
Discrete Broadcasting Protocols for
Video-on-Demand

Chao Peng1 ? Hong Shen1 Naixue Xiong1 Laurence T. Yang2

1Graduate School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Tatsunokuchi, Ishikawa, 923-1292, Japan
2 Department of Computer Science,

St. Francis Xavier University, Antigonish, B2G 2W5, Canada

Abstract. The Video-on-Demand (VOD) service allows users to view
any video program from a server at the time of their choice. Broadcast-
ing protocols can be used to improve the efficiency of a VOD system.
The Harmonic Broadcasting Protocol has been proved to be bandwidth-
optimal, but it is not efficient for the local storage. In this paper, we
present the Discrete Broadcasting scheme, which can intelligently adjust
its solution according to available bandwidth and local storage in order
to achieve an ideal waiting time.

1 Introduction

In a Video-on-Demand (VOD) system, a subscriber is expected to be able to
watch his favorite video program in the server at the time of his choice. Usually
such a system is implemented by a client-server architecture supported by certain
transport networks such as CATV, telecom, or satellite networks. Clients use web
browsers or set-top-boxes (STB) on their television sets. In a pure VOD system,
each user is assigned a dedicated video channel so that they can watch the video
they choose without delay and many VCR-like functions may be provided. But
in this case the cost is too expensive, because it will quickly use up all of the
available bandwidth on the VOD server when too many concurrent users are to
be accommodated at the same time.

To reduce the tremendous bandwidth and I/O requirements, many alterna-
tives have been proposed by sacrificing some VCR functions. Broadcasting is
one of such techniques and is mostly appropriate for popular videos that are
likely to be simultaneously watched by many viewers [9]. In this approach, the
server uses multiple dedicated channels to execute frequent retransmissions of a
“hot” video. Each client follows some reception rules to grab and store data from
appropriate channels so as to play the whole video continuously. What distin-
guishes broadcasting from other VOD distribution methods is that the server’s
? Supported by “Fostering Talent in Emergent Research Fields” program in Special

Coordination Funds for promoting Science and Technology by Ministry of Education,
Culture, Sports, Science and Technology. E-mail: p-chao@jaist.ac.jp.

broadcasting activity is independent of the number of viewers. The bandwidth
savings can be considerable since a few (10 or 20) very popular videos are likely
to account for nearly 80% of demands [2].

The simplest solution is to periodically broadcast the video on several chan-
nels, each differentiated by some time. By this method the server needs at least
K channels in order to keep the waiting time below L/K (here L is the length of
the whole video). To enhance the efficiency in channel usage, many schemes [2, 4–
8, 10] have been proposed by imposing a large enough client receiving bandwidth
and an extra buffering space at the client side.

In this paper, we present the Discrete Broadcasting Protocol(DB), which can
intelligently adjust its solution according to available resources such as available
channels and local storage. It can reduce the average waiting time of a 120
minutes video to 3 minutes if we allocate a bandwidth of 4 times the consumption
rate. It can also be modified for VOD service even when the local storage is very
small. Some of our results have already been realized in industrial applications
and have got a good performance.

2 Model and Analysis of VOD Broadcasting Protocols

The broadcasting problem in the VoD service can be described as follows: In a
VOD system, given a video of size S (Mb) and consumption rate c (Mb/s), if
the available bandwidth on the VOD server is B, the endurable delay for the
client is D and the available storage size of the client is M , we should find a
broadcasting scheme which can satisfy these tree constraints.

Usually we will bound the storage m and the delay d but minimize the band-
width b. We can also bound m and b but minimize d, but the method is the same.
What is different is the storage issue, yet it is often assumed to be unlimited
and been neglected. The following are the parameters we need to consider in a
VOD system.

The parameters of a given video
L The length of a video program, in seconds.
S The size of a video program, S = L · c, in Mb.
c The consumption rate, in Mb/s.

Performance parameters of the system
d The max delay for any client, in seconds.
b The bandwidth needed for the server, in Mb/s.
m The maximum storage used by any client, in Mb.

Constraint parameters of the system
D The endurable maximum delay , in seconds.
B The available bandwidth of the server, in Mb/s.
M The minimum local storage size, in Mb.

Fig. 1 illustrates the basic ideas of VOD. Here we use a single tape with length L
and width c to denote a whole video which is Constant Bit Rate (CBR) encoded,

2

so its size is S = L ∗ c. At the server side, we will use a channel of bandwidth b
to broadcast this video. Suppose the client sends a request for this video at time
treq, and starts to consume this video at time t0, then the period between this
two points is the delay t0 − treq of this user. The maximum delay experienced
by any client of a video is the viewing delay d of this video.

∆ti
i

¾ -L

c
{

-

-

b

d︷︸︸︷
︸︷︷︸
∆ti

︸︷︷︸
∆tz

treq t0 t1 ti ti+1 tz

∆t1i

∆t2i

∆t3i

∆t4i

∆t1f

∆t1y

}
bf

}
bi

}
by

∑
bk

A whole
video

The
broad-
casting
channel

Fig. 1. A general framework for VOD

¾ -L

c
{

-

-
Sub1

Sub2

Subi

SubK

K · c

d︷︸︸︷ L/K︷ ︸︸ ︷treq t0

Fig. 2. The SBP Protocol

To improve the efficiency, we can divide a whole video into small segments
(the segment starts at time ti is denoted as ∆ti) and arrange these segments into
the broadcasting channel according to a certain schedule. To guarantee that a
client can watch the video smoothly, the required segment ∆ti must be already
in the storage of the client’s STB at time treq + d + ti.

Thus we need to make sure that the segment ∆ti can be downloaded during
the period from treq to treq +d+ ti. Sometimes there may be more than one such
segments during this period, for example, there are three ∆ti during the period
from treq to treq + d + ti in Fig. 1. The client can choose to download the last
appearance ∆t3i if he knows the schedule of all segments at the time he starts
to download, for this may in some cases decrease the storage requirement. But
in most cases he doesn’t have such knowledge, then he has to download it at its
first appearance ∆t1i and store it for future consumption. For a certain video,
we can calculate the storage requirement. Refer to the shadow tape of the video
in Fig. 1, at time ti, all segments at the left side have been consumed and can
be cleared from the storage, but some segments at the right side may have been
downloaded or partially downloaded and they will stay in the storage until they
are consumed. The total volume of these segments will reach a maximum value
at some time, so it will be the storage requirement for users enter at treq. Then
the largest value among all users enter at different time is the minimum storage
requirement m for this video.

As an example, the Staggered Broadcasting Protocol (SBP) in [1] rebroadcasts
the whole video on b/c = K distinct channels (each with bandwidth c) at equal
time intervals L/K, and thus the maximum viewing delay will be L/K (Fig. 2).
So for a 7200sec video, we need 12 such channels to guarantee a 600sec = 10min
viewing delay, which is not so efficient for bandwidth.

3 The Discrete Broadcasting Protocol for VOD

In our Discrete Broadcasting Protocol model, we first assume that the bandwidth
b allocated for the broadcasting channel will be a multiple of the consumption
rate c. Our second assumption is that a CBR video of length L will be divided

3

into n segments with same size L/n. Let’s arrange them by time order and use
Si(1 ≤ i ≤ n) to denote the ith segment.

In this simplified model, the maximum delay depends on the maximum dis-
tance between the beginning time of any two neighboring S1 segments. Since
all segments are equally sized, we can assume that this distance is k ∗ (L/n),
k ∈ N . Thus the maximum delay is near k∗(L/n) in the case that the client just
misses the first frame of the video when he starts to download. If the minimum
distance of any two neighboring S1 segments is also k ∗ (L/n), and the arriving
times of the clients are uniformly distributed, then the average delay will be∫ kL

n

0+ (kL
n − x)dx/kL

n = kL
2n .

To satisfy the smooth watching requirement, we need to make sure that the
client’s STB can find an Si during any period of length L∗ i/n which starts from
the begin of an S1. Then we can make sure that after a client start consume S1,
he can download a Si before treq + d+L ∗ (i− 1)/n (or find Si at then) when he
should start to consume Si. If we fix the distance between any two neighboring
S1 segments to be (L/n), then we need to put an Si in any period of length
L ∗ i/n and we can use a single channel of 1 ∗ c to broadcast S1.

Now let’s analyze the bandwidth requirement. Since we need to put an Si in
any period of length L∗ i/n, then S1 will occupy 1∗ c bandwidth, S2 will occupy
c ∗ 1/2 and Si will occupy c ∗ 1/i, we have that b ≥ c

1 + c
2 + ... c

i + ... + c
n =∑n

i=1
c
i = c ∗Hn.

Based on this analysis, we designed Algorithm1. Fig. 3 is the first 52 columns
of one result scheduling table of Algorithm1 when the available bandwidth is
4 ∗ c. We can see in Fig. 3 that the whole video is divided into 26 equal-size
segments. But according to the analysis, the number of segments should be
max{n|dHne = 4} = 30. The gap lies in that every segments are equally-sized
and are broadcasted using the same bandwidth 1 ∗ c, so the scheduling table is
a discrete table. In such a discrete case, we cannot make sure that the distance
between any two neighboring Sis is exactly i. The reason is because there will
be a confliction when you try to put one segment at time t yet all 4 sub-channels
at that time slot are already occupied.

Algorithm 1 The Discrete Broadcasting Algorithm
SERVER:

1 Divide the whole video into n equal-size segments;
2 Put all S1 segments into the first sub-channel;
3 For i = 2 to n do
4 tcur = tnext = 0;
5 While the video is not finished do
6 Calculate the next time tnext to put Si;
7 If find a vacancy in (tcur, tnext] then put Si;
8 Else report error and exit;
9 tcur = tnext;
10 End while loop
11 End for loop

CONSUMER:

4

1 Start downloading all segments;
2 If find segment S1 then start viewing S1;
3 For i = 2 to n do
4 If find segment Si in the local storage then
5 start viewing Si;
6 Else report error and exit;
7 For all segments Sk in the broadcast channel;
8 If k > i and Sk is not in the local storage then
9 Download Sk into the local storage;
10 End for loop
For example, see S14 in Fig. 3, its first appearance is at t10, so its next

appearance should be at t24 for the most efficient case. But we find that all 4 sub-
channels at t24 slot are already occupied, thus we can only put it at t23. Such kind
of conflictions will happen more often as n increases. So L/max{n|dHne = b/c}
is a theoretical optimal lower bound for maximum waiting time and cannot be
achieved in most cases. Notice that there are some blank positions at the head,
but we cannot use them to accommodate more segments. Because if we put an
S27 there, we cannot find a vacancy for the next S27 since the columns from t5
to t52 are already full.
Suppose the length of the video program to be broadcasted is 120min = 7200sec,

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13S14S15S16S17S18S19S20S21S22S23S24S25S26

S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6 S6

S8 S8 S8

S9 S9 S9S12 S12

S16 S16

S18

S10 S10S15 S20S24 S7 S23 S11S13 S7 S21 S19 S25S11S14S13 S7

S14 S24 S7 S22 S26

S17 ⇒

4 4 4←

-

-
S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6 S6

S8 S8 S8

S9 S9 S9S12 S12

S16

S18

S10 S10 S10S15 S15S20S24 S21S19 S7 S17 S14 S26 S24S22 S11 S25 S7 S19 S17S21

S23 S13S24 S7 S23 S18S13

S11 S14

Fig. 3. The Full Discrete Broadcasting Protocol for VOD

then the length of each segment is 277sec if we adopt the table in Fig. 3. Thus
the maximum delay is 277sec = 4.6min and the average delay is 2.3min. If the
format is high quality MPEG-II-compressed NTSC video at about 10Mbps, then
we have r = 4 ∗ c = 40Mbps while m = 7200 ∗ 10 ∗ 8 ∗ 9/26 ≈ 3115Mbytes ≈
3.1Gbytes, the ration 9/26 is calculated from the table which means that a user
needs to store at most 9 segments any time.

4 The Block Discrete Broadcasting Protocol

The scheduling table of DB will be very complex when n is large. So we present
the Block Discrete Broadcasting Protocol(BDB), which arranges a short BLOCK
table and then repeats broadcasting the segments according to this BLOCK
table. Notice that there are some blank positions at the head of the table in Fig.
3, we can utilize them by using the BLOCK table method. And we need not to
change the algorithm at the client side.

5

Algorithm 2 The Discrete Block Broadcasting Algorithm
SERVER:

1 Divide the whole video into n equal-size segments;
2 Put all S1 into the first sub-channel of the BLOCK;
3 For i = 2 to n do
4 tcur = tnext = 0;
5 While tcur < lBLOCK do
6 Calculate the next time tnext to put Si;
7 If tnext < lBLOCK then
8 If find a vacancy in (tcur, tnext] then put Si;
9 Else report error and exit;
10 Else
11 If find a vacancy in (tcur, lBLOCK] ∪ [0, tnext]
12 then put a segment Si there;
13 Else report error and exit;
14 tcur = tnext;
15 End while loop
16 End for loop
17 Repeat broadcasting BLOCK.

Suppose the length of a BLOCK table is l columns. To satisfy the smooth watch-
ing requirement, we need to make sure that the client’s STB can find an Si during
any period of length L ∗ i/n which starts from an S1. This means that we have
to put an Si in any i consecutive columns. Thus the space occupied by Si will
be no less than d l

ie since this table will be repeatedly broadcasted. And the
lower bound of the number of segments in a BLOCK table with l columns of
Algorithm 2 will be: b ≥ l + d l

2e+ d l
3e+ ...d l

ie+ ... + d l
ne =

∑n
i=1 d l

ie > l ∗Hn.

¾ -L

c
{

-

-¾ -One Cycle Block

4 · c

d

1253

treq t0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13S14S15S16S17S18S19S20

S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3S3

S4 S4 S4 S4 S4

S5 S5 S5 S5 S5

S6 S6 S6

S6

S7 S7 S7S8 S8S8

S9 S9S9S10 S10

S18

S18

S12S13 S14

S16

S15

S11

S12

S17

S13

S14S15

S16

S19 S20

S19

S17

S11

Fig. 4. The Scheduling Table of the Discrete Broadcasting Protocol

Fig. 4 is one output BLOCK table of Algorithm 2. We divide the whole video
into n = 20 equal-size segments in this example and the length of the table is also
l = 20 columns. The deep-grey shadowed segments in the BLOCK table show
all those segments need to be downloaded for a client who sent a request at time
treq. Since H20 ≈ 3.60 and

∑20
i=1 d 20

i e = 80, the table has achieved the lower
bound. For a 120min = 7200sec video with c = 10Mbps, the maximum delay is
7200/20sec = 6min and the average delay is 3min. We can also calculate from
the table that r = 4 ∗ c = 40Mbps while m = 7200sec ∗ 10Mbps ∗ 9/(20 ∗ 8) =
4050Mbytes = 4.05Gbytes. Here we set l = n = 20, but this does not mean
that we should always set l = n. In contrary, we can adjust the value of l

6

to find the most efficient schema. Consider an example when b = 3 ∗ c, since
max{n|dHne = 3} = 10, we cannot divide the video into more than 10 segments
and load them into a scheduling table.

We start from n = 8, let l = 8 and we will have
∑8

i=1 d 8
i e = 24. Fortunately

a table with 3 lines and 8 columns can accommodate exactly 24 segments. Using
Algorithm2, we construct the table in Fig. 5. Now let’s try n = 9. If we let l = 9

¾ -L

c
{

3c

One Cycle Blockd
treq t0

-

-¾ -

S1 S2 S3 S4 S5 S6 S7 S8

S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

S3 S3 S3S3

S4 S4

S5 S5S6 S6S7

S7 S8

Fig. 5. A Block of BDB when n=8.

¾ -L

c
{

3c

¾ -One Cycle Blockd
treq t0

-

-

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2

S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4

S5 S5 S5 S5S6 S6 S6S7 S7 S7

S8 S8S9 S9

Fig. 6. A Block of BDB when n=9.

then
∑9

i=1 d 9
i e = 29. Yet a table with 3 lines and 9 columns can accommodate

only 27 segments. So we cannot construct such a BLOCK table. Then let us
extend the length of the table. We find that when l = 16 we have

∑9
i=1 d 16

i e = 48.
While a table with 3 lines and 16 columns can accommodate exactly 48 segments.
Thus we can construct the BLOCK table in Fig. 6.

5 Bound the Storage

We assume that there are enough local storage in all above schemes. And the
true local storage requirements of them are all above 35% and around 40%. But
sometimes in real applications we will encounter the problem of local storage
shortage. Suppose there is a STB whose storage size is 2Gbytes, which can
satisfy the requirement for any video with c ≤ 5Mbps and L ≤ 7200sec since
m ≤ 7200 ∗ 5 ∗ 40%/8 = 1800Mbytes. Now if there is a video with c = 10Mbps
and L = 7200sec, then L ∗ c = 9000Mbytes and m = 3150Mbytes > 2Gbytes.

If will still divide the video into n equal-size segments, then we can store
s = bn ∗ 2/9c segments by using 2Gbytes. To guarantee the smooth watching of
this video, we need to make sure that the client can find an Si from the local
storage at time ti. We find that in most cases, the longer the distance between
any two neighboring Sis, the longer the time Si will be stored in the local storage.
If too many segments need to be stored, then the limited local storage will be
crammed sooner or later. The result is some segments must be discarded and
the video cannot be smoothly consumed.

So one method to depress the local storage requirement is trying to reduce
the distance between any two neighboring Sis when i is large. Let’s reconsider
about the BLOCK table, one characteristic of this table is that the maximum
storage required will never exceed S ∗ l/n. Since at a certain time when you are
watching Si, you need only to find the segments from Si+1 to Si+l−1. You need
not to consider about Si+l because it can always be found at the period from
when you start to watch Si+1 to when you finish Si+l, which is a whole cycle
BLOCK. If you find Si+l at exactly the time when is should be consumed, you

7

can watch it directly because its broadcasting rate is the same as its consumption
rate. Else you just load it into your local storage. Thus at anytime you need only
to store the current segment and the next l − 1 segments at most.

Of course this property is nonsense when l ≥ n, but it does make sense when
l ¿ n. The following example in Fig. 7 show the point. In this example, we
divide the video into n = 19 equal-size segments and arrange them into a 6 ∗ 4
BLOCK table. Since the length is only l = 4 and

∑19
i=1 d 4

i e = 24, we have to
use 6 ∗ c bandwidth so that the table can accommodate more segments. Now
according to the above analysis, the local storage requirement will be 9000 ∗
4/19 ≈ 1895Mbytes < 2000Mbytes. Since l ¿ n in this BLOCK table and the

¾ -L

c
{

treq t0d

6 · c

1248......

-

-¾ ¾ ¾ ¾ ¾- - - - -Cycle Cycle Cycle Cycle Cycle

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11S12S13S14S15S16S17S18S19

S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1

S2 S2 S2 S2 S2 S2 S2 S2 S2 S2S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

S4 S4 S4 S4 S4S5 S5 S5 S5 S5S6 S6 S6 S6 S6S7 S7 S7 S7 S7

S8 S8 S8 S8 S8S9 S9 S9 S9 S9S10 S10 S10 S10 S10S11 S11 S11 S11 S11

S12 S12 S12 S12 S12S13 S13 S13 S13 S13S14 S14 S14 S14 S14S15 S15 S15 S15 S15

S16 S16 S16 S16 S16S17 S17 S17 S17 S17S18 S18 S18 S18 S18S19 S19 S19 S19 S19

Fig. 7. The Storage Efficient Scheme for VOD

local storage is limited, we need only to slightly adapt the algorithms at the
client side to satisfy the new requirement.

The deep-grey shadowed segments in the BLOCK table in Fig. 7 show all
those segments need to be downloaded for a client who sent a request at time
treq, the maximum delay is 6.3min and the average delay is 3.2min.

6 Performance Analysis and Comparison

The Pyramid Broadcasting Protocol(PB)[10] can provide shorter waiting time
than previous schemes with the same available bandwidth. This protocol parti-
tions an L-length video into n sequential segments of geometrical series increas-
ing sizes and multiplexes M different videos into each logical channel.

A user should download the first segment at the first occurrence and start
playing, then he will download the subsequent segment at the earliest possible
time. To ensure smooth watching, each channel needs plenty of bandwidth and
the I/O rate is very high, while local storage requirement can reach more than
70% of the whole video. To address these issues, the authors of [2] proposed the
Permutation-based Pyramid Broadcasting Protocol(PPB). In PPB, each channel
multiplexes its segments into p periodic bit streams and transmits them in 1/p
times lower rate. But the local storage requirement of PPB is still high since
the exponentially increasing speed may cause the last segment to be as large as
50% of the whole video, and the synchronization mechanism in it is very difficult
to implement. So authors of [4] proposed the Skyscraper Broadcasting Protocol
(SB). In SB, fixed bandwidth c is assigned to each logical channel. A video will
be divided into n segments, the length of segments are [1, 2, 2, 5, 5, 12, 12, 25,

8

25, 52...]. Each of these segments will be repeatedly broadcasted on its dedicated
channel at the consumption rate c. SB uses a value W as an upper bound to
control the maximum size of each segment.

A significant progress was achieved by [5], in which the Harmonic Broad-
casting Protocol(HB) was proposed. HB equally divides a video into n segments
[S = S1] S2] · · ·] Sn], and each segment Si will be divided into i equal-size
subsegments [Si = S1

i] S2
i] · · ·] Si

i]. Then HB allocates a single channel with
bandwidth Ci = c/i for each segment Si. Thus the maximum delay is the length
of the first segment d = L1 = L/n and the bandwidth is b = Hn · c.

The Stair Case Broadcasting Protocol (SCB) in [6] and the Fast Broadcasting
Protocol (FB) in [7] are based on HB. But in [8] it was observed that the user
in HB may not get all data it needs to consume on time. The authors of [8] also
proposed the Cautious Harmonic Broadcasting Protocol(CHB) and the Quasi-
Harmonic Broadcasting Protocol(QHB). CHB and QHB are based on the same
idea of HB, the new point is that they changed the arrangement of subsegments
so that the average waiting time can be reduced by a factor near 2. But for the
same Maximum Waiting Time, HB is still the best. Later they are proved to be
Bandwidth-Optimal by Engebretsen and Sudan in [3].

The Discrete Broadcasting Protocol (DB) we propose in Section 3 is similar
to HB. It can be deemed as the discrete version of HB. BDB is a simple ver-
sion of DB, it’s delay will be reduced when the BLOCK length is prolonged.
But its performance is already quite good even when l = n. The Fig. 8 shows
the number of segments we can reach in DB, BDB and HB by using the same
Bandwidth. In Fig. 9 we compare the best maximum delay we can achieve in
PB, SB, BDB, HB and the mean-delay of BDB by using the same Bandwidth.
In both figures we set l = n for BDB and we choose the best α value for PB. In

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Number of segments: n

B
an

dw
id

th
 /

C
on

su
m

pt
io

n
R

at
e

(b
/c

)

Block Discrete
Discrete
Harmonic

Fig. 8. Bandwidth Ratio
v.s. Number of segments.

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

6

Maximum Waiting Time (percentage:(d/L)*100%)

B
an

dw
id

th
 /

C
on

su
m

pt
io

n
R

at
e

(b
/c

)

Pyramid
Skyscraper
Block Discrete
Harmonic
BDB Average

Fig. 9. The b/c Ratio versus
the max-delay.

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

Time (Unit : the length of a segment)

S
to

ra
ge

 U
se

d
(

pe
rc

en
ta

ge
 to

 th
e

w
ho

le
 v

id
eo

)

BDB, b/c=4, l=n=20
BDB, b/c=6, l=4, n=19

Fig. 10. Storage used in Fig.
4 and 7.

Section 4 we have discussed the solution of DB when the local storage is very
small compare with the video size. For common BDB which uses a BLOCK of
l = n, the maximum local storage requirement is around 40% of the whole video.
But if we shorten the length of the broadcasting BLOCK, we can decrease the
local storage requirement by the cost of increasing the bandwidth. Fig. 10 shows
the local storage usage situation for two examples of the above two schemes.
The data are calculated from the scheduling BLOCK Tables from Fig. 4 and
Fig. 7 respectively. The following table compares the performance of these pro-

9

tocols. The sample video is a 120min-long MPEG-II-compressed NTSC video at
a consumption rate of about c = 10Mbps. The bandwidth is b = 40Mbps.

HB SCB FB DB BDB PB PPB

Maximum Delay 4min 8min 8min 4.6min 6min 20min 30min

Average Delay 4min 4min 4min 2.3min 3min 10min 15min

Local Storage 3.4GB 2.1GB 4.2GB 3.8GB 3.6GB 6GB 6.75GB

Disk I/O rate 30Mbps 20Mbps 40Mbps 40Mbps 40Mbps 50Mbps 50Mbps

Table 1. Performance and resources requirements comparison

7 Conclusion

In this paper we present the efficient Discrete Broadcasting Protocol for VOD ser-
vice. We also work out the Block Discrete Broadcasting Protocol as an extension
of DB. Both DB and BDB can achieve lower average delay than the Harmonic
Protocol with the same bandwidth. Furthermore, HB cannot work when the local
storage is less than 37% of the whole video size. BDB can achieve a 6.3-minute
max delay when the local storage is around 20% of the whole video size by us-
ing a bandwidth of 6 times the consumption rate. The discrete characterisc also
makes our protocols more flexible and easy to implement.

References

1. K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide
a scalable and interactive Video-on-Demand service,” IEEE Journal on Selected
Areas in Communications, 14(5):1110-1122, Aug 1996.

2. C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation-based pyramid broad-
casting scheme for Video-on-Demand systems,” in Proc. International Conference
on Multimedia Computing and Systems, pages 118-26, June 1996.

3. L. Engebretsen and M. Sudan, “Harmonic broadcasting is optimal,” in Proc. 13th
annual ACM-SIAM SODA, San Francisco, California, Pages: 431-432, Jan 2002.

4. K. A. Hua and S. Sheu, “Skyscraper broadcasting: a new broadcasting scheme for
metropolitan Video-on-Demand systems,” in Proc. ACM SIGCOMM ’97 Confer-
ence, Cannes, France, pages 89-100, Sept 1997.

5. L. Juhn and L. Tseng, “Harmonic broadcasting for Video-on-Demand service,”
IEEE Trans. on Broadcasting, 43(3): 268-271, Sept 1997.

6. L. Juhn and L. Tseng, “Stair case data broadcasting and receiving scheme for hot
video service,” IEEE Transactions on Consumer Electronics, 43(4), 1110-1117, Nov
1997.

7. L. Juhn and L. Tseng, “Fast data broadcasting and receiving scheme for popular
video service,” IEEE Transactions on Broadcasting, 44(1):100-105, Mar 1998.

8. J.-F. Paris, S. Carter and D. D. E. Long, “Efficient broadcasting protocols for video
on demand,” in Proc. MASCOTS ’98, Montral, Canada, pages 127-132, July 1998.

9. P.M. Smithson, J.T. Slader, D.F. Smith and M. Tomlinson, “The development of
an operational satellite internet service provision,” in Proc. IEEE GlobalCom’97,
pp. 1147-1151, Nov 1997.

10. S. Viswanathan and T. Imielinski, “Metropolitan area Video-on-Demand service
using pyramid broadcasting,” Multimedia Systems, 4(4):197-208, 1996.

10

