Skip to main content

Performance of Evolutionary Algorithms on Random Decomposable Problems

  • Conference paper
Parallel Problem Solving from Nature - PPSN IX (PPSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

Abstract

This paper describes a class of random additively decomposable problems (rADPs) with and without interactions between the subproblems. The paper then tests the hierarchical Bayesian optimization algorithm (hBOA) and other evolutionary algorithms on a large number of random instances of the proposed class of problems. The results show that hBOA can scalably solve rADPs and that it significantly outperforms all other methods included in the comparison. Furthermore, the results provide a number of interesting insights into both the difficulty of a broad class of decomposable problems as well as the sensitivity of various evolutionary algorithms to different sources of problem difficulty. rADPs can be used to test other optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D.H.: An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing, 170–204 (1987)

    Google Scholar 

  2. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. IlliGAL Report No. 91009, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (1991)

    Google Scholar 

  3. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 331–337 (1991)

    Google Scholar 

  4. Santarelli, S., Goldberg, D.E., Yu, T.L.: Optimization of a constrained feed network for an antenna array using simple and competent genetic algorithm techniques. In: Proceedings of the Workshop Military and Security Application of Evolutionary Computation (MSAEC 2004) (2004)

    Google Scholar 

  5. Barahona, F., Maynard, R., Rammal, R., Uhry, J.: Morphology of ground states of a two dimensional frustration model. J. Phys. A 15, 673 (1982)

    Article  MathSciNet  Google Scholar 

  6. Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete. Theoretical Computer Science 4, 237–244 (1977)

    Article  MathSciNet  Google Scholar 

  7. Gao, Y., Culberson, J.: Space complexity of EDA. Evolutionary Computation 13(1), 125–143 (2005)

    Article  Google Scholar 

  8. Gao, Y., Culberson, J.: On the treewidth of NK landscapes. In: Genetic and Evolutionary Computation Conference (GECCO 2003), vol. II, pp. 948–954 (2003)

    Google Scholar 

  9. Weinberger, E.D.: Local properties of kauffman’s N-k model: A tunably rugged enegy landscape. Physical Review A 44(10), 6399–6413 (1991)

    Article  Google Scholar 

  10. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature, 178–187 (1996)

    Google Scholar 

  11. Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 511–518 (2001); Also IlliGAL Report No. 2000020

    Google Scholar 

  12. Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Tech. Rep. No. CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA (1994)

    Google Scholar 

  13. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002); Also IlliGAL Report No. 99018

    Article  MathSciNet  Google Scholar 

  14. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer, Boston (2002)

    MATH  Google Scholar 

  15. Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. Springer, Heidelberg (2005)

    Book  Google Scholar 

  16. Thierens, D., Goldberg, D.E., Pereira, A.G.: Domino convergence, drift, and the temporal-salience structure of problems. In: Proceedings of the International Conference on Evolutionary Computation (ICEC 1998), pp. 535–540 (1998)

    Google Scholar 

  17. Mühlenbein, H.: How genetic algorithms really work: I. Mutation and Hillclimbing. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature, pp. 15–25. Elsevier Science, Amsterdam, Netherlands (1992)

    Google Scholar 

  18. Thierens, D.: Analysis and design of genetic algorithms. PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium (1995)

    Google Scholar 

  19. Goldberg, D.E.: The design of innovation: Lessons from and for competent genetic algorithms. Genetic Algorithms and Evolutionary Computation, vol. 7. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  20. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  21. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E. (2006). Performance of Evolutionary Algorithms on Random Decomposable Problems. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_80

Download citation

  • DOI: https://doi.org/10.1007/11844297_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38990-3

  • Online ISBN: 978-3-540-38991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics