k)‖ . (5)

In order for eq. (5) to be consistent for every t, it is assumed that p(−1) =
p(−2) = . . . = p(−k) = 0. In the first k iterations each p receives a positive
feedback from the system.



The position of agent p at time t is expressed as follows:

p(t) = p(t − 1) + Fn (p(t)) + Fp (p(t)) . (6)

In order to ease the description, we will identify agents with the points of the
transported item.

3.2 Model Validation

The democratic collective transportation model has been validated through a
series of simulations. In order to prove the correctness of the model, we show that,
in such model, each agent, after some iterations, starts following the direction
chosen by the majority of the agents, independently by its initial direction.

The simulation is divided into two stages. At the beginning of the first stage,
all the agents are still. The versors Vp are randomly selected and each agent
starts moving. During the first N

2 iterations, where N is the total number of
iterations of the simulation, the Vps remain unchanged. At iteration number
N
2 + 1, when the agents are moving along the direction of the majority of them,
their Vps are reselected. In this case, it is more difficult for a moving agent to
modify its parameters and start following the majority.

The main issue for the model concerns the estimates of the majority direction
V̂g made by the agents. In order to verify such estimates, we used the following
error measure:

E =
∑

∀p∈P

(

1 − V̂g(p) · Vg

)

. (7)

Figure 1 shows the results of a single simulation. In that case the simulation was
run for N = 80 iterations with a population of 900 agents and parameters set as
follows: c = 0.49, λ = 0.06, k = 3, MaxFp

= 0.24.
As the bottom right box of figure 1 shows, the sum of the errors rapidly

decreases to 0 (the peak at iteration 40 is caused by the second selection of
the preferred destinations). The slope of E depends on the percentage of agents
willing to move in the direction of the majority. The slope of E does not depend
on the number of agents: we ran simulations with up to 10000 agents obtaining
similar results.

4 An Algorithm for Image Alignment and Matching

In this section we propose an algorithm for Image Alignment based on the de-
mocratic collective transportation model.

Image alignment is defined as the problem of finding an optimal spatial align-
ment of two images of the same scene/object taken in different conditions. For
example, two images of the same object taken at different times or from different
points of view or with different modalities [12]. Image alignment is the problem of
finding an optimal transformation ω minimizing dissimilarities between an input



Fig. 1. A simulation of the democratic collective transportation model. From left to
right, top to bottom: initial positions of the agents, qualitative idea of the direction
chosen by the majority of the agents (from iteration one to 40: South-East, from it-
eration 41 to 80: North-East), final positions of the agents, plot of the error rate E,
representing the error made by the agents in guessing the direction of the majority.

image Iinput and a target image Itarget. The degree of dissimilarity is measured
by a cost function f :

ωmin = argminω∈Ω {f(ω(Iinput), Itarget)} . (8)

In some cases the differences between the two images should not be corrected
since they might contain relevant information. For example, the diagnosis ob-
tained by some image-based medical examinations relies on the differences be-
tween two images acquired at different times. Any registration algorithm should
correct all the differences caused by misalignment and should preserve all the
other ones. A detailed description of the image alignment problem and an overview
of classical and new approaches can be found in [13, 12].

As eq. (8) suggests, image alignment can be seen as an optimization problem,
where Ω is a family of functions differing only for a set of parameters. Classical
optimization techniques as well as popular swarm intelligence methods, such as
Particle Swarm Optimization [14] and Ant Colony Optimization [15], have been
applied to the image alignment problem. Such methods require a global cost
function (or error function) to drive the system toward an optimal choice for the



parameters of ω. The algorithm we propose does not use a global cost function:
each agent has its local cost function.

4.1 Description of the Algorithm

Before describing in full details the algorithm, we will sketch its relationship
with the introduced model:

1. Iinput, the image to be registered, is considered the object that has to be
moved.

2. Pixels of Iinput are considered as points (and therefore agents) moving in
a bi-dimensional space. Each agent has 8 neighbours corresponding to the
neighbourhood of the pixel in Iinput.

3. An application of a force on the object to be transported causes the pixel in
Iinput to move.

4. Each agent p has a set Dest(p) of possible destinations, corresponding to the
coordinates of the points in Itarget that are similar, according to eq. (10), to
p.

5. Each agent selects a point q in Dest(p) and tries to move toward q.

The functions of the model are modified as follows:

p is a generic agent of the system. Pixels of Itarget are grouped in a set O.
At t = 0 the agents form a grid of points. A function Color maps the agents
to the gray values of the corresponding pixels in Iinput.

Fp modifies Iinput in order to make it as similar as possible to Itarget. The idea
is to let regions of Iinput with a high gradient be attracted by corresponding
regions of Itarget. The only difference with the democratic transportation
model concerns the Vp definition. Each p ∈ P has an associated set of pixels
Dest(p), composed by the pixels of Itarget which are similar to p according
to eq. (10):

Dest(p) = {q ∈ O|sim(p, q) ≥ dsim} , (9)

where dsim is the similarity threshold. The similarity function used is:

sim(p, q) = |Color(p) − Color(q)| + ‖∇p −∇q‖2 , (10)

where ∇p is the gradient of the image I at coordinates (px, py). Each p

tries to reach a position corresponding to an element of Dest(p) stored in
CurrentDestination(p). CurrentDestination(p) is modified every g itera-
tions according to probability density ρ defined as:

ρ(p, q) =



(1 + ‖p(t) − q‖) ·
∑

o∈Dest(p)

1

1 + ‖p(t) − o‖





−1

. (11)

By reselecting CurrentDestination(p) every g iterations, the system ex-
plores more solutions. Since in the selection process closest destinations are



preferred, when a good solution has been found each agent tends, with high
probability, to go back to the same point.
Vp is the versor with direction from p to its current destination:

Vp =
CurrentDestination(p) − p(t)

‖CurrentDestination(p) − p(t)‖ .

The dynamic of the algorithm pushes the majority of Iinput pixels in the
direction of their current preferred destination. With high probability Iinput

will move to a position “satisfying” the majority of the agents. In this paper we
hypothesize that this position is the one with the highest probability to correctly
align the image.

4.2 Results and Discussion

The algorithm has been tested on Magnetic Resonance images of the human
brain. We ran several test using different images and different degree of noise.
In each case the target image was obtained by 1) removing the background in
the original image, 2) translating the filtered image to South-East and 3) by
adding noise. The typical results of such experimentations are shown in fig. 2,
which contains the output of three tests on 116 x 137 images. In the first row a
45% salt & pepper noise was added to Iinput. In the second row a 16% speckle
noise was added. In the last row a 16% speckle noise and a 35% salt & pepper
noise were added. The last image in each row represents the final result of the
algorithm. In every case the swarm needed few seconds on an AMD 1800+, with
1 GB of RAM, to compute the correct registration. The algorithm still finds the
correct transformation on larger images, even if it takes longer. The results show
that the algorithm corrects the differences caused by the translation.

In fig. 3 the results of a different experimentation are shown. In this case the
goal was to locate a small image in a larger one. In this case also the algorithm
is able to correctly locate the input image.

The algorithm described in this paper is different from classical population
based optimization techniques such as genetic algorithms (GA), ACO, and PSO.
In GA, ACO, and PSO at each iteration every agent proposes a complete solution
to the problem. The best solutions are then selected and influence the creation
of the solutions in subsequent iterations. Such approaches require a global cost
function able to evaluate how good each proposed solution is. In the approach
described in this paper, only one solution is generated at every iteration. There
is no need of a global cost function: each agent uses a local cost function which is
much simpler than common global cost functions. The system is able to discard
the contribution of those agents whose cost function would lead to a poor solution
and to promote those agents whose cost function would increase the quality of
the solution.



Fig. 2. Example of the execution of the algorithm. For every row, from left to right:
Iinput, Itarget, differences between Iinput and Itarget, the output of the algorithm (the
aligned image), the difference between Itarget and the output of the algorithm.

Fig. 3. Example of application of our algorithm to the Image Matching problem. In
this case the goal is to find the location of the patch Iinput in Itarget. From left to
right: Iinput, Itarget, the output of the algorithm, the differences between Itarget and
the estimated location of Iinput in Itarget. The black box means that the algorithm was
able to correctly locate the patch over Itarget.

5 Conclusions and Future Work

In this paper we presented a new agent coordination model based on the col-
lective prey retrieval strategy of some species of ants. In the model a swarm of
agents, each having a different destination to reach, is able, with no centralized
control, to move in the direction indicated by the majority of the agents keeping,
at the same time, the initial shape of the swarm.

From this coordination model an algorithm for Image Alignment and Match-
ing in which simple agents collaborate to move an input image toward a target
one has been devised. According to the current results, the algorithm is tolerant



to noise, but we need to further investigate its dynamic behaviour by using a
larger set of test images.

The algorithm is able to correct translations only, but the results obtained so
far induce us to further investigate the capabilities of our approach. The short-
term goal is to extend the algorithm in order to match rotated images and to
compare its performance against standard approaches. The long-term goal is to
introduce new interactions that should enable the image alignment with elastic
deformations and other types of noise.
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