Parallel Prefix (Scan) Algorithms for MPI

Peter Sanders' and Jesper Larsson Triff?

! Universitit Karlsruhe
Am Fasanengarten 5, D-76131 Karlsruhe, Germany
sanders@ira.uka.de
2 C&C Research Laboratories, NEC Europe Ltd.
Rathausallee 10, D-53757 Sankt Augustin, Germany
traff@ccrl-nece.de

Abstract. We describe and experimentally compare three theoretically
well-known algorithms for the parallel prefix (or scan, in MPI terms) op-
eration, and give a presumably novel, doubly-pipelined implementation
of the in-order binary tree parallel prefix algorithm. Bidirectional inter-
connects can benefit from this implementation. We present results from
a 32 node AMD Cluster with Myrinet 2000 and a 72-node SX-8 parallel
vector system. On both systems, we observe improvements by more than
a factor two over the straight-forward binomial-tree algorithm found in
many MPI implementations. We also discuss adapting the algorithms to
clusters of SMP nodes.

Keywords: Cluster of SMPs, collective communication, MPI implementa-
tion, prefix sum, pipelining.

1 Introduction

The parallel prefiz or scan operation is a surprisingly versatile primitive and
a basic building block in massively parallel algorithms for a variety of different
problems, as shown by research in the 80ties and 90ties [2, 5]. Scan primitives are
also included among the collective operations of the Message Passing Interface
(MPI) [10], as an inclusive operation MPI_Scan, and with the MPI-2 standard [3],
also as an exclusive operation MPI_Exscan.

The parallel prefix operation can be explained as follows. Let p be the number
of processing element(PE)s numbered consecutively from 0 to p — 1, and let a
sequence of p elements x; with an associative, binary operation & be given.

The inclusive parallel prefiz operation computes for each PE j, 0 < j < p the
value @_, ;i = zo © 21 @ -~ © x;, with the convention that @]_; z; = 2; (a
one element sum is just that one element).

The exclusive parallel prefix operation computes for each PE j, 0 < j < p
except PE 0 the value @i;ol x;. With this definition, no neutral element for the
operation & is required.

For use with the scan (and other reduction) collectives, MPI provides a num-
ber of standard, binary operations like summation, maximum, boolean and bit-
wise operations etc. on standard datatypes like integers, doubles, and so forth. In

addition the user can define new associative operations on arbitrarily structured,
possibly even non-contiguous datatypes. Instead of a parallel prefix on a single
element per process, the MPI scan operations work element-wise on vectors of
elements. The number of elements in the vector is given by a count argument
in the call of MPI_Scan/MPI Exscan.

2 The scan algorithms

In this section we describe three standard algorithms for the parallel prefix op-
erations, and discuss their implementation in MPI. We focus exclusively on
the inclusive scan operation, but the discussion applies mutatis mutandis to
MPI _Exscan. We assume single-ported communication in a fully connected net-
work. Communication cost is o + m for a communication involving m data
elements. We use three variants of this model: a) half-duplex where each com-
municating PE can either send or receive a message, b) telephone model, where a
matched pair of PEs can communicate bidirectionally, and c¢) full-duplex where
a PE can simultaneously send data to one PE and receive data from a possibly
different PE. An m element & computation takes ym time of local work.

All algorithms will work in (implicitly) synchronized rounds and exchange
data packets of equal length. Hence, most of the time it suffices to discuss the
number of communication rounds and the amount of data sent and received by
each PE. We also discuss the total communication volume.

We use the shorthand @®[j..k] for EBk

i=j Zj.

NS
’ =

Processor Processor

Fig. 1. The communication patterns for the simple binomial (left) and the simultaneous
binomial (right) tree algorithm for p = 13.

2.1 Binomial tree

Let n = |logyp|. The binomial tree algorithm consists of an up-phase and a
down-phase each of n rounds. In round &k, k =0,...,n — 1 of the up-phase each
PE j satisfying j A (2871 — 1) = 2FF! — 1 (where A denotes “bitwise and”)
receives a partial result from PE j — 2% (provided 0 < j — 2F). Afterwards,

PE j — 2% is inactive for the remainder of the up-phase. The receiving PEs
add the partial results, and after round k have a partial result of the form
@®[j — 28t + 1..5]. In the down-phase we count rounds downward from n to
1. A PE j with j A (28 — 1) = 2¥ — 1 sends its partial result to PE j + 2+~!
(provided j + 2¥~! < p) which can now compute its final result @[0..5 + 2+~1].
The communication pattern is shown in Figure 1.

The number of communication rounds is 2|logp|, and the total communi-
cation volume is bounded by 2pm since in each round half the PEs become
inactive. Since each PE is either sending or receiving data in each round, with
no possibility for overlapping of sending and receiving due to the computation
of partial results, the algorithm can be implemented in the half-duplex model.

2.2 Simultaneous binomial tree

Starting from round k& = 0, in round k, PE j sends its partial result to PE j + 2"
(provided j + 2% < p) and receives a partial result from PE j — 2* (provided
0 > j — 2F). The partial results are added. It is easy to see that after round k,
PE js partial result is ®©[max(0,j — 2**! +1)..5]. PE j can terminate when both
j — 2% < 0 (nothing to receive) and j + 2% > p (nothing to send). This happens
after [log p] rounds. This algorithm goes back (at least) to [4], and is illustrated
in Figure 1.

The total communication volume is bounded by [log p|pm since (almost) all
PEs are active in all rounds. Since each PE is both sending and receiving data
from two different PEs, the analysis assumes the full-duplex model. In [6] it is
shown that the algorithm can be generalized to exploit k-ported communication.

A different algorithm with the same characteristics, but based on a butterfly
communication pattern is used in the mpich2 MPI implementation. For this
algorithm the telephone model of communication suffices but it has unbalanced
computational load — in each round, half the PEs compute two partial results.

2.3 Pipelined binary tree

The third algorithm arranges the PEs in a binary tree T" with in-order numbering.
This numbering has the property that the PEs in the subtree T'(j) rooted at j
have consecutive numbers in the interval [¢,...,],...,r] where £ and r denote
the first and last PE in the subtree T'(j), respectively. The algorithm has two
phases. In the up-phase, PE j first receives the partial result ®[¢..7 — 1] from its
left child and adds z; to get @[¢..5]. This value is stored for the down-phase. PE
J then receives the partial result @[j + 1..r| from its right child and computes
the partial result @&[¢..r]. PE j sends this value upward without keeping it. In
the down-phase, PE j receives the partial result ¢[0..£ — 1] from its parent. This
is first sent down to the left child and then added to the stored partial result
®I[¢..7] to form the final result ®[0..5] for j. This final result is sent down to the
right child.

With the obvious modifications, the general description covers also nodes
that need not participate in all of these communications: Leaves have no children.

Fig. 2. From left to right: The basic schedule of the doubly pipelined algorithm. A
balanced binary tree with in-order numbering. Two ways to build a binary tree from
a cluster of six SMPs.

Some nodes may only have a leftmost child. Nodes on the path between root and
leftmost leaf do not receive data from their parent in the down-phase. Nodes on
the path between rightmost child and root do not send data to their parent in
the up-phase. The communication pattern and examples of trees are shown in
Figure 2.

Let the height n of the tree denote the length of the longest root-to-leaf
path. The number of rounds for both up- and down-phases are at most 2n — 1
each. The total communication volume per phase is bounded by (p — 1)m. The
algorithm assumes only half-duplex communication.

It is a standard observation (e.g. [7]) that each PE is (in each phase) only ac-
tive in three consecutive rounds. Hence, successive up-phases (and down-phases)
can be pipelined. More specifically, if the m element vectors can be divided into b
blocks (and the operation @ on the m element vectors can likewise be blocked),
each phase can be done in 3(b — 1) 4+ 2n — 1 rounds: the 2n — 1 rounds is the
delay for the first block delivered at the root (or at the lowest leaf), with a new
block delivered at every third round. Since the partial results computed by PE
j in the up-phase is either needed by j or immediately sent upwards, there is no
need for intermediate buffering between up- and down-phases. A single buffer of
size O(m/b) for receiving a single intermediary block therefore suffices also for
the pipelined implementation. In our cost model, an m element prefix sum can
be computed in time O(n + m) using an optimal block size of ©(1/m/n). Note
that using a balanced binary tree we have n = [log(p +1)] — 1.

For bidirectional communication networks in the telephone model the two
pipelined phases can be combined. This can reduce the number of rounds by
up to a factor of two. Depending on its position in the tree, a PE will first perform
a certain number d of rounds working only on upward traffic while waiting for
the first packet of downward data.? After this fill phase, it enters into a steady
state such that in each round it exchanges one block of data with its parent

3 In a complete binary tree, this waiting time is proportional to the number of parent
connections one has to follow until reaching the leftmost root-leaf path in the tree.

or one of its children. After 3b — d rounds in steady state, the up-phase blocks
have been completed, and in d rounds of the drain phase the last blocks of
the down-phase are processed. We call this algorithm the doubly pipelined prefix
algorithm.

The largest delay is incurred for the rightmost leaf PE in the binary tree,
which has to wait for 2(2n — 1) rounds for the first block to arrive. A new block
arrives every third round, so the total number of rounds becomes 3(b—1)+4n—2,
or almost a factor two better than the 6(b — 1) + 4n — 2 rounds required for the
up- and down-phase of the two-phase algorithm.

Instead of pipelining, the same asymptotic running time is achieved by the
algorithm in [1] which by repeated halving splits the m elements into p blocks,
on which simultaneous scans are carried out by edge-disjoint binomial trees. This
algorithm assumes that p is a power of two (with a trivial generalization), and
also in terms of constant factors the algorithm is worse than the doubly pipelined
prefix algorithm.

3 Performance evaluation

The algorithms from Section 2 have currently been implemented for the case of
one MPI process per node. The algorithms have been benchmarked on both a
32-node AMD cluster with Myrinet 2000, and the 72 node SX-8 parallel vector
supercomputer at HLRS (Hochleistungsrechenzentrum Stuttgart, Germany). We
compare four algorithms , namely

— binomial tree

— simultaneous binomial trees
— pipelined binary tree

— doubly pipelined binary tree

Results are shown in Figure 3 which shows the achieved throughput as a
function of problem size m for fixed number of processes. For the pipelined
algorithms, the block size has been chosen proportional to /m/n with experi-
mentally determined constants depending on « and (3.

On both systems and all input sizes, all algorithms are dominated by just
two algorithms. The simultaneous binomial tree algorithm is best for small mes-
sage lengths (m up to about 10KBytes for the Myrinet cluster, and up to about
1MByte for the SX-8 system). For very small messages, it is up to a factor of
two better than all other algorithms and it dominates the plain binomial tree
algorithm for all input sizes. Beyond this threshold, both pipelined algorithms
give better throughput, although the difference between the pipelined and the
doubly pipelined algorithms is smaller than expected from the theoretical analy-
sis. Nevertheless, the capability for full-duplex communication can be exploited.
This is especially clear for the SX-8 system.

On the Myrinet cluster, all algorithms suffer a performance degradation for
message sizes beyond 2MB. This effect requires further investigation.

MPI_Scan, 31 nodes

30 T T K T T T T
MPI_Scan (binomial)
MPI_Scan (simultaneous binomial) ===----
MPI_Scan (inorder binary) -- .
MPI_Scan (unidirectional pipelined)
25 MPI_Scan (bidirectional pipelined) -

20

10

Bandwidth (MBytes/second)
[
o
T

5 - 4
0 1 1
1 10 100 1000 10000 100000 le+06 le+07 1e+08
Size
MPI_Scan, 36 nodes
20 ————rT———— T~ T T T
MPI_Scan (binomial)
MPI_Scan (simultaneous binomial) ===----
MPI_Scan (unidirectional pipelined) -
MPI_Scan (bidirectional pipelined) -
1000 i
2 800 .
(5]
(7]
2
%)
2
)
s 600 B
<
bl
2
©
3 400 B
o
200 B
0 1 L 1 1
1 10 100 1000 10000 100000 le+06 1le+07 1e+08
Size

Fig. 3. The four scan algorithms binomial trees, simultaneous binomial trees, pipelined
binary tree, doubly pipelined binary tree. Top: 31-node Myrinet cluster (with add.
measurements for nonpipelined binary tree); Bottom: 36 nodes of the NEC SX-8.

4 Adaptation to the SMP case

The parallel prefix algorithms were developed assuming a homogeneous commu-
nication network. For clusters of SMP nodes this assumption does not hold, and
severe node contention can result if many PEs per SMP node must in the same
round send and/or receive data from other nodes. In particular the simultaneous
binomial tree algorithm will inevitably suffer from this kind of node contention.

Now we discuss several possible improvements for the case that there are P
SMP (nodes) with p; consecutively ranked PEs in SMP .

For small inputs and/or very slow inter-SMP communication, a simple hier-
archical decomposition works well: First compute a parallel prefix within each
SMP. Then perform a parallel (exclusive) prefix over the SMPs using the result
of the last PE on each SMP. Finally, within each SMP, add the global result to
each local result. This algorithm has the advantage that at any time at most one
PE per SMP is performing inter-SMP communication.

For large inputs it is better to arrange all the PEs into a single tree taking care
that inter-SMP communication is small. This way, the time for intra-SMP prefix
computation will not appear in the term of the execution time that depends on
the input size m. We propose two basic ways to do this which are depicted in
the right part of Figure 2: One is to build local trees of depth O(logp;) on each
SMP and to build a binary tree of local trees as follows: The root PE of a left
successor in the SMP tree has the leftmost PE of its parent SMP as its parent in
the PE tree. Analogously, a right successor has a rightmost PE as its parent. Now
suppose p; = p/ P for all SMPs. We get a PE tree of height (1+0(1)) log % log P.
At most three PEs in each SMP perform inter-SMP communication. The total
volume of inter-SMP communication is < 2mP.

At the cost of increasing the inter-SMP communication to about 3mP, we
can decrease the height of the tree to [log(P + 1)] + maxo<;<p[logp;] — 1 and
reduce the number of PEs with inter-SMP communication to at most two per
SMP: The leftmost PEs g; of each SMP form a global balanced binary tree of
height h = [log(P + 1)] — 1 with the following properties: An in-order traversal
meets growing PE numbers. Only leaves have no left successor. All PEs without
a right child are only on the rightmost path through the tree. The remaining
PEs of each SMP form a local tree of height [logp;] — 1 rooted at some node r;.
If global tree PE g; has no right successor in the global tree, its right successor
is 7;. If g; for ¢ > 0 has no left successor in the global tree, its left successor will
be r;_1. It is easy to verify that the resulting tree has the claimed properties.

5 Summary

We described and implemented three algorithm for the MPI scan collective. As
shown by the performance evaluation, a production quality MPI should use a
hybrid approach, using the simultaneous binomial tree algorithm for small prob-
lems, while switching to the doubly pipelined algorithm for large scan problems.
To the best of our knowledge our implementation is the first implementation of

a pipelined scan algorithm. The doubly pipelined algorithm is new. Efficiently
mapping communication trees to SMPs is already described for broadcasting in
[8]. However our method to maintain the canonical numbering of the PEs as an
in-order numbering of the tree is new.

For the design and determination of block sizes a linear cost function was
assumed. This is a simplified assumption, and potentially more accurate cost
models exist. In [9] the prefix-sums problem is studied in the LogP model from
a different perspective (what is the largest number of x;s that can be reduced
in a given time?). The resulting algorithms are complex, so there is a trade-off
between accuracy and implementation concerns.

References

1. S. Bae, D. Kim, and S. Ranka. Vector prefix and reduction computation on coarse-
grained, distributed memory machines. In International Parallel Processing Sym-
posium/Symposium on Parallel and Distributed Processing (IPPS/SPDP 1998),
pages 321-325, 1998.

2. G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on
Computers, 38(11):1526-1538, 1989.

3. W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir. MPI — The Complete Reference, volume 2, The MPI Extensions.
MIT Press, 1998.

4. W. D. Hillis and J. Guy L. Steele. Data parallel algorithms. Communications of
the ACM, 29(12):1170-1183, 1986.

5. J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

6. Y.-C. Lin and C.-S. Yeh. Efficient parallel prefix algorithms on multiport message-
passing systems. Information Processing Letters, 71:91-95, 1999.

7. E. W. Mayr and C. G. Plaxton. Pipelined parallel prefix computations, and sorting
on a pipelined hypercube. Journal of Parallel and Distributed Computing, 17:374—
380, 1993.

8. P. Sanders and J. F. Sibeyn. A bandwidth latency tradeoff for broadcast and
reduction. Information Processing Letters, 86(1):33-38, 2003.

9. E. E. Santos. Optimal and efficient algorithms for summing and prefix summing on
parallel machines. Journal of Parallel and Distributed Computing, 62(4):517-543,
2002.

10. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI — The
Complete Reference, volume 1, The MPI Core. MIT Press, second edition, 1998.

