Finding State-of-the-Art Non-cryptographic
Hashes with Genetic Programming

César Estébanez, Julio César Herndndez-Castro,
Arturo Ribagorda, and Pedro Isasi

Universidad Carlos 11T de Madrid
Avda. de la Universidad, 30, 28911, Leganés (Madrid). Spain
{cesteban, jcesar, arturo}@inf.uc3m.es, isasi@ia.uc3m.es

Abstract. The design of non-cryptographic hash functions by means of
evolutionary computation is a relatively new and unexplored problem. In
this paper, we use the Genetic Programming paradigm to evolve collision
free and fast hash functions. For achieving robustness against collision
we use a fitness function based on a non-linearity concept, producing
evolved hashes with a good degree of Avalanche Effect. The other main
issue, efficiency, is assured by using only very fast operators (both in
hardware and software) and by limiting the number of nodes. Using this
approach, we have created a new hash function, which we call gp-hash,
that is able to outperform a set of five human-generated, widely-used
hash functions.

1 Introduction

1.1 Definitions

Hash functions take a message as input and produce an output referred to as a
hash. More precisely, a hash function A maps bitstrings of arbitrary finite length
to strings of fixed length. For a domain D and range R with h : D — R and
|D| > |R| the function is many-to-one, implying that the existence of collisions
(pairs of different inputs with identical outputs) is unavoidable. In the following,
the term hash function will refer to non cryptographic hash functions for table
and database lookup, mostly used with hash tables [9], not to be confused with
the related but quite different cryptographic hash functions usually found in
computer security for digital signature and integrity checking. In any case, hash
functions should be very efficient (fast) and relatively collision-free (that is, even
if we know collisions should exist, finding them should be nontrivial).

1.2 A Fitness Function for Hashes

A good way for assuring the quality of a hash function could be to measure the
randomness of the hash values produced. There are a number of tests that can be
used for this purpose, such as entropy, serial correlation coefficient, average, etc.

One could use any combination of these test as a fitness function for generating
highly-random hash functions. However, the common problem to this approach

Referencia bibliográfica
Published in:
Parallel problem solving from nature - PPSN IX. Berlin: Springer, 2006. P. 818-827 (Lecture Notes in Computer Science; 4193)

is that the hash functions obtained need not to pass any other tests than those
that form part of the fitness function. Thus, the functions may produce nearly
optimal values for all the tests included in the fitness function but quickly fail
other, not related, previously unseen tests, even very simple ones.

In this work, however, we propose a completely different approach: instead
of measuring output randomness, we measure input/output non-linearity. This
change is quite important, because randomness has not a clear definition: it
depends on the observer, the tests used, etc. There are multiple definitions for
the concept which not satisfy all authors and which, more importantly, make it
very difficult, if not impossible, to obtain an undisputed and efficient measure.
However, some aspects of non-linearity can be measured by means of a property
called Avalanche Effect. In this work, we use this property in the fitness function
of a Genetic Programming algorithm for evolving hashes. In this way, we find
hash functions that have a very non-linear behavior. Here we show that this
generated hash functions can be faster and perform better than other well-known
widespread-used hash functions such as FNV Hash [I].

This idea of using evolutionary techniques for generating non-cryptographic
hash functions is relatively new: there is only a few works in this topic [7I4l3],
and none of them uses a similar approach to ours.

This paper is organized as follows: Section [l introduces the previously men-
tioned Avalanche Effect and a stricter variant of it. Section [J describes our
approach and some implementation issues. Section [reports the experiments
carried out, and the obtained results. Finally, Section Bl draws the main conclu-
sions of the paper.

2 The Avalanche Effect

Nonlinearity can be measured in a number of ways or, what is equivalent, has not
a complete unique and satisfactory definition. Fortunately, this is of no concern to
us as we do not pretend to measure non-linearity but a very specific mathematical
property named avalanche effect because it tries to reflect, to some extend, the
intuitive idea of high-nonlinearity: a very small difference in the input producing
a high change in the output, thus an avalanche of changes.

Mathematically, F': 2™ — 2™ has the avalanche effect if it holds that

Va,y|H(z,y) =1, Average (H(F(:c),F(y))) = ;L

So if F' is to have the avalanche effect, the Hamming distance between the
outputs of a random input vector and one generated by randomly flipping one
of the bits should be, on average, n/2 . That is, a minimum input change (one
single bit) produces a maximum output change (half of the bits) on average.

This definition also tries to abstract the more general concept of output in-
dependence from the input (and thus our proposal and its applicability to the
generation of good hash functions). Although it is clear that this independence
is impossible to achieve (a given input vector always produces the same output)

2

the ideal F' will resemble a perfect random function where inputs and outputs
are statistically unrelated. Any such F' would have perfect avalanche effect, so it
is natural to try to obtain such functions by optimizing the amount of avalanche.
In fact, we will use an even more demanding property that has been called the
Strict Avalanche Criterion [5] which, in particular, implies the Avalanche Effect,
and that could be mathematically described as:

Vo,y|H(z,y) =1, H(F(z),F(y)) ~ B(;,n)

It is interesting to note that this implies the avalanche effect, because the
average of a Binomial distribution with parameters 1/2 and n is n/2, and that
the amount of proximity of a given distribution to a certain distribution (in this
case a B(1/2,n)) could be easily measured by means of a chi-square goodness-
of-fit test. That is exactly the procedure we will follow.

3 Implementation Issues

We have used the lilgp genetic programming library [2] as the base for our
system. Lil-gp provides the core of a GP toolkit so the user only needs to adjust
the parameters to fit his particular problem. In this section we detail the changes
needed in order to configure our system.

3.1 Function Set

Firstly, we need to define the set of functions: This is critical for our problem, as
they are the building blocks of the functions we would obtain. Being efficiency
one of the paramount objectives of our approach, it is natural to restrict the set
of functions to include only very efficient operations, both easy to implement in
hardware and software. Another, but minor, objective was to produce portable
algorithms; so the inclusion of the basic binary operations such as vrotd (right
rotation), vroti (left rotation), xor (addition mod 2), or (bitwise or), not (bitwise
not), and and (bitwise and) are an obvious first step. Other operators as the sum
(sum mod 23?) are necessary in order to avoid linearity, being itself quite efficient.
The inclusion of the mult (multiplication mod 232) operator was not so easy to
decide, because, depending on the particular implementations, the multiplication
of two 32 bit values could cost up to fifty times more than an xor or an and
operation (although this could happen in certain architectures, its nearly a worst
case: 14 times [6] seems to be a more common value), so it is relatively inefficient,
at least when compared with the rest of the operators used. In fact, we did
not include it at first, but after extensively experimentation, we conclude that
its inclusion was beneficial because, apart from improving non-linearity it at
least doubled and sometimes tripled the amount of avalanche we were trying to
maximize. That’s the reason why we finally introduced it in the function set.
Similarly, after many experiments, we concluded that the functions vroti and

vrotd were absolutely interchangeable and that using them at the same time
3

was not necessary nor useful, so we arbitrarily decided to remove vroti and
left vrotd. Anyway, with vrotd we have a similar problem than with mult:
compared to other operators, in some architectures vrotd is very inefficient so
we tried to eliminate this operator and include the > (regular right shift) instead.
But the problem is that > was not able of producing as much non-linearity as
vrotd and the efficiency gains of the obtained hash functions were not as good
as for ignoring the loss of Avalanche Effect.

3.2 Terminal Set

The set of terminals in our case is easy to establish. Firstly, it is mandatory for
the hash function to operate with the previous generated hash value. Thus, one
of the terminals of the GP system will represent the previous calculated hash
value. It will be called hval. In our approach, the length of the output v is fixed
to 32 bits, so hval will be a 32 bits unsigned integer value.

The bitlength of the input (the m value), however, is not that easy to set.
Initially, we tried different approaches which did not generated good results,
specially in terms of efficiency, so we finally set the input length to 32 bits. In
this case, input-related terminals were reduced to a single 32-bit unsigned long
value, a0. Some experiments confirmed that, as expected, the best obtained
128-t0-32-bits hashes were never able to outperform the best 32-to-32 hashes.
The later were more efficient, and they usually reached a much higher level of
Avalanche Effect.

Finally, we included Ephemeral Random Constants (ERC’s) [I0] for complet-
ing the terminal set. In our problem, ERC’s are 32-bits random-values that can
be included in the hash function as constants to operate with. The idea behind
this operator was to provide a constant value that, independently from the in-
put, could be used by the operators of the function to increase non-linearity, and
idea suggested by [12].

3.3 Fitness Function

The fitness of every individual is calculated as follows: First, we use the Mersenne
Twister generator [II] to generate two 32-bit random values. Those values are
assigned to hval and a0l As we already know, each individual represents a
candidate hash function, so we run the hash function being evaluated with the
randomly generated values of a0 and hval. The hash value produced (we call
it hash,) is stored. Then, we randomly flip one single bit of one of the two in-
put values, a0 or hval, and we run again the hash function, obtaining a new
hash value (hashsz). Now, we compute the Hamming distance between hash;
and hashg. This process is repeated a number of times (8192 was experimen-
tally proved to be enough) and each time a Hamming distance among 0 and 32
is obtained and stored. For a perfect Avalanche Effect, the distribution of this

! This stands for the 32-to-32-bits hashing. For other input sizes, we only need to use
additional a* input values.
4

Hamming distances should adjust to the theoretical Bernoulli probability distri-
bution B(1/2,32). Therefore, fitness of each individual is calculated by adding
two factors: first the measure of how close to 16 (16/32 = 1/2) is the mean
of the calculated Hamming distances; and second, the chi-square (x?) statistic
that measures the distance of the observed distribution of the Hamming dis-
tances from the theoretical Bernoulli probability distribution B(1/2,32). Thus,
we try to minimize the following fitness expression:

Fitness = (16 — mean)? + x>

where x? is a corrected value of x2, which is calculated as follows:

x? = X2 x 1078
where o
X = i (On 07
2
h=0 En
and

By = 8192+ Pr(B(1/2,32) = k)

We should note that we are computing the value of the x? statistic without
the commonly used restriction of adding up only the values when Ej > 5.0, for
amplifying the effect of a bad output distribution, thus, the sensibility of our
measure.

It was necessary to correct the x2 statistic because its values were much bigger
than the values of the expression (16 —mean)?. Without this correction, the mean
measure was negligible and the fitness was guided only by the y?.

3.4 Tree Size Limitations

When using genetic programming approaches, it is necessary to put some limits
to the depth and to the number of nodes the resulting trees could have. We
tried various approaches here, both limiting the depth and not limiting the
number of nodes and vice versa. The best results where consistently obtained
using this latter option, so we fixed the number of maximum nodes to 25 and
did not put a limit (other that the number of nodes itself) to the tree depth.
This is also a very important step for assuring the efficiency of the resulting
algorithm.

4 Experimentation and Results

The experimentation carried out was extensive. In the GP system part, we tried

with many different configurations of the terminal and function sets, the fitness

function and the GP parameters, as mentioned in Section [3l Even so, in this
5

Section we will only show the experiments that produced the most interesting re-
sults, in order to save space and do not distract the reader from the important re-
sults.

Experiments were carried out in two phases. In the first stage, we use GP to
evolve individuals (GP will try to find an individual that minimizes the fitness
function described in previous sections). For each configuration and set of pa-
rameters described in Section Bl we executed ten GP runs. Using the information
provided by the best individuals of each configuration, we selected the parame-
ters that produced better results. This set of parameters is shown in Table [T}

Table 1. Experimentally-found best GP parameters

Parameter Value

G (Max.Gen.) 2000
M (Pop.Size) 100

Max nodes 25

and or not vrotd
Terminal and Function set xor sum mult

a0 hval ERC

Using these parameters, we obtained a large set of candidate individuals.
Among them, we selected the best one and called it gp-hash. This individual
is the best hash function our GP system was able to produce. A description of
gp-hash can be seen in Figure[ll and its pseudocode in C in Figure 2

(mult Ox6CF575C5
(vrotd (vrotd (vrotd (vrotd (vrotd
(vrotd (vrotd (vrotd (vrotd (vrotd
(vrotd (vrotd (vrotd (vrotd (vrotd
(vrotd (vrotd (vrotd (mult 0x6CF575C5
(sum hval a0))))))))))))))))))))

Fig. 1. Individual of the generated gp-hash function

The second stage starts at this point: We have generated a hash function by
means of optimizing the Avalanche Effect, restricting its size and using only the
most efficient operators, believing that in this way we would obtain a very fast
and relatively collision free hash function. In this stage, we want to check if we
have really achieved our objective. In order to do so, we decided to compare gp-
hash with a set of 5 human-generated non cryptographic hash functions: CRC32,
oneAtATimeHash, alphaNumHash, FNVHash [I] and BobJenkinsHash [§]. All
of them are state-of-the-art, widely-used hash functions, but within this group
FNVHash is well-known to be specially fast and collision free. This justifies
its wide adoption in dozens of applications, from NFS implementations (e.g.,

FreeBSD 4.3, IRIX, Linux (NFS v4)) to Domain Name Servers, not forgetting
6

magic_number = Ox6CF575C5

AUX = magic_number * (hval + a0)
rotate_18_positions_right (AUX)
hash = magic_number * AUX
return hash

Fig. 2. C pseudocode of the generated gp-hash function

high performance EMail servers, text based referenced resources for video games
on the PS2, Gamecube and XBOX, etc.

As the two most important features of a non-cryptographic hash function are
its speed and its collision robustness, these will be the two variables that we
will test. The former describes how fast the function can hash variable-length
bitstrings, and the later is the capability of generating a large amount of hashes
while producing as few collisions as possible. So we carried out two different tests:
one to compare the speed of the six hash functions, and another one to compare
their collision robustness. Both tests were ran in an AMD Athlon XP2000+ with
256 Mb of RAM and a Gentoo Linux Operating System.

4.1 Speed Test

The speed test was designed as follows: All the hash functions are coded in
C (none is optimized) and inserted into a speed benchmark. Each run of this
benchmark is divided in 32 phases, which we call ”executions”. In every exe-
cution, each function must hash 10 random-generated strings. The time took
for every function is stored. This process is repeated ten times, and after that,
the average time for each function is calculated and stored. Then the execution
ends. In the first execution, the length of the random-generated strings is 32
bits. In the second one, this size is multiplied by 2, in the third is multiplied
by 3, and so on. Finally, in execution 32, the string size is 32 x 32 = 1024. This
way, when all the executions ends, we have the average time that each hash
function needed to hash 108 strings of a length varying from 32 to 1024 bits. A
summary of these results can be seen in Table[2l Values of the table are average
time (in seconds). The headers of the columns are the string size (in bits) of the
experiment. Figure[3 shows the graphical representation of the results. It is clear
from the results of this experiment that gp-hash is faster than the other hash
functions, for every string length.

4.2 Collision Test

With the collision test we wanted to know how many hashes (in average) a

function can produce before generating the first collision. Furthermore, we also

wanted to know how the number of collisions growths when the number of hashes

growths. Thus, we created a battery of ten different tests. For each hash function,

each test is divided in ten executions. In each execution we store the number of

hashes before producing the first collision, and finally we calculate the average
7

Table 2. Summarized results of the speed test

32 64 128 256 512 1024

CRC32 0.039 0.068 0.127 0.229 0.435 0.847
oneAtATime 0.059 0.1 0.195 0.367 0.708 1.399
alphaNum 0.033 0.06 0.094 0.222 0.427 0.831
FNVHash 0.039 0.072 0.143 0.267 0.517 1.017
gp-hash 0.032 0.05 0.088 0.175 0.357 0.703
BobJenkins 0.09 0.087 0.164 0.23 0.439 0.82

Speed Test on AMD XP 2600+

- - L]
O - Lt
208 0 L] Lot |
£ Bl = ==y
= - L™ Le-01 L+

06 s] Lo} L

v et E=og =
= L™ bt [
- = Pelstere T [|
g - et =
r pdl
e

e

=
e

ni
ORI) %o D D A ok oD S IR I S o & & g ¥
FELLLIPELLH LR LPFLLEI TP LIPS F P P

Srtings Size (bits)

—=—CRC32 —-=—-oneAtATimeHash —-e—-alphaNumHash —%— FNVHash —+—gp-hash 32 —e— BobJenkins

Fig. 3. Results of the speed test

of the ten executions. The second test is similar, but when a first collision is
produced, we continue producing hashes and storing values. When a second
collision is produced, we store the number of hashes generated. In the third test,
we store the number of hashes needed for generate three collisions, and so on.

Results of the complete battery of tests can be seen in Table Bl The chart
in Figure @ shows the way in which the number of collisions growths when the
number of hashes also growths. The behavior of all hash functions is almost
linear, and it can be seen that gp-hash and the other functions have very similar
collision-per-hash rates, except oneAtATimeHash which produces significantly
worse ratios.

5 Conclusions and Future Work

The results obtained by gp-hash in both the speed and collision tests show that

this automatically-generated hash function is faster that all the other functions

tested when used in the standard AMDXP 2000+ architecture, while its colli-

sion rate is absolutely competitive or even slightly better that the rest of the

human-designed hash functions, except for one of them (oneAtATimeHash)
8

Table 3. Summarized results of the collision tests

Hash function Test 1 Test 2 Test 4 Test 6 Test 8 Test 10
hline CRC32 323648.38 541053.83 1033888.5 1445630.91 2033342.26 2583637.81
oneAtATimeHash 71380.66 132346.52 272675.61 407190.86 547254.59 659462.41
alphaNumHash 247355.25 523988.1 1040997.09 1587157.6 2079883.36 2657898.19
FNVHash 239840.3 578113.04 1049437.85 1559196.5 2165332.38 2590886.49
gp-hash 273480.69 584374.64 1028586.79 1522586.03 2054192.25 2670056.92
BobJenkins 276244.12 554777.21 935246.5 1582715.73 2015192.26 2600531.72

3000000

2500000 ’A.

2000000

1500000

/
1000000

T
500000 / — S

P

e

1 2 3 4 5 6 7 8 9 10

[—e—CRC32 —=—oneataTimeHash fash — -5 - ~FNVHash gp-hash 32 ——- |

Fig. 4. Results of the collisions test

which performs significantly worse than the rest. So, we can conclude that our
proposed system is able to produce competitive hash functions that can outper-
form other well-known, expert-designed and commonly used hash functions.

Gp-hash, the hash function produced in our experiments and proposed here
as an alternative, is slightly faster than FNV Hash (a widespread-used, very fast
hash function with many important real-life applications) and adjusts better to
the optimal probability distribution B(1/2,32), or, which is the same, is more
non-linear than FNV.

It is important to remark that gp-hash was designed in an automatic way. Ex-
cept for the fitness function, gp-hash was generated using no information about
the objective, the usage or even the nature of a hash function. Nevertheless, the
other hash functions used in the experiments were generated by practiced hu-
mans, with years of experience and a vast knowledge about the topic. Even so,
gp-hash is faster than the rest and able of generating approximately the same
number of collisions per hash than the others, in fact winning (the only with
FNV who repeats this honor) twice at Table 3. So we have generated an artifi-
cial algorithm which can compete on equal terms with those produced by human
experts or even beat them.

Acknowledgments

This article has been financed by the Spanish founded research MCyT project
OP:LINK, Ref:TIN2005-08818-C04-02.

References
1. Fowler, noll, vo. fnv hash web page, http://www.isthe.com/chongo/tech/comp/fnv/.
2. The lil-gp genetic programming system is available at

11.

12.

http://garage.cps.msu.edu/software/lil-gp/lilgp-index.html.

P. Berarducci, D. Jordan, D. Martin, and J. Seitzer. GEVOSH: Using grammat-
ical evolution to generate hashing functions. In R. Poli, S. Cagnoni, M. Keijzer,
E. Costa, F. Pereira, G. Raidl, S. C. Upton, D. Goldberg, H. Lipson, E. de Jong,
J. Koza, H. Suzuki, H. Sawai, I. Parmee, M. Pelikan, K. Sastry, D. Thierens,
W. Stolzmann, P. L. Lanzi, S. W. Wilson, M. O’Neill, C. Ryan, T. Yu, J. F. Miller,
I. Garibay, G. Holifield, A. S. Wu, T. Riopka, M. M. Meysenburg, A. W. Wright,
N. Richter, J. H. Moore, M. D. Ritchie, L. Davis, R. Roy, and M. Jakiela, editors,
GECCO 2004 Workshop Proceedings, Seattle, Washington, USA, 26-30 June 2004.

. E. Damiani, V. Liberali, and A. G. B. Tettamanzi. Evolutionary design of hashing

function circuits using an FPGA, Sept. 17 1998.

R. Forré. The strict avalanche criterion: spectral properties of boolean functions
and an extended definition. In CRYPTO ’88: Proceedings on Advances in cryptol-
ogy, pages 450—-468. Springer-Verlag New York, Inc., 1990.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.
The microarchitecture of the pentium 4 processor. Intel Technology Journal, Q1
2001. http://developer.intel.com/technology /itj/q12001/articles/art 2.htm.

D. Hussain and S. Malliaris. Evolutionary techniques applied to hashing: An effi-
cient data retrieval method. In D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector,
I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), page 760, Las Vegas, Nevada, USA, 10-
12 July 2000. Morgan Kaufmann.

B. Jenkins. A hash function for hash table lookup. Dr.Dobbs Journal, September
1997.

D. Knuth. The Art of Computer Programming. Addison Wesley, 1998.

. J. R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

Matsumoto and Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACMTMCS: ACM Transactions on
Modeling and Computer Simulation, 8, 1998.

D. J. Wheeler and R. M. Needham. TEA, a tiny encryption algorithm. Lecture
Notes in Computer Science, 1008:363—-369, 1995.

10

