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Abstract. Data streaming applications are becoming more and more
common due to the rapid development in the areas such as sensor net-
works, multimedia streaming, and on-line data mining, etc. These ap-
plications are often running in a decentralized, distributed environment.
The requirements for processing large volumes of streaming data at real
time have posed many great design challenges. It is critical to optimize
the ongoing resource consumption of multiple, distributed, cooperating,
processing units. In this paper, we consider a generic model for the gen-
eral stream data processing systems. We address the resource alloca-
tion problem for a collection of processing units so as to maximize the
weighted sum of the throughput of different streams. Each processing
unit may require multiple input data streams simultaneously and pro-
duce one or many valuable output streams. Data streams flow through
such a system after processing at multiple processing units. Based on
this framework, we develop distributed algorithms for finding the best
resource allocation schemes in such data stream processing networks.
Performance analysis on the optimality and complexity of these algo-
rithms are also provided.

Keywords: Stream Processing, Distributed Algorithm, Resource
Allocation.

1 Introduction

The rapid development of the network technologies has triggered the emergence
of many new applications. Stream data processing is one of the most interest-
ing and challenging applications that are under extensive study by the research
community. In such applications, continuous data streams arriving to the sys-
tem need to be processed by multiple processing units in real-time to generate
streams of desirable results. One example of this type of application is network
monitoring and management. Continuous streams of network usage information
are collected from various monitoring points in the network. These informa-
tion need to be analyzed and correlated on the fly to determine whether the
network is in a normal running mode, or is under intrusive attacks. Many fi-
nancial applications such as the stock quote and trading systems also exhibit
this type of characteristics. Continuous quote and trade data streams need to
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be processed in real-time. Sensor networks is another area where many stream
data processing applications arise. The nature of these continuous processing
applications to process a large volume of data has lead to many new design
challenges.

Stream data processing systems typically require a large amount of process-
ing power with many different computers in order to achieve satisfactory perfor-
mance levels. Multiple processing units often share a pool of computing resource.
One important problem is to find the best resource allocation scheme for the mul-
tiple processing units to efficiently utilize the available resources. As in most real
time systems, applications are often running in a decentralized environment. The
resource allocation scheme also has to be decentralized in nature.

This paper addresses some of the fundamental resource allocation problems
raised above. We formulate a generic stream data processing model with data
streams passing through multiple processing units to generate the result streams.
Sub-optimal allocation of the resources may lead to the under-utilization of cer-
tain processing units and over-utilization of some others. Our goal is to obtain
a distributed mechanism that maximizes the weighted sum of the throughput of
different output streams. In our model, each processing unit may require multi-
ple input data streams simultaneously and produce one or many valuable output
streams. Such kind of simultaneous flow consumption is related to the fork-join
mechanism in queueing applications and supply chain management [1,2,4,10,8].
It is an important feature in many streaming processing applications. For exam-
ple, the network usage information from multiple routers need to be correlated
to derive the overall user flow information. Another distinct characteristic in our
model is the introduction of the shrink/expansion factor for the flows at each
processing units. The volume of the output data stream can be different from
the volume of the input data stream at each processing unit. Such a phenomenon
naturally occurs in the join, filter and selection mechanisms in streaming query
like applications [12].

In this paper, we present an analytical approach to solve the generic stream
data processing problem. We first develop the optimal solution for several special
cases, including the case with a single output and the case with a tree topology.
For the single output case, we propose a backward algorithm which produces
an optimal solution in linear time. For the tree case, we provide a backward
shrink algorithm which also yields an optimal solution in linear time. Based on
the algorithm for trees, we propose two distributed algorithms to find the best,
or close to optimal solutions in a general network with multiple streams. The
algorithms are based on an aggregation heuristic that aggregates local subgraphs
into equivalent super nodes, where the super nodes can play the role as a clus-
ter head or local manager. We present experimental results to demonstrate the
quality of our distributed solutions.

The paper is organized as follows. Section 2 presents the general model. We
then investigate the structural properties of the optimal solutions for special
cases (a single output stream case and the tree case) in Sections 3. In Section 4,
we propose two distributed solutions for the general resource allocation problem
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based on the optimal algorithms derived previously. Experimental evaluations of
the effectiveness of these solutions are also presented. Concluding remarks are
provided in Section 5.

2 Model

In a stream data processing system, incoming data flow continuously from sev-
eral sources. These data needs to go through several levels of processing, such
as selection, filtering, or combining, to generate the expected output. We use
a directed acyclic graph, referred to as stream processing graph, to describe
the producer-consumer relationship among processing units associated with the
streams. There are source nodes, sink nodes and processing nodes in the graph,
where directed edges represent the information flow between various nodes. The
source nodes correspond to the source of the input data streams. These nodes
only have edges going out, and do not have any edges between them. The sink
nodes correspond to the receivers of the eventual processed information. These
nodes only have edges going to them, and do not have any edges in between. Pro-
cessing nodes stand for processing units. A processing unit may require inputs
from multiple data streams simultaneously and produce one or many valuable
output streams. Such a graph can be plotted in a way such that all the directed
edges are pointing downward. We can now view the system as information com-
ing from the top and passing through the processing units in the middle and
eventually leading to the output streams at the bottom, see Figure 1.
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Fig. 1. A graph representation of the
problem

Denote I, P , O respectively the set of
source, processing, and sink nodes in the
graph, as illustrated in Figure 1. Let E de-
note the set of all the directed edges. Each
node in I is a source node. Each node in
O is a sink node. For convenience, we will
refer to the underlying graph, G = (N , E),
where N = I ∪ P ∪ O, and graph G is as-
sumed to be connected. For each j ∈ N , let
Ij denote the set of immediate predeces-
sors, i.e. all nodes i such that the directed
edge (i, j) is in E .

Let Oj denote the set of immediate suc-
cessors, i.e. all the nodes k such that the
directed edge (j, k) is in E . Without loss
of generality, we assume that each source
node produces a single stream as the in-
put to the processing nodes, and there is
exactly one output stream leading to each
sink node. Therefore, |Oi| = 1 for all source
nodes i ∈ I, and |Ik| = 1 for all sink nodes
k ∈ O.
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We now describe the quantitative relationship between the input, output and
resource consumption. In our model, each processing unit processes data flows
from its upstream nodes simultaneously at a given proportion and generate out-
put flows to its downstream nodes at a possibly different proportion. Each pro-
cessing unit j ∈ P , with a unit of CPU resource, will process αj

i amount of
flow from node i for all i ∈ Ij , and generate βj

k amount of flow to node k for
all k ∈ Oj . Here, the superscript j always represents the current node under
consideration. For all the source nodes j ∈ I, let λj be their flow input rates,
where 0 < λj ≤ ∞. Each unit of output flow to node k ∈ O has value wk.

We assume all the parameters λ, α, β and w are positive, as is the case in most
real applications. In general, quantities αj

i and βj
k, although measurable, are not

deterministic. They typically depend on the input data. Throughout this paper,
unless specifically stated, we shall assume that this dependence is stationary.
The quantities αj

i and βj
k are defined as the average consumption and production

rates, respectively. The case of changing consumption and production rates will
be discussed in Section 4.

Assume we have a total of R units of CPU resource available. Our goal is to
find optimal or approximate solutions of allocating the resource among all the
processing units to maximize the weighted sum (e.g. based on the importance) of
the throughput of the output streams. We look for distributed solutions capable
of adapting to local changes in the consumption and production rates.

3 The Single Output Case and Trees

We first consider the case when there is only one final output stream of interest.
In other words, O = {O} is a singleton, where O is the only sink node. Without
loss of generality, denote node N to be the last processing node reaching O (since
there is exactly one edge leading to each sink node). In this case, we can have a
simple backward algorithm to solve the problem in time O(|E|). Please refer to
[11] for details of the proof using a backward tracing argument.

Algorithm 1. Graphs with Single Output
1. Initialize set A = {N}, and let xN = 1.
2. Let B :=

⋃
i∈A Ii be the set of all predecessors of nodes in A.

- If B ⊂ I, go to step 3;
- Else, let xi = max{j∈A:(i,j)∈E}

αj
i xj

βi
j

, ∀i ∈ B; set A = B; go back to step 2.

3. Let x = (xj , j ∈ P) be the allocation produced by steps 1 & 2. Denote
δmax := max{δ > 0 : δαj

ixj ≤ λi, i ∈ I, (i, j) ∈ E}. Then the final allocation
x∗ is given by x∗

i = min(δmax,
R∑
i xi

) · xi, i ∈ P , and the total return is

V ∗ = min(δmax,
R∑
i xi

)βN
O .

We now generalize the previous algorithm to address the cases with multiple
output nodes, i.e., |O| > 1. In this setting, there is a decision between generating
output for one stream versus generating output for another stream, or both. This
kind of trade-off is not easy to evaluate due to the simultaneous flow consumption
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and output. We will first derive the algorithms to treat certain simpler cases.
And then extend the solution to address the general cases.
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Fig. 2. A 3-node binary tree

Example 2: A Binary Tree
We now define a linear program as follows,

max w4β
2
4x2 + w5β

3
5x3

s.t. x1 + x2 + x3 ≤ R, α1
0x1 ≤ λ0,

α2
1x2, ≤ β1

2x1, α3
1x3 ≤ β1

3x1 (1)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

In the event this maximization problem has more than one optimal solution,
we let (x#

1 , x#
2 , x#

3 ) be the optimal solution that minimizes the total allocated
capacity x1 +x2 +x3. We use this convention for the optimal solutions in all the
optimization problems considered in this paper.

Theorem 1. The solution to the above problem is
i) If w4β2

4β1
2

α2
1+β1

2
> w5β

3
5 , then, x#

2 = β1
2

α2
1+β1

2
r, x#

3 = 0, x#
1 = α2

1
α2

1+β1
2
r, where

r = min(R,
α2

1+β1
2

α1
0α2

1
λ0).

ii) If w5β3
5β1

3
α3

1+β1
3

> w4β
2
4 , then, x#

2 = 0, x#
3 = β1

3
α3

1+β1
3
r, x#

1 = α3
1

α3
1+β1

3
r, where

r = min(R,
α3

1+β1
3

α1
0α3

1
λ0).

iii) Else, x#
2 = α3

1β1
2

α2
1α3

1+α3
1β1

2+α2
1β1

3
r, x#

3 = α2
1β1

3
α2

1α3
1+α3

1β1
2+α2

1β1
3
r, x#

1 = α2
1α3

1
α2

1α3
1+α3

1β1
2+α2

1β1
3
r,

where r = min(R,
α2

1α3
1+α3

1β1
2+α2

1β1
3

α1
0α2

1α3
1

λ0).

Proof. This result can be proved case by case with linear algebra using contra-
diction techniques. Please refer to [11] for details. 	


Theorem 2. The problem in Figure 2 is equivalent to the
simpler model in Figure 3. The equivalent parameters α, β
and w are given as follows:

i) If w4β2
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2
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Fig. 3. 2-node
Representation

Notice that these parameter mappings are independent of the parameters λ0 and
R. This is a key property for the later algorithms.
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Proof. The proof is straightforward by checking feasibility conditions both ways.
	


After merging the leaf nodes into a single leaf, we also have another basic reduc-
tion to reduce two node in tandem into a single node.

Theorem 3. We can further aggregate the model in Fig-
ure 3 with parameters α̂1

0, α̂
2
1, β̂

1
2 , β̂2

3 , ŵ3, into a simpler
model as shown in Figure 4 with the equivalent parameters
α̃1

0, β̃
1
2 , w̃2 as follows:

α̃1
0 = α̂1

0α̂2
1

α̂2
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2
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2
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Fig. 4. 1-node
Representation

Proof. The proof can be easily carried out by showing that the solution obtained
from the optimal solution for one problem is feasible for the other problem, and the
two solutions have the same objective value. The details can be found in [11]. 	

Besides binary trees, Theorem 2 can also be applied repeatedly to handle general
fork trees with arbitrary out-degree(≥ 2). It is straight forward to check formula
that result of the merging process in Theorem 2 does not depend on the order
of the merging process. It is also straight forward to prove a similar theorem
as Theorem 1. The idea of dealing with general tree is to apply Theorem 1 to
unit two layer subtree and then replace them with a new node. The following
algorithm states the whole process.

Algorithm 2. Backward Shrink Algorithm for Trees
1. If there are 2 leaves with a common predecessor, apply Theorem 2 to these
3 nodes (2 leaves and their predecessor) to find the equivalent 2 node structure.
Otherwise, Use Theorem 3 to aggregate the 2 nodes(a leave and its predecessor)to
be a single node structure.
2. Repeat from step 1 until there is only one node left.
3. Set all resource to that node, and map resource allocation back according to
Theorems 2 and 3.

Theorem 4. Algorithm 2 terminates and yields the optimal solution. It runs in
time O(|E|).

Proof. Since each round of execution of step 1 decreases the number of links by
1, the complexity is O(|E|). The optimality can be proved by induction on the
size of the graph. The details are omitted due to limited space. 	


4 Distributed Solutions

In this section, we present distributed solutions for the problem. Simulation ex-
periments demonstrate that they perform well even for general network topolo-
gies that do not have a tree structure.
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4.1 Distributed Algorithms

We develop two heuristics to solve the general problem. These heuristics are
based on the the optimal solutions for the tree case and for the single-output
case. Experimental results are provided to illustrate their effectiveness. As we
will see in the next section, these heuristics can be implemented easily in a
distributed way.

The first heuristic is based on the optimal solution for trees. As assumed
earlier, all the nodes have been labeled from 1 to N such that all the edges
(i, j) satisfy i < j. This algorithm will start from the bottom of the graph and
move up to the top. At each step, the algorithm examines each node, generate
aggregated information based on information from its children, and pass this
information up to its parents.

Heuristic A
- initialize graph G to be the whole graph;
- for node = N to 1 (compute bottom up for the aggregated solution)

- if node is a leaf in G then pass its parameters α, β, w to its parents;
- else (all the children of node must be leaves in G;)

- apply Theorem 2 repeatedly to remove one leaf at a time from G;
- apply Theorem 3 to obtain the updated parameters α, β, w for node;
- pass the updated parameters to all its parents;

(node has no children left in G;)
- G has one node left, with aggregated parameters;
- solve this single node problem;
- for node = 1 to N (compute a solution for original problem from top down)

- apply Theorem 1 and 3 to compute solution for node and the flow amount
to all its children;

If the original graph is a tree, it can be shown that the above algorithm obtains
the optimal solution. For the general graph case, we will present experimental
results to demonstrate the quality of this distributed algorithm.

Another heuristic for the general problem with multiple output streams is de-
veloped based on the single output algorithm combined with the general gradient
decent algorithm. Assume there are multiple output streams, O1, . . . , Ok. We de-
fine a function f(u1, . . . , uk) to be the best objective value if the solutions are
generating flows for the output streams according to the relative proportion given
by (u1, . . . , uk). Finding f(u1, . . . , uk) is the same as solving a modified problem
with a new final sink node Ok+1, and making all the original output flows to
flow into this final sink node. The β parameters for all the flows from O1, . . . , Ok

to Ok+1 are all set to be 1. The α proportions at Ok+1 are given by (u1, . . . , uk)
for flows from O1, . . . , Ok. The β parameter at Ok+1 is w1u1 + . . . + wkuk. The
weight factor w at Ok+1 is 1. The equivalence of these two problems can be easily
checked. Since we can apply the backtrack algorithm in the earlier sections to
find the optimal solution for the single output problem, we can find the value
of f(u1, . . . , uk) for any given (u1, . . . , uk). We now apply the gradient decent
algorithm to find the maximum value for function f(u1, . . . , uk).
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Heuristic B
0) initialize (u1, . . . , uk) to be (w1, . . . , wk);
1) call Algorithm 1 for the single output problem with (u1, . . . , uk);
2) estimate the gradient for f(u1, . . . , uk);
3) move point (u1, . . . , uk) along the gradient direction;
4) repeat from step 1) until relative difference between consecutive solutions

is smaller than a given threshold.

Note that in Heuristic B, the gradient method can be replaced by other search
techniques such as simulated annealing, Tabu search, genetic algorithms, smart
hill-climbing [13], etc.

Heuristic A has the advantage that it can quickly generate high quality so-
lutions for simple graph topologies. However, when the graph is complex, the
quality may degrade. Heuristic B is expected to be able to handle more effectively
complex graph structures.

4.2 Experimental Results

We present below experimental results to compare the performance of these two
heuristics and the optimal solution. The setting of the experiment is as follows.
First, directed acyclic graphs with N nodes are generated randomly using the
following 4 steps:

1) Randomly generate N points (xi, yi) in the unit square [0, 1] × [0, 1];
2) For i = 1, . . . , N , generate its successor set Si := {j : xj ≥ xi, yj ≥ yi};
3) For i = 1, . . . , N , generate its immediate successor set si := Si − ∪k∈SiSk;
4) For i = 1, . . . , N , create a link from i to j if j ∈ si.

This algorithm is inspired by a scheme to generate random partial orders among
N elements. Once the graph is generated, the parameters α, β, w are then gen-
erated from independent uniform random samples.

We randomly generate graphs with 20, 50, and 100 nodes. For each fixed num-
ber of nodes, we generate 1000 instances of the problem with random topology
and random parameter values. We apply the two heuristics to obtain the corre-
sponding objective values. We also obtain the optimal solution through a static
linear program formulation. We have collected the characteristics of the random
graphs, as well as the quality of the two heuristics. Because the problem is a
maximization problem, the quality of the heuristics is reflected by the achieved
percentage of the optimal solution. The results from Heuristic A is presented in
Table 1. We can see that Heuristic A generates reasonably good solutions for
small size graphs. However, the quality of the solutions degrades as the size of
the graph grows. This behavior is consistent with our earlier intuitions.

Table 2 presents the results for Heuristic B. We used 10% relative difference
as the stopping criterion for the gradient algorithm. We observe that Heuristic
B is consistently better than Heuristic A. It is also important that the average
number of iterations is small. This means Heuristic B does not require too much
additional time to compute compared with Heuristic A. It is very promising
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Table 1. Results for Heuristic A

# of Nodes 20 50 100
Avg # of edges 74.2 507.4 2063.7

Avg # of source nodes 4.6 5.8 7.0
Avg # of sink nodes 3.1 3.7 4.9
% optimality (avg) 74.4 57.6 54.3
% optimality (std) 26.6 33.2 34.3

% cases > 90% optimal 42.1 29.5 25.1

Table 2. Results for Heuristic B

# of Nodes 20 50 100
Avg # of edges 79.1 520.1 1912.7

Avg # of source nodes 4.4 4.9 7.6
Avg # of sink nodes 3.4 3.6 5.0
% optimality (avg) 82.4 68.9 59.0
% optimality (std) 25.4 36.4 39.2

% cases > 90% optimal 61 41.1 32.2
Avg # of iterations 5.2 10.1 10.0

to find out that Heuristic B consistently generates quality solutions, and more
importantly, its effectiveness can be improved through the use of more sophisti-
cated search methods. Keeping in mind that we are interested in the distributed
nature and the efficiency of the algorithm. Heuristic B seems to be a preferable
solution.

5 Concluding Remarks

This paper solves the CPU resource allocation problem in stream processing
systems with the objective of maximizing the total return of multiple output
streams. We explore structural properties of the optimal solution for the the
problem under different network topologies, and develop efficient, yet simple to
implement algorithms to solve them. Detailed performance analysis on optimal-
ity and complexity of those algorithms are also provided.

We further present two distributed solutions to the general problem and give
the corresponding measurement-based distributed implementation. Our experi-
mental results show that the algorithms are highly robust and capable of quickly
adapting to real-time fluctuations in the consumption and production rates and
changes in resource consumption requirements, while achieving high quality so-
lutions even in non-stationary systems.
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