
New constructive heuristics for DNA sequencing by

hybridization∗

Christian Blum and Mateu Yábar Vallès

ALBCOM, Dept. Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya, Barcelona, Spain

cblum@lsi.upc.edu, mateuyabar@gmail.com

May 17, 2006

Abstract

Deoxyribonucleic acid (DNA) is a molecule that consists of two complementary se-
quences of amino acids. Reading these sequences is an important task in biology, called
DNA sequencing. However, large DNA molecules cannot be read in one piece. Therefore,
existing techniques first break the given DNA molecules up into small fragments which
can be read. One of these techniques is called the hybridization experiment. The recon-
struction of the original DNA molecule from these fragments is a challenging problem from
the computational point of view. In recent years the specific problem of DNA sequenc-
ing by hybridization has attracted quite a lot of interest in the optimization community.
While most researchers focused on the development of metaheuristic approaches, work
on simple constructive heuristics hardly received any attention. This is despite the fact
that well-working constructive heuristics are often an essential component of succesful
metaheuristics. It is exactly this lack of constructive heuristics that motivated the work
presented in this paper. The results of our best constructive heuristic are comparable to
the results of the best existing metaheuristics, while using less computational time.

1 Introduction

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic instructions for the bio-
logical development of all cellular forms of life. Each DNA molecule consists of two (comple-
mentary) sequences of four different amino acids, namely adenine (A), cytosine (C), guanine
(G), and thymine (T). In mathematical terms each of these sequences can be represented as
a word from the alphabet {A, C, G, T}. One of the most important problems in computa-
tional biology consists in determining the exact structure of a DNA molecule, called DNA
sequencing. This is not an easy task, because the amino acid sequences of a DNA molecule
(henceforth also called DNA strands) are usually so large that they cannot be read in one
piece. In 1977, 24 years after the discovery of DNA, two separate methods for DNA sequenc-
ing were developed: the chain termination method and the chemical degradation method.

∗This work was supported by the Spanish CICYT project OPLINK (grant TIN-2005-08818-C04-01), and by the “Juan
de la Cierva” program of the Spanish Ministry of Science and Technology of which Christian Blum is a post-doctoral
research fellow.

1

Later, in the late 1980’s, an alternative and much faster method called DNA sequencing by
hybridization was developed (see [1, 15, 12]).

DNA sequencing by hybridization works roughly as follows. The first phase of the method
consists of a chemical experiment which requires a so-called DNA array. A DNA array is a
two-dimensional grid whose cells typically contain all possible DNA strands—called probes—
of equal length l. For example, consider a DNA array of all possible probes of length l = 3:

GGT TGA GCG CTA AAT CCT CTC TTC

GTC GTG TTG GGC CGA TTT TCA ATC

GCT AGC GGG CCA TAT CGG TAG AAG

GAA GGA CGT ACG CTG TGT TAA ATT

TCT GAT CAC CAT CAA ACC ATG GTT

CGC GCC AGG CTT ATA TCC TGC GTA

AGA AAC TTA TGG TCG AGT CAG GAC

CCG GCA CCC AAA ACA GAG ACT TAC

After the generation of the DNA array, the chemical experiment is started. It consists of
bringing together the DNA array with many copies of the amino acid sequence to be read,
also called the DNA target sequence. Hereby, the target sequence might react with a probe
on the DNA array if and only if the probe is a subsequence of the target sequence. Such a
reaction is called hybridization. After the experiment the DNA array allows the identification
of the probes that reacted with target sequences. This subset of probes is called the spectrum.
Two types of errors may occur during the hybridization experiment:

1. Negative errors: Some probes that should be in the spectrum (because they appear
in the target sequence) do not appear in the spectrum. A particular type of negative
error is caused by the multiple existence of a probe in the target sequence. This cannot
be detected by the hybridization experiment. Such a probe will appear at most once in
the spectrum.

2. Positive errors: A probe of the spectrum that does not appear in the target sequence
is called a positive error.

Given the spectrum, the second phase of DNA sequencing by hybridization consists of the
reconstruction of the target sequence from the spectrum. Let us, for a moment, assume that
the obtained spectrum is perfect, that is, free of errors. In this case, the original sequence
can be reconstructed in polynomial time with an algorithm proposed by Pevzner in [16].
However, as the generated spectra generally contain negative as well as positive errors, the
perfect reconstruction of the target sequence is in general impossible.

1.1 DNA sequencing by hybridization

In order to solve the computational part of DNA sequencing by hybridization, one usually
solves an optimization problem of which the optimal solutions can be shown to have a high
probability to resemble the target sequence. In this work we consider the optimization problem
that was introduced as a model for DNA sequencing by hybridization by BÃlażewicz et al. in [3].
In [7] it was shown that this model is NP -hard.1 In fact, this optimization problem—outlined
in the following—is a version of the selective traveling salesman problem.

1Note that also the other existing models for DNA sequencing with errors are NP -hard.

2

Henceforth, let the DNA target sequence be denoted by st. The number of amino acids of
st shall be denoted by n (i.e., st ∈ {A, C, G, T}n). Furthermore, the spectrum—as obtained
by the hybridization experiment—is denoted by S. Remember that each s ∈ S is an oligonu-
cleotide (i.e., a short DNA strand) of length l (i.e., s ∈ {A, C, G, T}l). In general, the length
of any oligonucleotide s is denoted by l(s). Let G = (V, A) be the completely connected
directed graph defined by V = S. To each link as,s′ ∈ A is assigned a weight os,s′ , which is
defined as the length of the longest DNA strand that is a suffix of s and a prefix of s′. A
directed Hamiltonian path p in G is a directed path without loops. The length of such a path
p, denoted by l(p), is defined as the number of vertices (i.e., oligonucleotides) on the path. In
the following we denote by p[i] the i-th vertex in a given path p (starting from position 1).
In contrast to the length, the cost of a path p is defined as follows:

c(p) ← l(p) · l −

l(p)−1∑

i=1

op[i],p[i+1] (1)

The first term sums up the length of the olionucleotides on the path, and the second term
(which is substracted from the first one) sums up the overlaps between the neighboring
oligonucleotides on p. In fact, c(p) is equivalent to the length of the DNA sequence that
is obtained by the sequence of oligonucleotides in p. The problem of DNA sequencing by
hybridization consists of finding a directed Hamiltonian path p∗ in G with l(p∗) ≥ l(p) for all
possible paths p that fulfill c(p) ≤ n. In the following we refer to this optimization problem
as sequencing by hybridization (SBH).

As an example consider the target sequence st = ACTGACTC. Assuming l = 3, the
ideal spectrum is {ACT,CTG,TGA,GAC,ACT,CTC}. However, let us assume that the
hybridization experiment provides us with the following faulty spectrum S = {ACT,TGA,

GAC,CTC,TAA}. This spectrum has two negative errors, because ACT should appear
twice, but can—due to the characterisitcs of the hybridization experiment—only appear once,
and CTG does not appear at all in S. Furthermore, S has one positive error, because it
includes oligonucleotide TAA, which does not appear in the target sequence. An optimal
Hamiltonian path in this example is p∗ = 〈ACT,TGA,GAC,CTC〉 with l(p∗) = 4 and
c(p∗) = 8. The DNA sequence that is retrieved from this path is equal to the target sequence
(see Figure 1).

1.2 Existing approaches

The first approach to solve the SBH problem was a branch & bound method proposed in [3].
However, this approach becomes unpractical with growing problem size. For example, the
algorithm was only able to solve 1 out of 40 different problem instances concerning DNA target
sequences with 200 amino acids within one hour. Another argument against this branch &
bound algorithm is the fact that an optimal solution to the SBH problem does not necessarily
provide a DNA sequence that is equal to the target sequence. Therefore, the importance of
finding optimal solutions is not the same as for other optimization problems. Therefore, the
research community has focused on heuristic techniques for tackling the SBH problem. Most
of the existing approaches are metaheuristics such as evolutionary algorithms and tabu search
techniques (for a general overview on metaheuristic methods see, for example, [9]). A list of
the existing approaches for the SBH problem is given in Table 1.

3

ACT TGA

GAC CTC

TAA

(a) Completely connected di-
rected graph.

A C T G A C T C

A C T G A C T C

A C T G A C T C

A C T G A C T C

A C T G A C T C

(b) DNA sequence retrieval from
a Hamlitonian path.

Figure 1: (a) The completely connected directed graph with spectrum S =
{ACT,TGA,GAC,CTC,TAA} as the vertex set. The edge weights (i.e., overlaps) are
not indicated for readability reasons. For example, the weight on the edge from TGA to
GAC is 2, because GA is the longest DNA strand that is a suffix of TGA and a prefix of
GAC. An optimal Hamiltonian path is p∗ = 〈ACT,TGA,GAC,CTC〉. In (b) is shown how
to retrieve the DNA sequence that is encoded by p∗. Note that c(p∗) = 8, which is equal to
the length of the encoded DNA sequence.

.

Table 1: A list of approaches for the SBH problem.
Type of algorithm Identifier Publication

Constructive heuristic LAG BÃlażewicz et al. [3], 1999
Constructive heuristic OW BÃlażewicz et al. [2], 2002

Evolutionary algorithm EA1 BÃlażewicz et al. [8, 6], 2002
Evolutionary algorithm EA2 Endo [13], 2004
Evolutionary algorithm EA3 Brizuela et al. [10], 2004
Evolutionary algorithm EA4 Bui and Youssef [11], 2004

Tabu search TS BÃlażewicz et al. [4], 2000
Tabu search / scatter search hybrid TS/SS BÃlażewicz et al. [5, 6], 2004

GRASP-like multi-start technique GRASP Fernandes and Ribeiro [14], 2005

1.3 Motivation and organization of the paper

Despite the fact that well-working constructive heuristics are often the basis for well-working
metaheuristics, only two constructive heuristics exist. Both approaches were proposed by
BÃlażewicz and colleagues; the first one is a look-ahead greedy (LAG) technique that was
proposed in [3], and the second one called OW was proposed in [2] (see Table 1). Our
motivation is to develop new types of constructive heuristics that can possibly lead to the
development of better metaheuristic approaches.

The organization of the paper is as follows. In Section 2 we describe our constructive
heuristics, and in Section 3 we conduct an experimental evaluation of these heuristics and
compare them to the best techniques from the literature. Finally, in Section 4 we offer
conclusions and an outlook to the future.

4

Algorithm 1 The LAG heuristic

1: input: A graph G, and the length of the target sequence n

2: Ŝ ← S

3: s∗ ← Choose Initial Oligonulceotide(Ŝ)
4: p ← 〈s∗〉
5: while c(p) ≤ n do

6: Ŝ ← Ŝ \ {s∗}
7: s∗ ← argmax{op[l(p)],s + os,suc(s) | s ∈ Ŝ}
8: Extend path p by adding s∗ to its end
9: end while

10: output: DNA sequence s that is obtained from p

2 New constructive heuristics

The first constructive heuristic that we propose is a simple extension of the look-ahead greedy
(LAG) heuristic proposed in [3]. Therefore, we first brievly outline the LAG heuristic.

LAG: The idea of LAG is to start the path construction in graph G (see Section 1.1 for
the definition of G) with one of the probes of the spectrum, and to extend this path in a
step-by-step manner by means of a look-ahead strategy. The way in which this is done is
shown in Algorithm 1. In this algorithm—as well as in the other algorithms outlined in this
section—the following notations are used:

pre(s) ← argmax{os′,s | s′ ∈ Ŝ, s′ 6= s} , (2)

suc(s) ← argmax{os,s′ | s′ ∈ Ŝ, s′ 6= s} , (3)

where Ŝ ⊆ S and s ∈ Ŝ are given. In words, pre(s) is the best available predecessor for
s ∈ Ŝ, that is, the oligonucleotide that—as a predecessor of s—has the biggest overlap with
s. Accordingly, suc(s) is the best available successor for s ∈ Ŝ. In case of ties, the first
one that is found is taken. In the original version of LAG as presented in [3], the function
Choose Initial Oligonulceotide(Ŝ) chooses a random vertex for starting the path construction.
However, in this paper we implemented this function as follows. First, set Sbs ⊂ S is defined
as the set of all oligonucleotides in S whose best successor is better or equal to the best
successor of all the other oligonucleotides in S.

Sbs ← {s ∈ Ŝ | os,suc(s) ≥ os′,suc(s′), ∀ s′ ∈ Ŝ} (4)

Then, set Swp ⊆ Sbs is defined as the set of all oligonucleotides in Sbs whose best predecessor
is worse or equal to the best predecessor of all the other oligonucleotides in Sbs:

Swp ← {s ∈ Sbs | opred(s),s ≤ opred(s′),s′ , ∀ s′ ∈ Sbs} (5)

As starting oligonucleotide we choose the one (from Swp) that is found first. The idea hereby
is to start the path construction with an oligonucleotide that has a very good successor and
at the same time a very bad predecessor. Such an oligonucleotide has a high probability to
coincide with the start of the target DNA sequence st.

5

Algorithm 2 The FB-LAG heuristic

1: input: A graph G, and the length of the target sequence n

2: Ŝ ← S

3: s∗ ← Choose Initial Oligonulceotide(Ŝ)
4: p ← 〈s∗〉
5: Ŝ ← Ŝ \ {s∗}
6: while c(p) ≤ n do

7: sr ← argmax{op[l(p)],s + os,suc(s) | s ∈ Ŝ}

8: sl ← argmax{opre(s),s + os,p[1] | s ∈ Ŝ}
9: if op[l(p)],sr

+ osr,suc(s) > opre(s),sl
+ osl,p[1] then

10: Extend path p by adding sr to its end
11: Ŝ ← Ŝ \ {sr}
12: else

13: Extend path p by adding sl to its beginning
14: Ŝ ← Ŝ \ {sl}
15: end if

16: end while

17: output: DNA sequence s that is obtained from p

LR-LAG: A simple extension of the LAG heuristic is obtained by allowing the path construction
not only in forward direction but also in backward direction. We call this heuristic hence-
forth forward-backward lock-ahead greedy (FB-LAG) heuristic. At each construction step the
heuristic decides (with the same criterion as LAG) to extend the current path either in for-
ward direction or in backward direction (see Algorithm 2). A second change with respect to
LAG concerns the implementation of function Choose Initial Oligonulceotide(Ŝ). As the path
construction allows forward and backward construction it is not necessary to start the path
construction with an oligonucleotide that has a high probability of being the beginning of the
DNA target sequence. It is more important to start with an oligonucleotide that has a high
probability of being part of the DNA target sequence:

s∗ ← argmax{opre2(s),pre(s) + opre(s),s + os,suc(s) + osuc(s),suc2(s) | s ∈ S} , (6)

where pre2(s) denotes the best predecessor of the best predecessor of s (i.e., pre(pre(s))), and
similar for suc2(s).

SM: The idea of the sub-sequence merger (SM) heuristic (see Algorithm 3) is conceptionally
quite different to the LAG and FB-LAG heuristics. Instead of constructing only one path, the
heuristic starts with a set of |S| paths, each of which only contains exactly one oligonucleotide
s ∈ S, and then merges paths until a path of sufficient size is obtained. The heuristic works
in two phases. In the first phase, two paths p and p′ can only be merged if p′ is the unique
best successor of p, and if p is the unique best predecessor of p′. The heuristic enters into the
second phase if and only if the first phase has not already produced a path of sufficient length.
In the second phase, the uniqueness conditions are relaxed, that is, two paths p and p′ can be
merged if p′ is among the best successors of p, and p is among the best predecessors of p′. The
reason of having two phases is the following: The first phase aims to produce possibly error
free sub-sequences of the DNA target sequence, whereas the second phase (which is more

6

Algorithm 3 The SM heuristic

1: input: A graph G, and the length of the target sequence n

2: P ← {〈s〉 | s ∈ S}
3: PHASE 1:

4: stop = false

5: for overlap = l − 1, . . . , 1 do

6: while ∃ p, p′ ∈ P s.t. op,p′ = overlap & |Ssuc(p)| = 1 & |Spre(p
′)| = 1 & suc(p) = p′ &

pre(p′) = p & stop = false do

7: Add path p′ to the end of path p

8: P ← P \ {p′}
9: if c(p) ≥ n then

10: stop = true

11: end if

12: end while

13: end for

14: PHASE 2:

15: for overlap = l − 1, . . . , 1 do

16: while ∃ p, p′ ∈ P s.t. op,p′ = overlap & p′ ∈ Ssuc(p) & p ∈ Spre(p
′) & stop = false

do

17: Choose p and p′ such that l(p) + l(p′) is maximal
18: Add path p′ to the end of path p

19: if c(p) ≥ n then

20: stop = true

21: end if

22: end while

23: end for

24: Let p be the path in P with maximal cost
25: p∗ ← Find Best Subpath(p)
26: output: DNA sequence s that is obtained from p∗

error prone due to the relaxed uniqueness condition) aims at connecting the sub-sequences
produced in the first phase in a reasonable way.

In Algorithm 3, given two paths p and p′, op,p′ is defined as op[l(p)],p′[1], that is, the overlap
of the last oligonucleotide in p with the first one in p′. In correspondence to the notations
introduced in Equations 2 and 3, the following notations are used:

suc(p) ← argmax{op,p′ | p′ ∈ P, p′ 6= p} , (7)

pre(p) ← argmax{op′,p | p′ ∈ P, p′ 6= p} . (8)

Futhermore, Ssuc(p) is defined as the set of best successors of p, that is, Ssuc(p) ← {p′ ∈
P | op,p′ = op,suc(p)}; and Spre(p) is defined as the set of best predecessors of p, that is,
Spre(p) ← {p′ ∈ P | op′,p = opre(p),p}. Finally, function Find Best Subpath(p) is implemented
to retrieve from path p the longest sub-path (in terms of the number of oligonucleotides).

HSM: The hybrid sub-sequence merger (HSM) heuristic is obtained by combining the FB-LAG
heuristic with the SM heuristic. This combination is based on the following observation: At

7

every stage of the SM heuristic, the FB-LAG heuristic can be applied to the problem instance
that is obtained as follows. Given the current path set P of the SM heuristic, a spectrum Ŝ

is created that contains the DNA sequences retrieved from the paths in P .2 The result of
the FB-LAG heuristic when applied to this problem instance can (of course) be regarded as
a result for the original problem instance. It remains to specify at which stages of the SM
heuristic the FB-LAG heuristic is applied. The first application of FB-LAG is the one to the
original problem instance, that is, before the first phase of SM has started. Then, in the first
as well as in the second phase of SM, FB-LAG is applied at the end of the respective for-loop
(i.e., after line 12 and after line 21 in Algorithm 3). However, FB-LAG is only applied if the
while-loop before was executed at least once. Note that in case the while-loop is not even
executed a single time, the problem instance derived from the path set P has not changed
since the previous application of FB-LAG. Finally, the output of HSM is the best result among
the different applications of FB-LAG and the final result of SM.

3 Results

We implemented the 4 heuristics outlined in the previous section in ANSI C++ using GCC
3.2.2 for compiling the software. Our experimental results were obtained on a PC with Intel
Pentium 4 processor (3.06 GHz) and 1 Gb of memory.

A wide-spread set of benchmark instances for DNA sequencing by hybridization was intro-
duced by BÃlażewicz et al. in [3]. It consists of DNA target sequences coding human proteins
obtained from GenBank, which is a database of genetic sequences provided by the National
Institutes of Health, USA.3 The instance set consists of 40 DNA target sequences of length
109, 209, 309, 409, and 509 (alltogether 200 instances). Based on real hybridization experi-
ments, the spectra were generated with probe size l = 10. All spectra contain 20% negative
errors as well as 20% positive errors. For example, the spectra concerning the DNA target se-
quences of length 109 contain 100 oligonucleotides of which 20 oligonucleotides do not appear
in the target sequences.

We applied the 4 heuristics outlined in the previous section to all problem instances. The
results are shown in Tables 2 to 5. Each table contains the results of the corresponding
heuristic averaged over the 40 problem instances of each of the five different sizes. The
second row of each table contains the average solution quality (i.e., the average number of
oligonucleotides in the constructed paths). Remember that the optimization objective in the
SBH problem is to maximize this value. The third table row provides the number (out of 40) of
solved problem instances, that is, the number of instances for which a path of maximal length
could be found.4 The fourth and fifth table row provide average similarity scores obtained
by comparing the computed DNA sequences with the DNA target sequences. The average
scores in the fourth table row are obtained from the Needleman-Wunsch algorithm, which is
an algorithm for global alignment. In contrast, the average scores that are displayed in the
fifth table row are obtained by the application of the Smith-Waterman algorithm, which is an
algorithm for local alignment. Both algorithms were applied with the following parameters:
+1 for a match of oligonucleotides, -1 for a mismatch or a gap. Finally, the sixth table row

2Note that the oligonucleotides of such a spectrum might have different lengths.
3The database access keys for all DNA target sequences are provided in [3].
4Remember in this context that an optimal solution to the SBH problem does not necesarilly correspond

to a DNA sequence that is equal to the target sequence.

8

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

A
ve

ra
ge

 s
im

ila
rit

y
sc

or
e

(g
lo

ba
l)

Spectrum size

 LAG

 FB-LAG
 SM

 HSM
 OW

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500

S
ol

ve
d

in
st

an
ce

s

Spectrum size

 LAG

 FB-LAG
 SM

 HSM
 OW

(b)

Figure 2: Comparison of all existing constructive heuristics concerning (a) the global average
similarity score obtained, and (b) the number of optimally solved instances. The comparison
concerns the instances of BÃlażewicz et al. [3].

provides the average computation times for solving one instance (in seconds).
From the results that are displayed in Tables 2 to 5 we can draw the following conclusions.

First, the results of FB-LAG improve in general over the results of LAG. This means that it
is beneficial to allow the path construction in two directions (forward as well as backward).
Second, the results of the SM heuristic are clearly better than both the results of LAG and
the results of FB-LAG. However, the best results are obtained by the HSM heuristic, which is
a hybrid between FB-LAG and SM. Even for the largest problem instances, the HSM heuristic
produces sequences with very high similarity scores. In order to provide a comparison of all
existing constructive heuristics we added the OW heuristic to this comparsion. This compar-
ison is shown graphically in Figure 2. The results clearly show that HSM is currently the
best available constructive heuristic. Finally, in Figure 3 we present a comparison between
HSM and the best available metaheuristic approaches from the literature. The results are
surprising: HSM is clearly better than the 4 metaheuristic approaches EA1, EA4, TS, and
TS/SS. Furthermore, the results of HSM are—except for the problem instance of target se-
quence size 509—comparable to the results of the best metaheuristic approach EA2. Taking
into account the advantage in computation time (i.e., HSM needs not even half a second to
compute its results for the largest problem instances, while the meta-heuristics need between
several seconds and several minutes) the HSM heuristic seems to be a good choice even when
compared to metaheuristic approaches.

4 Conclusions and outlook to the future

In this work we have proposed new constructive heuristics for the problem of DNA sequencing
by hybridization. First, we extended an existing heuristic. Then, we proposed a conception-
ally new heuristic that is based on merging shorter DNA strands into bigger ones until a DNA
strand of sufficient size is obtained. Finally we proposed a hybrid between both types of con-
structive heuristics. The results of this hybrid method show that it is the best constructive
heuristic available to date. Furthermore, the results of our hybrid method are comparable
to the results of the state-of-the-art metaheuristic. Only concerning the biggest problem
instances our hybrid method is slight disadvantages. On the other side, our constructive
heuristic need less computation time.

9

Table 2: Results of LAG for the instances by BÃlażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 76.98 153.53 230.68 309.03 383.08
Solved instances 23 15 12 7 4
Average similarity score (global) 77.05 133.63 171.78 206.80 218.60
Average similarity score (local) 91.83 152.43 209.33 272.40 293.48
Average computation time (sec) 0.0035 0.016 0.037 0.076 0.13

Table 3: Results of FB-LAG for the instances by BÃlażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 78.38 155.70 234.95 310.03 386.20
Solved instances 32 17 18 7 1
Average similarity score (global) 99.78 153.03 225.45 241.00 221.83
Average similarity score (local) 102.38 174.15 253.63 284.58 290.13
Average computation time (sec) 0.0051 0.022 0.054 0.11 0.19

Table 4: Results of SM for the instances by BÃlażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 79.75 157.80 234.90 306.90 367.38
Solved instances 38 31 30 28 18
Average similarity score (global) 106.33 195.85 284.68 357.98 376.25
Average similarity score (local) 107.20 203.03 293.75 377.00 416.68
Average computation time (sec) 0.005 0.02 0.046 0.082 0.13

Table 5: Results of HSM for the instances by BÃlażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 80.00 159.68 239.90 319.38 398.88
Solved instances 40 36 39 35 31
Average similarity score (global) 108.40 204.78 300.00 396.90 469.55
Average similarity score (local) 108.70 206.85 305.35 399.85 479.88
Average computation time (sec) 0.012 0.048 0.11 0.21 0.35

10

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

A
ve

ra
ge

 s
im

ila
rit

y
sc

or
e

(g
lo

ba
l)

Spectrum size

 EA1
 EA2
 EA4

 TS
 TS/SS

 HSM

Figure 3: Comparison of HSM with all existing meta-heuristics except for EA3. The com-
parison is done concerning the global average similarity score obtained for the instances by
BÃlażewicz et al. [3]. (b)

We believe that our new constructive technique (as implemented by the SM heuristic)
can be used to develop metaheuristics that are superior to exisiting metaheuristics for DNA
sequencing by hybridization. As a first step, existing metaheuristics might be applied to
problem instances resulting from intermediate stages of the SM heuristic. This might improve
their results and save much computation time.

References

[1] W. Bains and G. C. Smith. A novel method for nucleid acid sequence determination.
Journal of Theoretical Biology, 135:303–307, 1988.

[2] J. BÃlażewicz, P. Formanowicz, F. Guinand, and M. Kasprzak. A heuristic managing
errors for DNA sequencing. Bioinformatics, 18(5):652–660, 2002.

[3] J. BÃlażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J. Weglarz. DNA
sequencing with positive and negative errors. Journal of Computational Biology, 6:113–
123, 1999.

[4] J. BÃlażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J. Weglarz. Tabu
search for DNA sequencing with false negatives and false positives. European Journal of
Operational Research, 125:257–265, 2000.

[5] J. BÃlażewicz, F. Glover, and M. Kasprzak. DNA sequencing—Tabu and scatter search
combined. INFORMS Journal on Computing, 16(3):232–240, 2004.

11

[6] J. BÃlażewicz, F. Glover, and M. Kasprzak. Evolutionary approaches to DNA sequencing
with errors. Annals of Operations Research, 138:67–78, 2005.

[7] J. BÃlażewicz and M. Kasprzak. Complexity of DNA sequencing by hybridization. Theo-
retical Computer Science, 290(3):1459–1473, 2003.

[8] J. BÃlażewicz, M. Kasprzak, and W. Kuroczycki. Hybrid genetic algorithm for DNA
sequencing with errors. Journal of Heuristics, 8:495–502, 2002.

[9] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[10] C. A. Brizuela, L. C. González, and H. J. Romero. An improved genetic algorithm for the
sequencing by hybridization problem. In G. R. Raidl, S. Cagnoni, J. Branke, D. Corne,
R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D.
Smith, and G. Squillero, editors, Proceedings of the EvoWorkshops – Applications of
Evolutionary Computing: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART,
and EvoSTOC, volume 3005 of Lecture Notes in Computer Science, pages 11–20. Springer
Verlag, Berlin, Germany, 2004.

[11] T. N. Bui and W. A. Youssef. An enhanced genetic algorithm for DNA sequencing by
hybridization with positive and negative errors. In K. Deb, R. Poli, W. Banzhaf, H.-G.
Beyer, E. K. Burke, P. J. Darwen, D. Dasgupta, D. Floreano, J. A. Foster, M. Harman,
O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and A. M. Tyrrell,
editors, Proceedings of the GECCO 2004 – Genetic and Evolutionary Computation Con-
ference, volume 3103 of Lecture Notes in Computer Science, pages 908–919. Springer
Verlag, Berlin, Germany, 2004.

[12] R. Drmanac, I. Labat, R. Brukner, and R. Crkvenjakov. Sequencing of megabase plus
DNA by hybridization: Theory of the method. Genomics, 4:114–128, 1989.

[13] T. A. Endo. Probabilistic nucleotide assembling method for sequencing by hybridization.
Bioinformatics, 20(14):2181–2188, 2004.

[14] E. R. Fernandes and C. C. Ribeiro. Using an adaptive memory strategy to improve a mul-
tistart heuristic for sequencing by hybridization. In S. E. Nikoletseas, editor, Proceedings
of WEA 2005 – 4th International Workshop on Experimental and Efficient Algorithms,
volume 3503 of Lecture Notes in Computer Science, pages 4–15. Springer Verlag, Berlin,
Germany, 2005.

[15] Y. P. Lysov IuP, V. L. Florentiev, A. A. Khorlin, K. R. Khrapko, and V. V. Shik. Deter-
mination of the nucleotide sequence of DNA using hybridization with oligonucleotides. a
new method. Doklady Akademii nauk SSSR, 303:1508–1511, 1988.

[16] P. A. Pevzner. l-tuple DNA sequencing: Computer analysis. Journal of Biomulecular
Structure and Dynamics, 7:63–73, 1989.

12

