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Abstract. This paper describes an integrated system to produce a composite recogni-
tion output on distant-talking speech when the recognition results from multiple micro-
phone inputs are available. In many cases, the composite recognition result has lower
error rate than any other individual output. In this work, the composite recognition re-
sult is obtained by applying Bayesian inference. The log likelihood score is assumed
to follow a Gaussian distribution, at least approximately. First, the distribution of the
likelihood score is estimated in the development set. Then, the confidence interval
for the likelihood score is used to remove unreliable microphone channels. Finally,
the area under the distribution between the likelihood score of a hypothesis and that
of the (N+1)st hypothesis is obtained for every channel and integrated for all chan-
nels by Bayesian inference. The proposed system shows considerable performance
improvement compared with the result using an ordinary method by the summation of
likelihoods as well as any of the recognition results of the channels.

1 Introduction

The state-of-the-art speech recognizers can achieve high recognition accuracy when close-
talking microphones are used. However, in distant-talking environments, the performance
is significantly degraded due to a variety of causes such as the distance between the sound
source and the microphone, the position of the microphone, the direction of the speaker, the
quality of the microphone, etc.

To cope with these problems, microphone array-based speech recognizers have been
widely applied to improve not only the quality of the speech but also the recognition perfor-
mance [1,2,3]. The simplest beamforming processing using the delay-and-sum principle has
been successfully used. However, it is difficult to estimate time-delay accurately in noisy and
reverberant environments [4]. While the use of the microphone array can capture only one-
directional acoustic information, the use of the spatially distributed multiple microphones can
capture spatial acoustic information in a room [5]. In addition, the latter makes the arrange-
ment of microphones in a room easier than the former.

In this paper, we propose methods to improve the performance of the distant-talking
speech recognition by producing a composite decision from the recognition results with
multiple microphones. In the work, the distribution of the likelihood score is assumed to
be a Gaussian density function. Its distribution is estimated, the confidence interval for the
likelihood score is found to extract unreliable results, and the area under the distribution
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between the likelihood score of the hypothesis and that of the (N + 1)st hypothesis is
computed per channel. Eventually, it is merged into a composite result by Bayesian inference.

The remainder of the paper is organized as follows. In Section 2, we introduce methods to
combine the recognition results by simultaneously recorded speech inputs into a composite
one, and Section 3 describes the experimental results and the performance evaluation. Finally,
we conclude and describe future works in Section 5.

2 Integration by Bayesian Inference

Speech inputs recorded simultaneously through two or more microphones are separately
recognized per recognizer and their results are combined into the best scoring hypothesis
by the integration module in Fig. 1. Given the speech inputs, X1, X2, . . . , XC obtained by
multiple microphones, the best hypothesis should be chosen to maximize P(W |X1, X2,
. . . , XC ). If we assume that the speech inputs from different channels are conditionally
independent given a hypothesis and each hypothesis has an equal prior probability P(W ) =
1, this can be further simplified by Bayesian inference as

W = arg max
W

p(W |X1, X2, · · · , XC) = arg max
W

∏C

i=1
p(Xi |W ) (1)

where C is the number of microphones.

Fig. 1. System architecture

The relation between the best hypothesis and the multiple speech inputs is described into
a Bayesian network shown in Fig. 2.

2.1 Integration by Likelihoods

If we take the logarithm of Eq. (1), which is simplified by Bayesian inference, the equation
is represented as follows:

W = arg max
W

∑C

i=1
log p(Xi |W ). (2)
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Fig. 2. Bayesian Network

The best hypothesis can be determined by the sum of the log likelihoods whose hypotheses
are the same among the recognition results by multiple channels. That is, the best rescoring
hypothesis is identified as a composite recognition result.

2.2 Reliable Channel Selection by Confidence Interval

The result of measurements is often accompanied by a confidence interval to determine an
interval that has a high probability of containing the true value [6,7]. Thus, if we say we are
(1-α)•100% confident between −l0 and l0 for the parameter l , it is described by

P(−lo < l < lo) = 1 − 2α (3)

where α is a number between 0 and 1. In other words, there is only an α% chance that
l will be less than −l0 and an α% chance that will be larger than l0. In this paper, the
confidence interval for the log likelihood score of the hypothesis, log p(W |Xc) is computed.
The lower limit is employed to remove an unreliable channel of which the likelihood of the
best hypothesis lies under the upper tail area in Fig. 3.

Fig. 3. Confidence interval

The log likelihood score log p(W |Xc) is assumed to follow a Gaussian distribution with
mean μl and variance σ 2

l . Afterwards, the distribution is estimated. The detail about the
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estimation will be described in the following section. Since there is no closed form to
integrate the Gaussian PDF, the bound is found by transforming into the standard Gaussian
function and using its table in Eq. (4).

P

(−lo − μl

σl
<

l − μl

σl
<

lo − μl

σl

)
= 1 − 2α. (4)

2.3 Integration Using Area Under Density Curve Between Hypotheses’ Scores

We assume that the log likelihood score l follows a Gaussian distribution and the conditional
observation distribution of l|μ is Gaussian with mean μ and variance σ 2, which is assumed
known. Then, its density is as follows:

p(l|μ) ∝ e− 1
2σ2 (l−μ)2

. (5)

The part that doesn’t depend on the parameter μ is the same for all parameter values; if we
ignore the constant of proportionality, it can be represented by Eq. (5). Suppose that the prior
probability for the parameter μ is a flat prior density ( f (μ) = 1). The shape of the posterior
for μ is given by

p(μ|l) ∝ p(μ) · p(l|μ) ∝ e− 1
2σ2 (μ−l)2

. (6)

On the other hand, if we have the Gaussian distribution with mean m and variance s2 for μ,
the shape of the posterior is

p(μ|l) ∝ e
− 1

2σ2s2/(σ2+s2)

(
μ− (σ2m+s2l)

σ2+s2

)2

. (7)

The update of the PDF of μ can be simplified by Eq. (8).

m′ = σ 2

σ 2 + s2
× m + s2

σ 2 + s2
× l, (s′)2 = σ 2s2

σ 2 + s2
. (8)

Consequently, the distribution for the next observation ln+1 is described by

p(ln+1|l1, l2, · · · , ln) =
∫

p(ln+1, μ|l1, l2, · · · , ln)dμ

=
∫

p(ln+1|μ) × p(μ|l1, l2, · · · , ln)dμ (9)

∝ e
− 1

2(σ2+s2
n )

(ln+1−mn )2

where we are ignoring the part that does not involve μ.

p(l) ∝ e
− 1

2(σ2+s2)
(l−m)2

. (10)

Instead of using the log likelihood score of the hypothesis itself from the recognition result
directly as in Section 2.1, the proposed method estimates the distribution of the likelihood
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score, p(l) and the area under the distribution between the log likelihood score of the
hypothesis and the (N + 1)st hypothesis is computed in Eq. (11).

Ac(W ) = P(Lc(W N+1) < l < Lc(W )) =
L(W )∫

L(W N+1)

p(l)dl (11)

where l is the log likelihood score, W N+1 is the (N + 1)st hypothesis in the N-best
list, Lc(W N+1) is the log likelihood score of the (N + 1)st hypothesis given the speech
input by microphone c, Xc, and p(l) is the PDF of the likelihood score. That is, the
area under the distribution between the log likelihood score of a hypothesis and that of
the (N + 1)st hypothesis is computed per channel input and it is integrated into Bayesian
inference introduced in Eq. (1). The composite result is decided by Eq. (12).

W = arg max
W

∑C

c=1
Ac(W ). (12)

Fig. 4. Area under the distribution between the log likelihood of each hypothesis and that of the
(N + 1)st hypothesis for each microphone input

3 Experiments

3.1 Experimental Setup

For the experiments, we use Korean POW (phonetically optimized word) 3848 database. It
consists of 3848 different words which are divided to 8 sub-sets and each speaker uttered
one of 8 sub-sets. The total number of speakers is 80 (40 males and 40 females). To show
the effectiveness of the proposed system, only 268 words among the database are selected.
As shown in Fig. 5, the selected 268 words are recorded again by using a loudspeaker at 5
positions marked in a room where four microphones are installed at the four corners to face its
center. The speech inputs through four microphones were sampled by 16 KHz. Also, the five
kinds of music without vocal sound were recorded by four channels in the same environment
in Fig. 5 and added per channel to make noisy database.

We use MFCCs, their corresponding delta and acceleration coefficients as the feature
vectors. A pre-emphasis filter H (z) = 1 − 0.97z−1 is used before framing and each frame
is multiplied with a 20 ms Hamming window, shifted by 10 ms.



468 M. Ji, S. Kim, and H. Kim

Fig. 5. Environment of DB Collection

3.2 Experimental Results

For performance comparison, we applied four different integration methods to multiple
recognition results: integration by the magnitude of the likelihood (ML), by the summation
of the likelihoods (BN_L), by the area under the likelihood density curve (BN_D), and by
applying a confidence interval in order to remove unreliable channels ahead of the BN_D
(BN_DC). Table 1 shows the baseline recognition results by the speech inputs through four
multiple microphones. Table 2 and 3 represent the recognition results per location and they
are followed by four different composite recognition results. Table 4 describes the error
reduction rate (ERR) of BI_DC over other integration methods. ORACLE is the maximum
reachable word accuracy. It describes whether the correct word is included in the N-best lists
for integration.

Table 1. Recognition accuracy of the baseline system (%)

CH SNR MIC1 MIC2 MIC3 MIC4
Clean 88.35 73.57 83.86 89.67
10 dB 81.49 83.33 82.28 82.33
5 dB 60.08 66.98 66.19 61.89
0 dB 22.72 32.40 30.63 23.98
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As shown in the experimental results, the composite recognition result is improved
compared with an individual output by each microphone. The performance improvement was
significant when the integration by the area under the likelihood density curve was applied
and it was applied after removing unreliable channels with a confidence interval even more.
As N got increased, the Word Error Rate was decreased by only small amount.

Table 2. Performance comparison of integration methods (Clean, N=1, %)

LOC CH LOCA LOCB LOCC LOCD LOCE AVG
MIC1 89.29 88.81 91.59 85.85 86.23 88.35
MIC2 73.23 66.63 86.52 70.27 71.22 73.57
MIC3 77.34 84.03 85.18 86.42 86.33 83.86
MIC4 86.71 90.44 91.11 91.59 88.53 89.67
ML 85.47 87.28 88.24 90.25 88.81 88.01
BI_L 87.28 89.01 91.87 89.58 88.43 89.23
BI_D 90.25 90.73 91.40 91.30 91.01 90.94
BI_DC 90.44 90.73 91.40 91.59 91.11 91.05
ORACLE 95.89 95.89 96.85 96.37 95.79 96.16

Table 3. Performance comparison of integration methods (Music noise 5 dB, N=1, %)

LOC CH LOCA LOCB LOCC LOCD LOCE AVG
MIC1 64.05 56.50 62.43 59.18 58.22 60.08
MIC2 72.08 64.44 69.02 66.06 63.29 66.98
MIC3 69.50 63.67 68.45 65.87 63.48 66.19
MIC4 66.44 59.75 62.43 61.66 59.18 61.89
ML 72.47 63.96 68.64 65.68 64.63 67.08
BI_L 71.89 65.49 68.36 66.54 64.15 67.29
BI_D 74.19 67.50 71.32 67.78 65.68 69.29
BI_DC 74.67 67.69 71.70 67.88 65.58 69.50
ORACLE 82.03 77.06 80.50 77.25 76.00 78.57

Table 4. ERR of BI_DC over other integration methods (%)

Method SNR Best Channel ML BI_L BI_D
Clean 21.26 37.30 26.26 2.11
10 dB 16.07 6.85 12.13 1.32
5 dB 21.74 21.06 19.59 2.26
0 dB -1.30 22.01 16.38 1.27

4 Conclusion

The integrated system to produce a composite speech recognition output has been proposed
and it is shown that the integration of the recognition results from spatially distributed
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microphones is effective in distant-talking speech recognition. After we assume that the
likelihood score follows a Gaussian distribution, the area under the distribution between
hypotheses is computed and combined into the best scoring hypothesis. When this proposed
method is applied after removing unreliable channels, the best performance is achieved.
However, the distribution of the likelihood score should be estimated in advance; it is still
useful from the viewpoint that it can greatly contribute to the performance improvement in
distant-talking speech recognition to realize hands-free applications.

In this paper, we considered one-directional noise source, and restricted the number
of distributed microphones to four. Thus, diverse experiments are required to confirm the
effectiveness of our system.
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