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Abstract. We present an effectively computable measure of functional
gene similarity that is based on metabolic gene activity across a vari-
ety of growth media. We applied this measure to 750 genes comprising
the metabolic network of the budding yeast. Comparing the in silico
computed functional similarities to those obtained by using experimen-
tal expression data, we show that our computational method captures
similarities beyond those that are obtained by the topological analysis
of metabolic networks, thus revealing — at least in part — dynamic
characteristics of gene function. We also suggest that network centrality
partially explains functional centrality (i.e. the number of functionally
highly similar genes) by reporting a significant correlation between the
two. Finally, we find that functional similarities between topologically
distant genes occur between genes with different GO annotations.

1 Introduction

The study of biological networks has attracted considerable attention in recent
years, including the construction of mathematical models to elucidate both cell
activity as well as genes’ function and expression. Much of the work to date has
attempted to establish measures for the similarity (or distance) between genes
that are based on the topological properties of metabolic networks. Even though
recent analyses have provided valuable insights regarding this issue [1, 2], topo-
logical characteristics alone (as devised by e.g. Kharchenko et al. [3], Chen and
Vitkup [4]) offer only a static description of the properties of interest. On the
other hand, accurate prediction of dynamic cell activity using kinetic models
requires detailed information on the rates of enzyme activity which is rarely
available; moreover, such analysis is usually limited to small-scale networks.

Fortunately, for metabolic networks, the use of stochiometry and other sources
of information provides an added value over the topology of the underlying struc-
ture. Specifically, constraint-based stochiometric models have emerged as a key
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method for studying such networks permitting large-scale analysis thereof. They
use genome-scale networks to predict steady-state metabolic activity, regardless
of specific enzyme kinetics. In these models, stoichiometric, thermodynamic, flux
capacity and possibly other constraints affect the space of possible flux distribu-
tions attainable by a metabolic network.

In this paper we devise an effectively computable functional similarity mea-
sure between genes that is based on their metabolic activity. Such a measure
would allow us to perform large scale in silico experiments and predict func-
tional relations that can then be validated by experimental methods. Specifi-
cally, we suggest a method for determining similarities in gene activities that
is based on Flux Balance Analysis (FBA). We first suggest a knockout-based
measure but find it to be only moderately correlated with experimental data (of
gene co-expression, see below). We then employ a measure of metabolic genes
co-activity (MGCA), which tells how similar gene functions are in terms of the
correlation between their corresponding flux activity vectors across a large vari-
ety of growth media. This latter measure, already used in a more limited scope
by [5], is significantly better than the former measure in terms of correlation
with experimental data.

Our evaluation of the suggested measures is based on testing their correla-
tions with experimental data on similarity in gene expression, to assess their
veracity. The basic relation between metabolic fluxes and gene expression was
already studied and established previously both computationally (showing only
a moderate correlation) as well as experimentally. Recall that the metabolic state
of an organism is controlled via transcriptional regulation which adjusts gene ex-
pression levels according to metabolic demands [6]. Previous studies have shown
that the expression patterns of enzyme coding genes are correlated with the flux
patterns predicted by FBA: Schuster et al. [7, 8] and Famili et al. [5] have shown
that genes, associated with fluxes which are predicted to change together when
shifting from one medium to another (e.g. in diauxic shift), are co-expressed un-
der these conditions; Reed and Palsson [9] have shown that the genes associated
with fluxes that are correlated within the solution space also exhibit moderate
levels of correlation in their expression. Recently, Bilu et al. [10] proposed a more
direct relation between expression and flux where the range of possible optimal
flux values for a given reaction reflects evolutionary constraints on the expression
levels of its associated enzymes; specifically, they have shown that the regula-
tion of reactions which have an optimal fixed value is under strong selection to
maintain their flux at the precise levels needed, while the regulation of reactions
which may have a broad range of optimal values is under weaker selection.

In this work we extend upon these previous studies to look into ways of build-
ing upon the reported correlation between fluxes and expression, to construct
efficient measures of functional similarity among metabolic genes. To this end,
in contrast with the previous studies, we examine the relation between fluxes
and expression while concomitantly controlling for correlations caused solely by
the network’s topology.



Our comparison focuses on 750 metabolic genes of the yeast Saccharomyces
cerevisiae. We find the correlation between MGCA and co-expression to be sta-
tistically significant. Furthermore, it remains so even after cancelling the effect of
the underlying (static) network topology. These results support the notion that
our measure indeed captures the true functional similarity between metabolic
genes.

2 Preliminaries — Modeling Metabolism and Flux
Balance Analysis

Flux Balance Analysis (FBA) [11, 12] is a particular constraint-based method
which assumes that the network is regulated to maximize or minimize a certain
cellular function, which is usually taken to be the organism’s growth rate. FBA
has been demonstrated to be a very useful technique for the analysis of metabolic
capabilities of cellular systems [13, 14]. It involves carrying out a steady state
analysis, using the stoichiometric matrix (as defined below) for the system in
question. The system is assumed to be optimized with respect to functions such
as maximization of biomass production or minimization of nutrient utilization;
it is solved accordingly to obtain a steady state flux distribution, which is then
used to interpret the metabolic capabilities of the system.

In FBA, the constraints imposed by stoichiometry in a chemical network at
steady state are analogous to Kirchoff’s Second Law for the flow of currents in
electric circuits [15], namely — for each of the M metabolites in a network the net
sum of all production and consumption fluxes, weighted by their stoichiometric
coefficients, is zero:

N∑
j=1

Sijvj = 0, i = 1, . . . ,M (1)

Here, Sij is the element of the stoichiometric matrix S corresponding to the
stoichiometric coefficient of metabolite i in reaction j. The flux vj is the rate
of reaction j at steady state, and is the j-th component of an N -dimensional
flux vector v, where N is the total number of fluxes. In addition to internal
fluxes, which are associated with chemical reactions, v includes exchange fluxes
that account for metabolite transport through the membrane. The steady-state
approximation is generally valid because of the fast equilibration of metabolite
concentrations (seconds) with respect to the time scale of genetic regulation
(minutes) [16].

Additional constraints, including those pertaining to the availability of nu-
trients or to the maximal fluxes that can be supported by enzymatic pathways,
can be introduced as the following inequalities:

αj ≤ vj ≤ βj (2)



For example, for a substrate uptake flux vj , one can set αj and βj to be
equal to the corresponding measured or imposed values. Eq. 2 can also be used
to distinguish reversible and irreversible reactions, where αj = 0 for the latter.

All flux vectors that satisfy the constraints mentioned above define a feasible
space, Φ. For an underdetermined system, as is typically the case in FBA mod-
els of cellular metabolic networks [13], Φ is a convex set in the N -dimensional
space of fluxes [17]. Due to the linear nature of Φ, it is possible to use linear
programming [18] to characterize the points in Φ that maximize or minimize
a given linear objective function. A natural choice for an objective function in
metabolic models of prokaryotes and simple eukaryotes is biomass production
[13, 14], as it is reasonable to hypothesize that unicellular organisms have evolved
towards maximal growth performance. This process is formalized by introducing
a growth flux that transforms a linear combination of fundamental metabolic
precursors into biomass.

The maximization of biomass production is implemented by defining an ad-
ditional flux vgro associated with cell growth. For this flux, the stoichiometric
factors of the reactants are the experimentally known proportions ci of metabo-
lite precursors Xi contributing to biomass production [13]:

c1X1 + c2X2 + . . . + cMXM
vgro→ Biomass (3)

The search for the flux vector maximizing vgro under the constraints of Eqs.
1 and 2 is solved using the Simplex algorithm.

The theoretical basis of FBA is supported by several experiments. These
include empirical validation of growth yield and flux predictions [13, 14], mea-
surements of uptake rates around the optimum under various conditions [19],
and results from large-scale gene deletion experiments [20].

For the stoichiometric analysis of the metabolic network of S. cerevisiae, we
have used the reconstruction by Duarte, Herrgard, and Palsson [21]. The nodes of
this network correspond to metabolic genes, and the edges correspond to the con-
nections established by metabolic reactions. Two metabolic genes are connected
if the corresponding enzymes share a common metabolite among their substrates
or products. The list of metabolic reactions, and the 1060 (metabolites) by 1149
(fluxes) stoichiometric matrix (available at http://gcrg.ucsd.edu) were com-
piled using data from public databases and the literature. The 1149 reactions are
associated with 750 genes. As in previous FBA formulations, we use inequalities
(Eq. 2) to limit nutrient uptake and to implement reactions’ irreversibility. In ad-
dition to the 1149 internal reactions, we added to the model 116 uptake/excretion
reactions, for each of the metabolites listed as “extracellular” in the basic model.

3 Similarity Measures for Metabolic Genes

In the context of the aforementioned motivation, we suggest two techniques for
obtaining the distance between metabolic genes: a knockout-functional (KF)
scheme and a growth-functional (GF) scheme. The biological plausibility of the



obtained distance measures is validated by correlating them with the correspond-
ing similarity measure obtained by expression data.

3.1 Knockout-Functional Scheme

Cellular response to a gene knockout involves rerouting of metabolic flux through
alternative pathways and the utilization of isoenzymes [22, 23]. We hypothesize
that similar metabolic responses to gene knockouts may provide evidence for sim-
ilar metabolic functionality between genes. Based on this hypothesis, we define
the KF similarity measure between gene pairs as the similarity in the metabolic
response following their knockout.

Fig. 1. Schematic illustration of the proposed flux
similarity model. w stands for the optimal flux distri-
butions on the wild-type metabolic network, v1 stands
for the optimal flux distribution on the metabolic net-
works with the first flux knocked-out, and v2 stands
for the optimal flux distribution on the metabolic net-
works with the second flux knocked-out.

Predicting the metabolic
response for gene knock-
outs is a more difficult
task than predicting the
metabolic state of wild-
type strains. Gene dele-
tion is commonly modeled
by constraining the flux
through the reactions as-
sociated with a given gene
to zero, and applying FBA
[13]. However, it turns out
that the metabolic state of
the knocked-out strain is
not necessarily optimal in
terms of growth rate, and
thus in many cases FBA’s
predictions are inaccurate.
Instead, it was hypothe-
sized that the cell adapts to

gene knockouts by minimizing the change in its metabolic state. Specifically,
the Minimization of Metabolic Adjustment (MOMA) approach searches for a
metabolic state for a knocked-out strain with minimal distance, under the L2
norm, from the flux distribution of the wild-type strain [22]. Recently, a new
method called Regulatory On-Off Minimization (ROOM) was suggested to pre-
dict metabolic states following gene knockouts, and was shown to provide better
predictions of knockout phenotypes [23]. ROOM aims to minimize the number
of regulatory changes required for the adaptation by minimizing the number
of significant flux changes between the metabolic states of the wild-type and
knocked-out states (i.e. using the norm L0).

A naive method for measuring the distance between the metabolic responses
of two gene knockouts would be to simulate the knockout of each of them in-
dividually using ROOM, and then compute the distance between the obtained
flux distributions. However, in many cases ROOM (like FBA and MOMA) pro-
vides multiple possible metabolic states for the knocked-out strain rather than a



single solution. In these cases, it is not clear how to define the similarity measure
between two genes.

To overcome this problem we define the KF similarity measure as the min-
imal distance between the optimal ROOM solutions for the two genes1. This is
achieved by formulating a single optimization problem to find two ROOM so-
lutions with minimal distance between them. The schematic illustration of our
model is presented in Figure 1.

Notably this formulation depends on the choice of a wild-type and thus we
repeat our analysis for several different wild-types. Furthermore, since ROOM
requires Mixed Integer Linear Programming (MILP) optimization which is NP-
hard, we use a relaxed version of ROOM and — in addition— we use the L1 norm
instead of L0. The use of the L1 norm is similar to a variant of ROOM, called
ROOM-LP, that was shown to provide similar predictions to ROOM [23]. The
L1 norm was also used by Kuepfer et. al. [24] for a similar purpose of knockout
prediction. The distance between the two flux distributions of the knocked-out
strains is also minimized using the L1 norm.

The optimization problem is formulated as a LP problem as follows:

min ‖v1 − v2‖L1

s.t.
S · v1 = 0; vmin ≤ v1 ≤ vmax; v1[ko1] = 0, ko1 ∈ A1;
S · v2 = 0; vmin ≤ v2 ≤ vmax; v2[ko2] = 0, ko2 ∈ A2;
‖w − v1‖L1 = l1; ‖w − v2‖L1 = l2;

where w is the wild-type flux distribution, A1 and A2 are sets of reactions as-
sociated with the deleted genes, and li (i = 1, 2) are the optimal solutions of a
single optimization problem:

min ‖v − w‖L1

s.t.
S · v = 0; vmin ≤ v ≤ vmax; vko1 = 0, ko1 ∈ A;

Solving the above optimization problem we receive a measure of similarity
between fluxes.

3.2 Growth-Functional Scheme

We hypothesize that the regulation of reactions that are active (different than
zero) together across certain media and passive (equal to zero) together across
others should be similar. In order to evaluate our hypothesis, we follow and
extend the approach of [10], computing genes’ activities across 100 randomly
generated growth media.

To pursue this possibility we used flux variability analysis [9, 25]: for each
reaction we computed the maximal and minimal flux values attainable in the
1 We use the distance notion instead of the similarity one both in the KF and GF

schemes for sake of clarity and for being consistent with commonly used network
topology distances.



space of optimal flux distributions for growth conditions simulating 100 different
growth media. Random growth media were generated by setting limiting values
to the uptake reactions independently at random. With probability 0.5, the
maximal uptake rate was set to 0, i.e. only excretion was allowed. Otherwise,
uptake rate was limited to a value chosen uniformly at random in the range
[0.01, 5], at a resolution of 0.01. A similar sampling method was used in [26].
In addition, in order to ensure enough variability between media, we switched
between aerobic and anaerobic growth media with probability 0.5.

For each generated medium we simulated growth conditions similar to [5]
and for each reaction checked if it is active across the current growth media. A
reaction is considered active in a given flux distribution if its associated flux is
non-zero, namely either its maximum or minimum are different than zero. Active
genes were denoted by ’0’ and nonactive ones by ’1’. This way we created for
each gene a binary vector of its activity across a series of generated media.

We define a measure of metabolic genes co-activity (MGCA) as the Jaccard
coefficient [27] between two binary vectors reflecting metabolic genes’ activity.
The binary Jaccard coefficient measures the degree of overlap between two sets
of values, xa and xb, and is computed as the ratio between the number of shared
attributes of xa and xb and the number possessed by xa or xb:

J(xa, xb) =
xa ∩ xb

xa ∪ xb
(4)

The pseudo-code of the entire procedure is presented in Figure 2.

4 Results

Recall that the metabolic state of an organism is controlled by transcriptional
regulation which adjusts gene expression levels according to metabolic demands
[6]. Thus the experimental pairwise correlations serve as the true benchmark rod
to which we compare the computational measures we compute to find out which
is the best, i.e. closest to reality.

The first computational similarity measure proposed [3] was based on topo-
logical properties of the metabolic network . We start by repeating these exper-
iments and then show how our measure can go beyond topological measures.

The obtained metabolic network is used to calculate network distance be-
tween genes. We define a pair of directly connected metabolic genes as separated
by distance 1, and the network distance between genes X and Y is the length of
the shortest path from X to Y in the metabolic network. While any metabolite
can be used to establish connections between metabolic genes, the relationships
established by the common metabolites and cofactors — such as ATP, water or
hydrogen — are not likely to connect genes with similar metabolic functions.

In compiling a metabolic network, we consider a subset of metabolites which
excludes the most highly connected metabolic species. An exclusion threshold
was determined based on the connectivity of the resulting network. A total of the
10 most highly connected metabolites (ATP, ADP, AMP, CO2, H, H2O, NADP,
NADPH, phosphate and diphosphate), which compose 1% of all metabolites,



Algorithm 1: FindGenesDist(N)
Input: N - the number of required media.
Output: results - matrix num genes× num genes containing the distance

between metabolic genes.

for k=1..N do
for each external flux f do

with probability 0.5, set f = 0;
otherwise f receives a random value chosen uniformly in [0.01, 5];

Run FBA to maximize biomass(growth rate)
and obtain objective value (wild growth rate);

Add constraint: biomass ≥ 0.9 ∗ wild growth rate;
for i=1..num fluxes do

Run FBA to maximize flux i, obtain imax;
Run FBA to minimize flux i, obtain imin;

for each gene g do
if for one of its related fluxes imax = imin = 0 then

MT[g][k] = 1;
else

MT[g][k] = 0;
for each gene g1 do

for each gene g2 6= g1 do
results[g1][g2] = Jaccard coefficient(MT[g1],MT[g2]);

Fig. 2. The process for computing the GF-based measure.

and their mitochondrial and external analogs were excluded. We also tried to
exclude up to the top 3% of all metabolites, however we found out that the
general trends described in this paper are not sensitive to the precise choice of
the excluded set of metabolites.

We compared the correlation between the gene functional similarity measure
and their expression similarity. To this end, we used Rosetta’s “compendium”
dataset [28] which measures expression profiles of over 6200 S. cerevisae ORFs
across 287 deletion strains and 13 chemical conditions. In addition, the dataset
contains 63 negative control measurements comparing two independent cultures
of the same strain. These were used to establish individual error models for each
ORF, providing not only the raw intensity and the ratio measurement values for
each experimental data point, but also a p-value evaluating the significance of
change in expression level. The expression similarity measure between ORFs X
and Y was computed according to 1− Spearman rank(px, py) where px and py

are expression profile vectors of X and Y , respectively, and the Spearman rank
was calculated as in [29].

As in [3], we observed that the expression distance increases monotonically
with network distance (R2 = 0.78, p-value = 1.2 · 10−8), demonstrating that
genes closer to each other in the metabolic network tend to have, on average,
higher level of coexpression.



Measuring the correlation between the KF-based distance and those based on
the expression data we observed (see Figure 3) a moderate correlation (R2=0.36
in the negatively correlated expressed profiles with a p-value of 8.6 · 10−2 , and
R2 = 0.45 in the positively ones with a p-value of ≤ 4.6 · 10−2 ). Note that the
obtained correlation is robust to the initial wild-type metabolic state, as similar
correlation levels were observed when starting from different wild-types.

(a) (b)

Fig. 3. Correlation between expression levels and genes activities under the KF mea-
sure. (a) Negatively expressed pairs. (b) Positively expressed pairs.

As for the GF-based measure, we observe (see Figure 4) that it exhibits a
significant correlation with the expression similarity (R2 = 0.78 in the negatively
correlated expressed profiles with a p-value of 5.15 · 10−8, and R2 = 0.94 in the
positively ones with p-value ≤ 1 · 10−20).

(a) (b)

Fig. 4. Correlation between expression levels and genes’ activities under the GF mea-
sure. (a) Negatively expressed pairs. (b) Positively expressed pairs.

Finally, we observe a significant enhancement of the GF-based measure over
the static (topological) metabolic distance indicating that this static distance



can explain only partially the demand for common regulation. We use a partial
correlation method that describes the relationship between two variables whilst
eliminating the effects of another variable on this relationship, namely network
distance in our case. Our results show significant partial correlation (R2=0.65,
with a p-value of 3.8 · 10−6) between expression levels and our MGCA measure
given a metabolic network distance. This higher correlation for our measure sup-
ports the fact that the FBA model captures the dynamic metabolic activity of
the cell, and that the regulation system indeed works to maximize the growth
rate. Moreover, the results stay significant with every thresholds for excluding
“currency metabolites” from the metabolic network in the range from 1% to 3%.

In order to evaluate the difference between the MGCA measure and the
metabolic network distance measure we analyzed two sets of pairs of genes: one
containing pairs of genes that are close under the network distance and distant
under the MGCA measure, and the other — vice versa. We observed that the first
set is significantly enriched with the GO term protein biosynthesis (GO:006412)
— 25 annotated genes out of 104 resulting in a p-value ≤ 0.001, as well as
with the GO term nucleobase, nucleoside, nucleotide and nucleic acid metabolism
(GO:006139) — 40 annotated genes out of 104 also resulting in a p-value ≤ 0.001.
An engrossing result was that the complementary set (genes that are close under
the MGCA measure but are distant under the network topology measure) showed
no significant enrichment, possibly testifying that such functional similarities
occur across a broad and homogeneous span of functional annotations.

Fig. 5. The correlation between functional centrality
and network centrality.

Functional enrichments
were computed based on
the GO-SLIM process anno-
tations [30] for genes. Yeast
GO-SLIM annotations were
obtained from SGD [31].
For a given set S and a
given term t, the functional
enrichment score was com-
puted as follows: suppose
S has n(t) genes that are
annotated with term t (or
with a more specific term).
Let p(t) be the hypergeo-
metric probability for ob-
serving n(t) or more pro-
teins annotated with the
term t in a protein subset
of size |S|. Having found a

term t0 with minimal probability p(t0), the score was set to the p-value of the
enrichment under term t0, computed by comparing p(t0) with the analogous
probabilities for 10,000 random sets of proteins of size |S|.



In addition we looked at the correlation between the network degree of each
gene and its functional degree, i.e. the number of functionally highly similar
(Jaccard coefficient ≤ 0.3) genes (see Figure 5). As we received a significant
correlation of R2 = 0.4 with a p-value ≤ 0.001, it seems that network centrality
explains (at least in part) functional centrality. Namely, the more alternative
pathways go through a given gene, the more functionally significant it is. We also
observed that the correlation is robust to the functionally similarity threshold
in the range form 0.01 to 0.3.

5 Conclusions

This paper is the first to show that functional flux-based similarity measures
between genes can go beyond previous computational measures based on net-
work topology. We applied two schemes to compute this distance: the knockout-
functional (KF) scheme and the growth-functional (GF) scheme. While the for-
mer shows a fairly moderate correlation with the experimental results, the latter
provides a strong, statistically-significant measure. One possible explanation of
this behavior may be that the GF studies probe the natural wild type across a va-
riety of media, whereas the KF method does it in less natural strains and in a sole
media. The other reason is the more cumbersome computational method used
in the KF case, which is likely to add significant noise to the results obtained.

References

1. Jeong, H., Tombor, B., Albert, R., Oltavi, Z., Barabasi, A.: The large-scale orga-
nization of metabolic networks. Nature 407 (2000) 651–654

2. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabasi, A.: Hierarchical organi-
zation of modularity in metabolic networks. Science 297 (2002) 1551–1555

3. Kharchenko, P., Church, G.M., Vitkup, D.: Expression dynamics of a cellular
metabolic network. Molecular Systems Biology 1(1) (2005) E1–E6

4. Chen, L., Vitkup, D.: Predicting genes for orphan metabolic activities using phy-
logenetic profiles. Genome Biol. 7(2) (2006) R17

5. Famili, I., Forster, J., Nielsen, J., Palsson, B.Ø.: Saccharomyces cerevisiae phe-
notypes can be predicted by using constraint-based analysis of a genome-scale
reconstructed metabolic network. Proc Natl Acad Sci U S A 100 (2003) 13134–
13139

6. Zaslaver, A., Mayo, A., Rosenberg, R., Bashkin, P., Sberro, H., et al: Just-in-time
transcription program in metabolic pathways. Nat Genet 36 (2004) 486–491

7. Schuster, S., Dandekar, T., Fell, D.: Detection of elementary flux modes in bio-
chemical networks: a promising tool for pathway analysis and metabolic engineer-
ing. Trends Biotechnol 17 (1999) 53–60

8. Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., Pfeiffer, T.: Use of net-
work analysis of metabolic systems in bioengineering. Bioprocess and Biosystems
Engineering 24 (2002) 363–372

9. Reed, J., Palsson, B.: Genome-scale in silico models of e. coli have multiple equiv-
alent phenotypic states: assessment of correlated reaction subsets that comprise
network states. Genome Res 14 (2004) 1797–1805



10. Bilu, Y., Shlomi, T., Barkai, N., Ruppin, E.: Conservation of expression and se-
quence of metabolic genes is reflected by activity across metabolic states. PLoS
Comp. Bio. (in press) (2006)

11. Fell, D., Small, J.: Fat synthesis in adipose tissue. An examination of stoichiometric
constraints. Biochem J 238 (1986) 781–786

12. Kauffman, K., Prakash, P., Edwards, J.: Advances in flux balance analysis. Curr
Opin Biotechnol 14 (2003) 491–496

13. Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale Models of Microbial Cells:
Evaluating the consequences of constraints. Nature Reviews Microbiology 2 (2004)
886–897

14. Varma, A., Palsson, B.: Metabolic capabilities of Escherichia coli: II. Optimal
growth patterns. J. Theor. Biol. 165 (1993) 503–522

15. Schilling, C.H., Edwards, J.S., Palsson, B.: Toward metabolic phenomics: analysis
of genomic data using flux balances. Biotechnol. Prog 15 (1999) 288–295

16. Fell, D.: Understanding the Control of Metabolism. Portland Press, London (1996)
17. Schilling, C.H., Edwards, J.S., Letscher, D., Palsson, B.Ø.: Combining pathway

analysis with flux balance analysis for the comprehensive study of metabolic sys-
tems. Biotechnol. Bioeng. 71 (2000) 286–306

18. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Aca-
demic Publishers, Boston (1996)

19. Edwards, J., Ibarra, R., Palsson, B.: In silico predictions of Escherichia coli
metabolic capabilities are consistent with experimental data. Nat Biotechnol 19
(2001) 125–130

20. Badarinarayana, V., Estep, P.W., Shendure, J., Edwards, J., Tavazoie, S., Lam, F.,
Church, G.M.: Selection analyses of insertional mutants using subgenic-resolution
arrays. Nat. Biotechnol. 19 (2001) 1060–1065

21. Duarte, N., Herrgard, M., Palsson, B.Ø.: Reconstruction and validation of Sac-
charomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic
model. Genome Res 14 (2004) 1298–1309

22. Segre, D., Vitkup, D., Church, G.: Analysis of optimality in natural and perturbed
metabolic networks. Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 15112–15117

23. Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic
flux changes after genetic perturbations. Proc. Natl. Acad. Sci. U. S. A. 102(21)
(2005) 7695–7700

24. Kuepfer, L., Sauer, U., Blank, L.M.: Metabolic functions of duplicate genes in
Saccharomyces cerevisiae. Genome Res. 15(10) (2005) 1421–1430

25. Mahadevan, R., Schilling, C.: The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab Eng 5 (2003) 264–276

26. Almaas, E., Oltvai, Z., Barabasi, A.: The activity reaction core and plasticity of
metabolic networks. PLoS Comput Biol 1 (2005) e68

27. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, New-York (1983)

28. Hughes, T., et. al.: Flux analysis of underdetermined metabolic networks: the quest
for the missing constraints. Cell 102(1) (2000) 109–126

29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C++: the art of scientific computing. Cambridge University Press, Cambridge
(2002)

30. Ashburner, M., et. al.: Gene Ontology: tool for the unification of biology. Nat.
Genet. 25(1) (2000) 25–29

31. Issel-Tarver, L., et. al.: Saccharomyces Genome Database. Methods Enzymol 350
(2002) 329–346


