
Optimal Probing Patterns for

Sequencing By Hybridization

Dekel Tsur∗

Abstract

Sequencing by Hybridization (SBH) is a method for reconstructing a DNA se-
quence based on its k-mer content. This content, called the spectrum of the se-
quence, can be obtained from hybridization with a universal DNA chip. The main
shortcoming of SBH is that it reliably reconstructs only sequences of length at most
square root of the size of the chip. Frieze et al. [9] showed that by using gapped
probes, SBH can reconstruct sequences with length that is linear in the size of the
chip. In this work we investigate the optimal placement of the gaps in the probes,
and give an algorithm for finding nearly optimal gap placement. Using our algo-
rithm, we obtain a chip design which is more efficient than the chip of Frieze et
al.

1 Introduction

Sequencing by Hybridization (SBH) [3, 16] is a method for sequencing DNA molecules.
In this method, the target sequence is hybridized to a universal chip containing all 4k

sequences of length k. For each k-long sequence (or probe) in the chip, if its reverse
complement appears in the target, then the two sequences will bind (or hybridize), and
this hybridization can be detected. Thus the hybridization experiment gives the set of
all k-long substrings of the target sequence. This set is called the spectrum of the target.

Currently, SBH is not considered competitive in comparison with standard gel-based
sequencing technologies. The main shortcoming of SBH is that several sequences can have
the same spectrum. Thus, if, for example, we wish to reconstruct at least 0.9 fraction
of the sequences of length n, then n must be less than roughly 2k [2, 8, 20, 23]. Several
methods for overcoming this limitation of SBH were proposed: interactive protocols [10,
17,25,28], using location information [1,4,5,7,11,23], using a known homologous string [18,
19, 27], and using restriction enzymes [24, 26].

Another method for enhancing SBH was proposed by Pevzner et al. [20]. They sug-
gested using gaps (or universal bases) in the probes that can match to any of the four
bases. For example, the probe AφφG matches the sequences TAAC, TACC, TAGC, etc.
A gapped probe can be implemented using a uniform mixture of the sequences that match
the probe with length the same as the probe. Frieze et al. [9] showed that for every k, there
is a chip with 4k probes that can reconstruct sequences of length Θ(4k). This result is

∗Department of Computer Science, Ben-Gurion University of the Negev.

1

optimal up to constants. For a fixed k, the chip of Frieze et al. consists of all probes of the

form Xdk/2e
(
φdk/2e−1X

)bk/2c
, where the X symbols represent definite bases (namely, each

X symbol is replaced by one of the four bases). Preparata and Upfal [22] considered the
same probing pattern of Frieze et al., and gave an improved algorithm for reconstructing
the sequence from its spectrum. This algorithm allows reconstructing longer sequences
than the algorithm of Frieze et al. An even more efficient algorithm was given in [12].

Heath et al. [13] showed that chips containing probes of the form X dk/2e
(
φdk/2e−1X

)bk/2c

and of the form
(
Xφdk/2e−1

)bk/2c
Xdk/2e are more efficient than the Frieze et al. chips.

A semi-degenerate base is a base that matches either A/T or G/C. Probes containing
semi-degenerate bases were studied in [20, 21].

In this paper we study the problem of designing optimal probing patterns. More
precisely, for a given length and number of definite bases, the goal is to find the probing
pattern that allows reconstructing longest sequences (it is desired to use probes with
small length and small number of definite bases, since each of these parameters affects
the number of molecules on the chip). We give an algorithm for this problem, and show
that the probing patterns obtained by this algorithm are about 3 times more efficient
than the probing patterns of Frieze et al. For simplicity, we shall restrict our study to a
single probing pattern consisting of definite bases and gaps. However, our method can
also be used for multiple probing patterns, and for probes containing semi-degenerate
bases. We note that our work is somewhat similar to the research on seed design for
similarity search (see, for example, [6, 14, 15]).

Due to lack of space, some details are omitted from this extended abstract.

2 Finding optimal probing patterns

We first give some definitions. A probing pattern is binary string whose first and last
characters are 1. The weight of a probing pattern P is the number of ones in P . The set
of probes that corresponds to a probing pattern P is the set of all strings that are obtained
by replacing every 0 in P by the character φ, and every 1 in P by one of the characters
from Σ = {A, C, G, T}. A probe Q appears in a string S if the string Q matches to a
substring of S, where the character φ is a don’t care symbol (namely, it matches to every
letter of Σ). The P -spectrum of a string S is the set of all probes from the set of probes
of P that appear in S.

As an example for the definitions above, consider the probing pattern P = 1101. The
set of probes corresponding to P is {AAφA, AAφC, AAφG, AAφT, ACφA, . . . , TTφT},
and the P -spectrum of the string ACGATAC is {ACφA, ATφC, CGφT, GAφA}.

Our goal is to find optimal probing patterns, so we first need to define the notion of
optimality. A string S is unambiguously reconstructable from its P -spectrum if there is
no S ′ 6= S whose P -spectrum is equal to the P -spectrum of S. For a probing pattern
P , the resolution power r(P, n) of P is the fraction of the strings of length n that are
unambiguously reconstructable from their P -spectra. The resolution power is a natu-
ral measure for comparison between different probing patterns. However, this measure
ignores the issue of the time complexity of reconstructing a string from its spectrum.
Therefore, instead of the resolution power, we will use the following measure: Let R
be a reconstruction algorithm, that is, R receives as input a P -spectrum of a string A

2

and outputs either the string A or ‘failure’. The success probability of algorithm R on a
probing pattern P , denoted sp(P, n, R), is the fraction of the strings of length n that are
reconstructed correctly from their P -spectra by algorithm R. The failure probability of
R is 1− sp(P, n, R).

In this extended abstract, we will concentrate on the reconstruction algorithm of
Preparata and Upfal [22], which will be denoted RPU. Our goal is to find a probing
pattern P of a given length and weight, that maximizes sp(P, n, RPU) for some given
n. Efficiently computing sp(P, n, RPU) seems a difficult task, so we will show how to
compute a value s̃p(P, n) that approximates sp(P, n, RPU). A probing pattern P OPT that
maximizes s̃p(P, n) is almost optimal with respect to sp(P, n, RPU). An alternative way
to approximate sp(P, n, RPU) is by Monte Carlo simulations (running algorithm RPU

on a large set of random strings and computing the fraction of the runs in which the
algorithm succeeds). However, this approach is much more computationally intensive
than our approach, which makes it infeasible if the number of probing patterns that
needs to be considered is large. Moreover, our approach gives insight on what makes a
probing pattern efficient.

In the following, we will use A = a1 · · ·an to denote the target string. Let P be some
probing pattern of length L and weight k, and let H be some constant. We assume that
the first and last L − 1 letters of A are known. Algorithm RPU reconstructs the first
n−H + 1 letters of A as follows (reconstructing the last H − 1 letters is performed in a
similar manner by reconstructing the sequence backwards):

1. Let s1, . . . , sL−1 be the first L− 1 letters of A.

2. For t = L, L + 1, . . . , n−H + 1 do:

(a) Let Bt be the set of all strings B of length H such that the string s1 · · · st−1B
is consistent with the P -spectrum of A (i.e., the P -spectrum of s1 · · · st−1B is
a subset of the P -spectrum of A).

(b) If all the strings in Bt have a common first letter a, then set st ← a. Otherwise,
return ‘failure’.

3. Return s1 · · · sn−H+1.

For the rest of this section, we show how to compute an approximation f̃p(P, n) = 1 −
s̃p(P, n) of the failure probability of algorithm RPU. Our analysis is similar to the analysis
of Heath and Preparata [12]. However, the analysis of Heath and Preparata is specific
to the probing pattern of Frieze et al. In particular, they omitted several cases from the
analysis which are negligible for that probing pattern. In our analysis, we consider more
cases. Moreover, we handle the time complexity for computing f̃p(P, n), which is not
done in [12].

It is easy to verify that if algorithm RPU does not return ‘failure’, then s1 · · · sn−H+1 =
a1 · · ·an−H+1. Moreover, the algorithm stops at some t if and only if there is a string
B ∈ Bt whose first letter is not equal to at. Such a string B will be called a bad extension.
The string at · · ·at+H−1 ∈ Bt is called the correct extension.

Suppose that the algorithm failed at some t, and let B = b1 · · · bH be the corresponding
bad extension. Denote B ′ = at−l+1 · · ·at−1b1 · · · bH . By definition, the H probes that

3

appear in B′ also appear in A. That is, for every i = 1, . . . , H, there is an index ri such
that B′[i + j − 1] = A[ri + j − 1] for all 1 ≤ j ≤ L for which P [j] = 1. The probe that
corresponds to the index ri is called supporting probe i. Supporting probe i is called a
fooling probe if ri 6= t − L + i. Fooling probe i is called close if ri ∈ {t − L + 2, . . . , t}.
Two supporting probes i and j will be called adjacent if rj − ri = j − i, and they will be
called overlapping if |rj − ri| < L and they are not adjacent. Fooling probe i is simple if
it is not close, and it is not adjacent or overlapping with another fooling probe.

Let J be the minimum index such that the probes J, J+1, . . . , H are pairwise adjacent.
Note that some of the supporting probes can appear more than once in A, and therefore,
there may be several ways to choose the values of r1, . . . , rH . We assume that these values
are chosen in a way that minimizes the number of fooling probes and the value of J .

2.1 Simple probes

We first assume that fooling probes 1, . . . , J − 1 are simple, and that probe J is a fooling
probe. We will analyze the case of non-simple fooling probes in Section 2.2. Let α denote
the probability that a random probe appears in the string A. Using the Chen-Stein
method, it is easy to show that the number of occurrences of a random probes in A is
approximated by a Poisson distribution with mean (n−L+1)/4k. In particular, we have
that α ≈ 1− e−(n−L+1)/4k

. We consider several cases:

Case 1 J = 1. In this case we have that ar1 · · ·ar1+L−1 = at−L+1 · · ·at−1b1. This event
is composed of L−1 character equalities in A (ar1+j−1 = at−L+j for j = 1, . . . , L−1), and
one character inequality (ar1+L−1 = b1 6= at). Thus, this event happens with probability
3/4L for fixed t and r1. Since there are approximately

(
n
2

)
ways to choose t and r1, it

follows that the contribution of case 1 to f̃p(P, n) is by

b1 =
n2

2
·

3

4L
.

Case 2 2 ≤ J ≤ L. In this case we have arJ
· · ·arJ+L−J−1 = at−L+J · · ·at−1, and

arJ+L−J 6= at. Moreover, from the minimality of J we have that arJ−1 6= at−L+J−1.
Which of the probes 1, . . . , J − 1 are fooling probes? If for a probe i, bi−L+j = at+i−L+j−1

for all j for which L − i + 1 ≤ j ≤ L and P [j] = 1 (in words, the characters sampled
by probe i are equal in the bad extension and the correct extension) then the probe is
not a fooling probe. Therefore, the number of fooling probes depends on the mismatches
between the strings at · · ·at+J−2 and b1 · · · bJ−1. Let C be a binary string of length J − 2,
where C[i] = 1 if at+i 6= bi+1, and C[i] = 0 otherwise. Let Ĉ = 0L−11C, namely, a string
with L − 1 zeros followed by one is concatenated to C (the leftmost 1 is due to the fact
that we always have at 6= b1). We say that the pattern P hits a string S of length L if
there is an index i such that P [i] = S[i] = 1. Thus, the number of fooling probes among
probes 1, . . . , J − 1 is equal to the number of substrings of Ĉ of length L that are hit by
P , which will be denoted hits(Ĉ).

Since probes J, J + 1, . . . are pairwise adjacent, we have that bi = arJ+L−j+i−1 for
i = 1, . . . , L− 1. Therefore, C[i] = 0 forces the equality at+i = arJ+L−J+i (which happens
with probability 1/4), and C[1] = 1 forces the inequality at+i 6= arJ+L−J+i (which happens

4

with probability 3/4). Thus, for fixed t, ri, and C, the probability that the equalities
between the symbols at+i and bi+1 are according to C is 3ones(C)/4J−2, where ones(C) is

the number of ones in C. It follows that the contribution of case 2 to f̃p(P, n) is
∑L

J=2 bJ ,
where

bJ = n2

(
3

4

)2
1

4L−J

∑

C∈{0,1}J−2

3ones(C)αhits(0L−11C)

4J−2

= n2 9

4L

∑

C∈{0,1}J−2

3ones(C)αhits(0L−11C).

Case 3 L + 1 ≤ J ≤ H − L + 2. This case is similar to case 2, so we omit the details.
The contribution of this case to f̃p(P, n) is

∑H−L+2
J=L+1 bJ , where

bJ = n2 9

4L

∑

C∈{0,1}J−2

3ones(C)αhits(0L−11C).

Case 4 J > H −L+2. The contribution of this case to f̃p(P, n) is negligible (we omit
the details).

We now handle the time complexity of computing b2, . . . , bH−L+2. A straightforward
computation of b2, . . . , bH−L+2 takes O(

∑H−L+2
J=2 LJ · 2J) = O(LH · 2H) time. We now

show a dynamic programming algorithm for computing b2, . . . , bH−L+2 in O(H · 2L) time.
For J = 2, . . . , H − L + 2 and a binary string C of length min(J − 2, L− 1), define

b(J, C) =
∑

C′∈{0,1}J−2:C′ is a suffix of C

3ones(C′)αhits(0L−11C′).

Clearly,

bJ = n2 9

4L

∑

C∈{0,1}min(J−2,L−1)

b(J, C),

and the following recurrence is used to compute b(J, C): For J < L + 2,

b(J, C) = b(J − 1, C[1]C[2] · · ·C[|C| − 1]) · 3C[|C|] · αhits(0L−|C|−11C),

and for J ≥ L + 2,

b(J, C) =
∑

x∈{0,1}

b(J − 1, xC[1]C[2] · · ·C[|C| − 1]) · 3C[|C|] · αhits(xC).

The computation of hits(0L−|C|−11C) or hits(xC) is done in O(1) time by computing a
table that stores the value of hits(C ′) for every string C ′ of length L.

2.2 Non-simple probes

Consider cases 2 and 3 above.

5

Case 2 Fix some 2 ≤ J ≤ L. In this extended abstract, we only handle the case when
some of the probes 1, . . . , J − 1 are adjacent to probe J , and the rest of the probes from
1, . . . , J − 1 are pairwise non-adjacent. Consider some fixed C ∈ {0, 1}J−2, and let IC be
the set of fooling probes that correspond to substrings of 0L−11C that are hit by P . We
say that a probe i ∈ IC samples position rJ− j if 1 ≤ j ≤ J− i and P [(J− i)+1− j] = 1,
or in other words, probe i contains the character arJ−j if it is adjacent to probe J .

By the definition of J , arJ−1 6= at−L+J−1. Therefore, the probes that sample position
rJ − 1 cannot be adjacent to probe J . Let I ′

C be the set of the probes in IC that do not
sample rJ−1. Let SC = {rJ− j1, . . . , rJ − j|SC |} be the set of all the positions rJ − j that
are sampled by at least one probe from I ′

C . If a probe i ∈ I ′
C is adjacent to probe J then

arJ−j = at−L+J−j for every position rJ − j that is sampled by probe i. For a target string
A, the equalities of the form arJ−j = at−L+J−j that are satisfied for positions rJ − j ∈ SC

can be represented by a binary string C ′ of length |SC |: C ′[l] = 1 if arJ−jl
6= at−L+J−jl

and
C ′[l] = 0 otherwise. The probes in I ′

C that are adjacent to probe J can be determined
from the string C ′: For each such probe, C ′[l] = 0 for every l such that position rJ − jl

is sampled by the probe. We define fooling(P, IC, C ′) to be the number of probes in I ′
C

that sample some position rJ − jl with C ′[l] = 1. To account for non-simple probes, we
change the definition of bJ from Section 2.1 to

bJ = n2 9

4L

∑

C∈{0,1}J−2

β(P, IC),

where

β(P, IC) = 3ones(C)α|IC−I′C| 1

4|SC |

∑

C′∈{0,1}|SC |

3ones(C′)αfooling(P,IC ,C′).

A naive computation of β(P, IC) is time consuming. To compute β(P, IC) more efficiently,
we use the following idea: Let S ⊆ SC be the set of all positions rJ − jl ∈ SC such that
the set of probes that sample rJ− jl is equal to the set of probes that sample rJ− j1. The
positions in S can be collapsed into a single positions, namely instead of representing a
configuration by a binary string C ′ of length SC , we can represent a configuration using
a string C ′′ of length 1 + |SC − S|. This can be repeated with the other positions in SC .

Another speedup follows from the following observation:

Claim 1. For two probing patterns P and P ′, if P [i] ≥ P ′[i] for all i, then β(P, IC) ≤
β(P ′, IC) for every set IC .

We use the claim as follows. When searching for the optimal probing pattern of length L
and weight k, we first compute β(P ′, IC) for all sets IC and for all probing patterns with
length L and weight at most k, in which all the ones are in first 8 positions of the pattern
or the last position. Then, when computing the failure probability for some pattern P ,
we choose the pattern P ′ whose prefix of length 8 is equal to the prefix of length 8 of P ,
and we use β(P ′, IC) instead of β(P, IC).

Case 3 In this we need to consider two sub-cases. The first case is when probe J is
a fooling probe. The analysis of this case is similar to the analysis of the previous case.
The second case is when probe J is not a fooling probe, namely rJ = t− L + J .

6

We have that b1 6= at and from the minimality of J , bJ−L 6= at−1+J−L. Recall that C
is a binary string of length J − 2, where C[i] = 1 if at+i 6= bi+1, and C[i] = 0 otherwise.
From the fact that rJ+i = t−L+J + i for i ≥ 0 it follows that C[J−L] = C[J−L+1] =
· · · = C[J − 2] = 0. From the minimality of J , C[J − L − 1] = 1 when J > L + 1.
Therefore, for J > L + 1, we add the term

b′J = 9n
∑

C

3ones(C)αhits(0L−11C)

to bJ , where the sum is over all strings C ∈ {0, 1}J−2 that satisfy C[J−L] = C[J−L+1] =
· · · = C[J − 2] = 0 and C[J − L− 1] = 1. For J = L + 1 we have that only one string C
satisfies the requirements (the string C = 0J−2) and we have the term

b′L+1 = 3n · 3ones(0J−2)αhits(0L−110J−2) = 3n · αk.

The case of probe J not being a fooling probe for J = L + 1 was called “Mode 1”
in [12].

3 Results

The s, r-probing pattern of Frieze et al. [9] is the pattern 1s(0s−11)r. For a fixed weight
k, the optimal s, r-probing pattern is the pattern with s = dk/2e (and r = bk/2c).
Denote this pattern by P FPU

k . We run the algorithm of Section 2 with k = 7, L =
15, 16, 17, and n = 4000. The best patterns found by the algorithm for L = 15, 16, 17 are
POPT

15,7 = 111001000001011, P OPT
16,7 = 1101000100001011, and P OPT

17,7 = 11010001000001011,
respectively. For each probing pattern, we ran algorithm RPU on 1000 random target
strings (with the probing patterns P FPU

7 , POPT
15,7 , POPT

16,7 , and POPT
17,7), and computed the

success rate of the algorithm. The results are given in Figures 1 and 2. The failure rate
of RPU for the pattern P OPT

16,7 (whose length is the same as the length of P FPU
7) is about

3 times smaller than the failure rate for P FPU
7 .

Recall that Mode 1 refers to the case when the bad extension differs from the correct
extension only in the first letter. The bad extension is supported by k fooling probes.
Using Poisson approximations, the probability that a failure due to Mode 1 occurs is
approximately 1− e−3(n−L+1)αk

. Note that this probability depends only on the length L
of the probing pattern, but not on the pattern itself. Therefore, e−3(n−19)αk

is an upper
bound on the success probability of all probing patterns of length at most 20. This upper
bound is shown as a gray solid line in Figures 1 and 2. An analysis of the failures show
that most (about two thirds) of the failures in the runs of P OPT

16,7 are due to Mode 1, while
only small part of the failures in the runs of P FPU

7 are due to Mode 1. Since Mode 1
failure is unavoidable, we have that the probing pattern P OPT

16,7 is very close to optimal.
It is clear from the analysis of Section 2 that longer probing patterns can achieve

smaller failure probability. Indeed, the pattern P OPT
17,7 performs better than P OPT

16,7 , and its
failure probability is very close to the lower bound of Mode 1 failure probability. Moreover,
while the pattern P OPT

15,7 is shorter than P FPU
7 , it has a smaller failure probability than

P FPU
7 (for n ≥ 2000).

7

Figure 1: Success probability of algorithm RPU on the patterns P FPU
7 (solid line) and

POPT
16,7 (dashed line) for various values of n. The gray solid line gives the probability

that Mode 1 does not occur, which is an upper bound on the success probability for any
pattern.

Figure 2: Success probability of algorithm RPU on the patterns P FPU
7 (solid line), P OPT

15,7

(dashed line), and P OPT
17,7 (dotted line) for various values of n.

8

References

[1] L. M. Adleman. Location sensitive sequencing of DNA. Technical report, University
of Southern California, 1998.

[2] R. Arratia, D. Martin, G. Reinert, and M. S. Waterman. Poisson process approxi-
mation for sequence repeats, and sequencing by hybridization. J. of Computational
Biology, 3(3):425–463, 1996.

[3] W. Bains and G. C. Smith. A novel method for nucleic acid sequence determination.
J. Theor. Biology, 135:303–307, 1988.

[4] A. Ben-Dor, I. Pe’er, R. Shamir, and R. Sharan. On the complexity of positional
sequencing by hybridization. J. Theor. Biology, 8(4):88–100, 2001.

[5] S. D. Broude, T. Sano, C. S. Smith, and C. R. Cantor. Enhanced DNA sequencing
by hybridization. Proc. Nat. Acad. Sci. USA, 91:3072–3076, 1994.

[6] J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in genomic
DNA. J. of Computer and System Sciences, 70(3):342–363, 2005.

[7] R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of megabase
plus DNA by hybridization: theory of the method. Genomics, 4:114–128, 1989.

[8] M. E. Dyer, A. M. Frieze, and S. Suen. The probability of unique solutions of
sequencing by hybridization. J. of Computational Biology, 1:105–110, 1994.

[9] A. Frieze, F. P. Preparata, and E. Upfal. Optimal reconstruction of a sequence from
its probes. J. of Computational Biology, 6:361–368, 1999.

[10] A. M. Frieze and B. V. Halldórsson. Optimal sequencing by hybridization in rounds.
J. of Computational Biology, 9(2):355–369, 2002.

[11] S. Hannenhalli, P. A. Pevzner, H. Lewis, and S. Skiena. Positional sequencing by
hybridization. Computer Applications in the Biosciences, 12:19–24, 1996.

[12] S. A. Heath and F. P. Preparata. Enhanced sequence reconstruction with DNA
microarray application. In COCOON ’01, pages 64–74, 2001.

[13] S. A. Heath, F. P. Preparata, and J. Young. Sequencing by hybridization using
direct and reverse cooperating spectra. J. of Computational Biology, 10(3/4):499–
508, 2003.

[14] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search. Discrete
Applied Mathematics, 138(3):253–263, 2004.

[15] G. Kucherov, L. Noé, and M. Roytberg. A unifying framework for seed sensitiv-
ity and its application to subset seeds. In Proc. 5th Workshop on Algorithms in
Bioinformatics (WABI ’05), pages 251–263, 2005.

9

[16] Y. Lysov, V. Floretiev, A. Khorlyn, K. Khrapko, V. Shick, and A. Mirzabekov.
DNA sequencing by hybridization with oligonucleotides. Dokl. Acad. Sci. USSR,
303:1508–1511, 1988.

[17] D. Margaritis and S. Skiena. Reconstructing strings from substrings in rounds. In
Proc. 36th Symposium on Foundation of Computer Science (FOCS 95), pages 613–
620, 1995.

[18] I. Pe’er, N. Arbili, and R. Shamir. A computational method for resequencing long
DNA targets by universal oligonucleotide arrays. Proc. National Academy of Science
USA, 99:15497–15500, 2002.

[19] I. Pe’er and R. Shamir. Spectrum alignment: Efficient resequencing by hybridization.
In Proc. 8th International Conference on Intelligent Systems in Molecular Biology
(ISMB ’00), pages 260–268, 2000.

[20] P. A. Pevzner, Y. P. Lysov, K. R. Khrapko, A. V. Belyavsky, V. L. Florentiev, and
A. D. Mirzabekov. Improved chips for sequencing by hybridization. J. Biomolecular
Structure and Dynamics, 9:399–410, 1991.

[21] F. P. Preparata and J. S. Oliver. DNA sequencing by hybridization using semi-
degenerate bases. J. of Computational Biology, 11(4):753–765, 2004.

[22] F. P. Preparata and E. Upfal. Sequencing by hybridization at the information theory
bound: an optimal algorithm. J. of Computational Biology, 7:621–630, 2000.

[23] R. Shamir and D. Tsur. Large scale sequencing by hybridization. J. of Computational
Biology, 9(2):413–428, 2002.

[24] S. Skiena and S. Snir. Restricting SBH ambiguity via restriction enzymes. In Proc.
2nd Workshop on Algorithms in Bioinformatics (WABI ’02), pages 404–417, 2002.

[25] S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. of Compu-
tational Biology, 2:333–353, 1995.

[26] S. Snir, E. Yeger-Lotem, B. Chor, and Z. Yakhini. Using restriction enzymes to
improve sequencing by hybridization. Technical Report CS-2002-14, Technion, Haifa,
Israel, 2002.

[27] D. Tsur. Bounds for resequencing by hybridization. In Proc. 3rd Workshop on
Algorithms in Bioinformatics (WABI ’03), LNCS 2812, pages 498–511, 2003.

[28] D. Tsur. Sequencing by hybridization in few rounds. In Proc. 11th European Sym-
posium on Algorithms (ESA ’03), LNCS 2832, pages 506–516, 2003.

10

