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Abstract. In this paper we reduce the question of validity of a first-order intu-
itionistic formula without equality to generating ground instances of this formula
and then checking whether the instances are deducible in a propositional intu-
itionistic tableaux calculus, provided that the propositional proof is compatible
with the way how the instances were generated. This result can be seen as a form
of the Herbrand theorem, and so it provides grounds for further theoretical inves-
tigation of computer-oriented intuitionistic calculi.

1 Introduction

In its classical formulation, Herbrand’s theorem [9] relates the question of validity of a
first-order formula in Skolem prenex forivix; ... VX (X1, . . ., Xn), With the question of
validity of one of itsHerbrand extensiong he formulavx; ... VX, @(X1, . . .,%s) is valid

if, and only if, A" @(ti 1, .. .,t n) is valid for somem > 1 and some collection of ground
Herbrand terms; j. Since every classical first-order formula can be reduced preserv-
ing satisfiability, through the Skolemisation, to this Skolem prenex form, Herbrand’s
theorem, essentially, provides a way to reduce the question of validity of first-order
formulae to propositional logic. Even though the required Herbrand extension and the
termst; ; cannot be computed recursively (for otherwise first-order logic would be de-
cidable), this result is particularly interesting for the automated reasoning community
as it gives birth to a number of highly efficient proof methods such as resolution [21]
and the inverse method [14]. Availability of similar results for other logics would also
be of significant interest.

Yet, there is no general Herbrand-like theorem for intuitionistic logic, where formu-
lae cannot in general be preprocessed into a prenex normal form, and the construc-
tion of a proof is often sensitive to the order in which the connectives and quanti-
fiers are analysed. The biggest obstacle is that the Skolemisation does not preserve
intuitionistic satisfiability. Consider, for example, formula&'xP(x) > 3y-P(y) and
Ix=P(x) D Jy-P(y). The first of them is not intuitionistically valid while the other one,
obviously, is; however, the Skolemised forms of the two coincide. These complications
lead to the existence of limited forms of Herbrand’s theorem for particular classes of
intuitionistic formulae only [15, 16, 3].

While classical Herbrand’s theorem is often proved semantically, it can also be ob-
tained as a direct consequence of Gentzen’s cut elimination theorem [7]: The question
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of the deducibility of a first-order formulae in Skolem prenex form can be reduced
to the deducibility of a Herbrand extension, and then the necessary Herbrand terms
can be extracted from the cut-free proof. In fact, a similar idea is used in free-variable
tableau methods [8], where quantifiers are dealt with separately from dealing with the
propositional proof skeleton. Since free-variable tableau techniques are also available
for intuitionistic logic [22, 23], one can hope to obtaleductiveforms of intuitionistic
Herbrand’s theorem, in which the question of the deducibility of intuitionistic first-order
formulae is reduced to the deducibility of a Herbrand extension.

We base the investigations presented in this paper on our earlier results in [10],
where we introduce a tableau-based calculus without explicit rules dealing with quan-
tifiers. Prior to proof search, we replace in a given formula bound variables with free
variables and parameters depending on the polarity of the bounding quantifiers. Then,
anadmissible substitutiosuggests the correct order of quantifier rule applications, and
a ground tableau proof of the given formula can be reconstructed, making it unneces-
sary to backtrack over different orders of quantifier rule applications. The soundness of
the resulting calculus is provided by ordering restrictions in the way similar to the one
considered in [20, 13, 22, 23] for calculi with quantifier rules.

The method presented in [10] is similar, to some extent, to the connection method
for intuitionistic logic pioneered by Wallen [25] and developed further in [18, 19, 11,
24]. The key difference is in the way how we define admissibility of substitutions.
In [25], the notion of admissibility is used to model proof search in a particular sequent
intuitionistic calculus, and, therefore, this calculus is tightly integrated into the method.
One has to search for an admissible substitution even for propositional intuitionistic
formulae, and it is not easy to replace the chosen sequent calculus with a different proof
system. In our approach, we try to separate dealing with quantifiers, impermutabilities,
and propositional intuitionistic reasoning. To do that, we use admissibility to check
eigenvariable conditions, we use a propositional proof system to check the deducibil-
ity, and, finally, we check that the propositional proof agrees with quantifiers. From the
implementation point of view, some research in this direction was done in [17], where
a tableau-like search for connections is implemented; however, they still use string uni-
fication in admissibility checks. Our admissibility checks are based on much simpler
term unification; the price we have to pay is more complex proof search on the ground
level.

It is this separation of propositional proof search and the search for admissible sub-
stitutions (with further check that the two agree), what allows us to formulate an analog
of Herbrand'’s theorem. We reduce the question of the deducibility of an intuitionis-
tic first-order formula to the deducibility of an analog of the Herbrand extension in an
intuitionistic propositional calculus. We solve the problems with impermutabilities by
imposing restrictions on derivations in the propositional calculus.

2 Preliminaries

We use the standard terminology of first-order logic without equality. The first order
language is constructed oversgnature Sigcontaining a finite (possibly empty) set
of functional symbols, and a finite (honempty) set of predicate symbols, the logical



connectives: the universal quantifier symigpthe existential quantifier symbadl and
the propositional connectives for the implicatian)( disjunction §), conjunction ),
and negation-().

As for the set of variables Vr, we assume that Vr consists of two disjoint countable
sets: mVr (original variables) and iVr (indexed variables) so thatVitVruiVr, where
the following holds: for anyw € mVr and any positive integeinde® k (k= 1,2,...),
iVr contains the indexed variabfe.

Additionally, we extend the signatugin the following way: for any natural num-
ber (ndey k (k= 1,2,...) and any symbos from Sig we add théndexed symbdis
to Sig denoting the constructed extension &9ig For examplelv, 2 o, and®V are
symbols of the extended signature. These left upper indices are used to distinguish
connectives in different copies of the same formula, stemming from multiplicities, to
encode impermutabilities.

The notions of terms, atomic formulae, literals, formulae, free and bound variables,
and scopes of quantifiers over b&ig andeSigare defined in the usual way [8] and
assumed to be known to the reader. We assume that no two quantifiers in any formula
have a common variable, which can be achieved by renaming bound variables.

If the formulaF’ is constructed by renaming (some or all) bound variables in a
formulaF, we callF’" avariantof F.

An equationis an unordered pair of ternsandt written ass~t. Assumel is a lit-
eral of the formR(ty, ..., th) (or =R(ty,. . .,ty)) andM is a literal of the fornR(sy, ..., Sn)

(or =R(sy,...,S), respectively), wher® is a predicate symbol artg, . ..ty S1,...,5
are terms. Thel(L,M) denotes the set of equatiofts ~ s1,...,th =~ S }. In this case,
L andM are said to bequal modul&(L,M) (L ~ M moduloZ(L,M)).

A substitution g, is a finite mapping from variables to terms denoteaby {x; —
t1,..., % — tn}, where variablesy, ..., x, are pairwise different ang # t; for all i =
1...n. For an expressioBx and a substitutiow, the result of the application af to
Exis denoted b¥EX- 0. For any seE of expressionss. - ¢ denotes the set obtained by
the application ob to every expression i&. If = is a set of (at least two) expressions
and=- o is a singleton, thew is called aunifier of =.

Expressions of the foriig or F@, whereg is a formula, are termesigned formu-
lag, andT andF are calledsigns A sequents a non-empty multiset of signed formulae
having no common bound variables in pairs. Capital Greek Iditehs. .. denote mul-
tisets of signed formulae, and we wril& (or FA) to express the fact that all formulae
in I (in A) are of the formT @ (of the formFy, respectively). We denote by(§f) the
multiset of allsign freeformulae obtained from the formulaelinby deleting signs. For
example, S{Tp,Fa}) = {p,a}-

We say that an occurrence of a subformgiia Y is

— positiveif @is y;

— positive(negativg if Y is of the form(X A &), (EAX), (X V&), (EVX), (XD &), VXE,
or Ix¢ andgis positive (negative) ig;

— negative(positive if Y is of the form(x D &) or —x and@is positive (negative) in
X

The polarity of an occurrence of a subformglén a sequenS= TI',FA is deter-
mined by the polarity of the corresponding occurrenceiofthe formula(A sf(Tl")) D



I TAFA

(A%
I, TAAB I FAAB
— (TA) ——— (FA)
rTATB rFA T.,FB
NTAVB LFAVB NFAVB
(V) ——— (FV1) ——— (FV2)
NTA I,TB I FA I FB
rTADB,F rLFAOB
® 1o P2 (ko
NTADB,FA T,TB,Fo L TAFB
r,T-AFo M F-A
— (T7) (F-)
r,T-AFA r,TA
I, TVXA(X) I, FYxXA(X)
T (Tv 7 (FY)
I, TVXA(X), TA(t) I, FA(Y)
I, T3IxA(X) I, FIxA(X)
(T3 L (FI)
I, TA(Y) I, FA(t)

No sequent contains more than one formula of the fB&min theT O andT - rules, the expres-
sion F@ might be empty (that is, the sequent contains no formula of the fagn In the rule
(Ax), Ais an atomic formula. In the rulé&v) and(T3) the variabley has no free occurrences in
the conclusions of the rule.

Fig. 1. Tableau calculu§ J for intuitionistic logic

(V sf(FA)): If a subformulag occurs positively in FA) or negatively in sfTT), we
say that the occurrence ofis positivein S, otherwise, the occurrence @fs negative

If an occurrence of a subformut&y is positive (or an occurrence aky is nega-
tive) in a formulag (or in a sequeng), we say that the quantifiéfx (respectivelyx)
is strongin the formulag (in the sequeng); otherwise, the quantifierx (respectively,
3x) is weakin the formulag (in the sequen$). If a quantifierQx, whereQisV or 3, is
strong (weak) in a sequesBt the variablex is calledstrong(weak in S.

An indexed variabl&v can be dree variableor parameterdepending orv being
weak or strong, respectively in a sequé&ntor technical reasons only, \fis a weak
(strong) variable, thetv (kv) denotes its free variable (parameter) ‘copy’.

A formula@is intuitionistically valid if, and only if, the sequeRip can be derived,
for example, in the calculuEJ adapted from [23], with the sole difference that we use
the tableau notation whereas [23] uses the sequential one.

3 CalculusTJ*

The results of this paper are based on our research published in [10]. In order to make
this paper self-contained, we repeat the necessary notions and definitions in this section.
Let pu(@) be the quantifier-free result of removing all quantifiers froniet for a
formula g fix the one-to-one functiom mappingstrongin @ variablex € mVr into the
parametefx € iVr and a weak ing variablex € mVr into the free variabléx € ivr



(mind the left upper indices!). We also assign left upper indices to the occurrences of
logical connectives im(@)—originally, the left upper index of all logical connectives
is 1; in the process of derivation other indices are also assigne@meention below.

For example, ifpis Vx(IyP(x,y) D P(x,X)), thenp(p) = P(x,y) D P(X,X), w(¢) =
WX 3YP(x, 1)1 OP (X, X)), andp(w(@) = P(*x.'y) 'O P, X).

We extend the definition qf andw to sequents and arbitrary sets of formulae in the
obvious way. (There is no ambiguity in the definitioncegince all the formulae of any
sequent have no common variables in pairs.)

In any tableaux-style calculus one has to deal with the necessity to apply quantifier
rules. A distinctive feature of our approach is that we remove quantifiers from given
formulae; and multiple quantifier rule applications can be modelled by means of the
(TCopying) rule defined below.

If YisaformulaQ is one ofV or 3, andQx@is its subformula, we calDxp a maxi-
mal Q-subformulaf Y if Qx@is not an immediate subformula of anotii@subformula
of Y and we callx a principal variable of Qx@. In addition, all variables bounded by
quantifiers withinQxg are calledatentin Qx@.

For example, bothp; = Vx=VyvzP(x,y,z) and @, = VyWzP(x,y,z) are maximal
V-subformulae ofy = Vx—VyvzP(x,y,z). The variables, y, andz are all latent in
@1, but onlyy andz are latent variables ig,. Note thatvzP(x,y,z) is not a maximal
subformula of.

Convention. If @is a maximalQ-subformula containing indexed variables, grid
an index, ther @ denotes the result of replacing the indicesathflogical connectives
and the indexes of alatentvariables inpwith j. For example, ifp= P(3x, y) A Q(3x),

j = 5, and botix andy are latent, thefRp = P(°x,%y) °A Q(°x). If, however, onlyy is
latent ing, then®g = P(3x, %y) °A Q(3x).

The notion of a maximaR-subformula is extended to the caseppf-images of
sequents in the following way: If a formu@xgis a maximalQ-subformula of a (usual)
sequens, then for evenyj € N, the formulal p(w(Qxg)) is a maximalQ-subformula of
Sw- Besides]x s called aprincipal variableof jL_l(Q)(QX(p)). Moreover, if a variabley
is latent inQx@, then for everyj € N, the variablé€y is latent in’ p(w(Qx@)).

Assume we are interested in the validity of a closed fornqula our calculusT J*,
proof search begins with the starting sequ8it = Fu(w(@)). The rules ofT J* are
given in Fig. 2. Note that the quantifier rules became redundant and are absent from the
calculus.

(Quasi)-proof. A sequent is said to belosedif it contains occurrences of both
TA and FA, whereA is an atomic formula. A sequent guasi-closedf it contains
occurrences of botiiA andFB, whereA andB are atomic formulae ardl ~ B modulo
>(A,B). Applying the above-mentioned rules ‘from top to bottom’ to a starting sequent
and afterwards to its ‘consequences’, and so on, we construct a soinédiexhce tree
for the starting sequent. An inference tree is callequasi-proof (proof) tree for a
starting sequenif all its leaves are quasi-closed (closed).
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No sequent contains more than one formula of the f&&nin the (T >) and(T-) rules, the
expressiorF@ might be empty (that is, the sequent contains no formula of the Fapjn
In the rule T Copying):
— @is a maximal-subformula ofS;
— lis anew index, that idgp does not have common latent variables with other formulae of the
sequent.

Fig. 2. CalculusT J*

3.1 Main Result for T J*

Let @ be a formula. By(i,@) we denote the-th occurrence of a logical connective
(which could be a propositional connective or a quantifierp imhen the formulap is
read from left to right. If(i, @) is the occurrence of a logical connectiwgwe also refer
to this occurrence a&. Moreover, in what follows, any occurrenge of a symbol®

in a formulaF is treated as a new symbol. Therefare,and;© are different symbols
which denote the same logical “operatian’’ We also refer to a bound variabidound
by the quantifiefQx as;x.

For a formulap, we write;® < j@" if, and only if, in@, the selected occurrenge’
of the logical connective’ is in the scope of the selected occurreficef ©. For exam-
ple, if @is (1— P 2/ (& 3V X)), thenaA < 1— and 2A < 3v. We extend the relatior
to bound variablesx <,y if the quantifierQy s in the scope of the quantifi€'x (recall
that no two quantifiers in any formula have a common variable, which can be achieved
by renaming bound variables). For example, for the formpita 1vx 23yP(x,y), we
have:x <qY.

We also extend the (transitive and irreflexive) relatiep to the case of indexed
logical connectives in the following way: for amgnd j and for any formulap, we have
ko <o 'j®’ if, and only if,® < ;©'. Similarly for indexed variabledx <, 'y if, and
only if, x <.

Let Tr be an inference tree in the calcullig® then the union of the relations,,
defined for all formulaep from Tr, is a transitive and irreflexive relation denoted by
=Tr-

Any substitutiono induces a (possibly empty) relatieg; as follows:y < X if,
and only if, there existg — t € o such thaix is a free variable, the termcontainsy,



andy is a parameter. For example, consider the substituien{ x — f(%y,v,%2)}.
Then,%y < x and'z < 1x (note that'x andlv are not in the relatior).

A substitutiono is admissiblgfor a formulag (for an inference tre@&r) if, and only
if, for everyx —t € g, x is a free variable, and the transitive closurgs of <o U <g
(<tre Of <71 U <) is an irreflexive relation.

LetTr be an inference tree for a starting sequggtin T J*. Suppos#&@l, - 'J-'r Or
is the sequence of propositional connectives occurrences in formulaeSfggwhich
are eliminated ifTr by applying inference rules, written in the rules applications order
leading to the construction dfr. Then the sequence of such rules applications is called
properfor Tr. We denote such sequencedoiyr('jll@l), e GTr(IerGr). (It must be clear
that there can exist more than one proper sequence for an inferenge jree

Further, an inference trér for Sy, is calledcompatiblewith the substitutioro if,

and only if, there exists a proper sequeu&e('jllcal), e OlTr(Ij’r ©r) for Tr such that for
any natural numbens andn, the propertym < n implies that the ordered pam@n,

'j";®m> does not belong teit .
The following result can easily be extracted from [10].

Proposition 1. A sequentg is deducible in the calculus TJ if, and only if, a quasi-
proof tree Tr forF(u(w(@))) can be constructed in the calculus T &nd there exists a
substitutiono such that (i) Tr o is a proof tree, (ii)o is an admissible substitution for
Tr, and (iii) the tree Tr is compatible witb.

4 Herbrand’s Theorem

This section develops the ideas suggested in [12]: Given a first-order intuitionistic for-

mula, we generate ground instances of this formula and then check whether the in-

stances are deducible in a propositional intuitionistic tableaux calculus, provided that

the propositional proof is compatible with the way how the instances were generated.
First, we introduce a specialisednvolution calculuswhich allows one to “gather”

the required multiple occurrences of subformulae. Then, we introduce the notion of a

Herbrand quasi-universand formulate the main result of this paper.

4.1 The Convolution Calculus

We reduce the deducibility of first-order sequents to the deducibility of quantifier-free
sequents. LeTr be an inference tree for a starting sequéifof the formFq) in the
calculusT J*. To every sequersqgin Tr, we assign the sequer(Sq), termed thespur

of Sq as follows.

—If Sgis a leaf of Tr, having the formTF,..., TR, FG, then 1(Sq is
TF,..., TR, FG.

— If Sqis not a leaf node and spurs are assigned to all its successors, weléSsjgn
to Sqin accordance with the rules of the convolution calculus given in Fig. 3: If a
rule R of the calculusT J* is applied to the sequeBigin Tr, the spur is assigned to
Sqas prescribed by the ruleR of the convolution calculus applied “bottom up”.
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The rule(] T—) assigns the spuf, T —1(A) A -1 (A), Foto the sequerit, T K—A Fa.

Fig. 3. Convolution Calculus

The result of the assignment of spurs to all sequen®iis called thespurred image
of Tr and is denoted by(Tr). The top node of(Tr) is denoted by(S), whereSis a
starting sequent. It should be clear th@r) consists of quantifier-free formulae only.
Moreover, any formula im(Tr) consists of the symbols of the original signature only.
Next, we are going to reduce the deducibility of sequences to the deducibility of
spurs in a tableau propositional calculus. Note that, since all the necessary multiple
occurrences of subformulae are introduced to the spur, the propositional calculus is
contraction free.
Let pTJ be the calculus obtained fromJ by deleting all its quantifier rules and
replacing the rulesT{ D) and (T—) with

NTADB,Fo M T-AF@
e (PTD) ——— (pT),
rFA T, TB,Fo r,FA
respectively. We extend the definitions of admissible substitutions and compatibility of
inference trees and substitutions to the casgTal.

The following properties of proof trees can be easily proved by induction on the
number of rules applications.

Proposition 2. Let Tr be an inference tree for a starting sequent S in the calcultis TJ
ando a substitution. Then the following properties hold wikTr), 1(S), andao:
1) ((Tr) and Tr contain the same variables;
2)1(Tr) is an inference tree in T'Jfor 1(S) (up to multiple applications of thEA);
3)1(Tr)-ois an inference tree in the calculus pTJ for the initial sequés} - o;
4)1(Tr)-ois a proof tree in pTJ if, and only if, Tio is a proof tree in T J;
5) o is admissible for(Tr) if, and only if,o is admissible for Tr;
6) 1(Tr) is compatible witto if, and only if, Tr is compatible witl.

Taking this proposition into account, we can reformulate Proposition 1 as follows.



Proposition 3. A sequentg is deducible in the calculus TJ if, and only if, a quasi-
proof tree Tr forF(p(w(@))) can be constructed in the calculus T, &nd there exists a
substitutiono such that (i) (Tr) - o is deducible in pTJ, (iip is an admissible substi-
tution for1(Tr), and (iii) the treet(Tr) is compatible witho.

4.2 Intuitionistic Herbrand Theorem

Now we introduce our modification of the notions of the multiplicity [2, 25] and the
Herbrand quasi-universe [12].

Let @ be a formula andpy,..., @, its variants. IfQ,@y,..., @, does not have any
bound and latent variables in pairs, thegm ... A @, (n > 0) is called avariant n-fold
A-duplication The formulagA ... A @is called aridentical n-foldA-duplicationof .

Herbrand extensionLet Y be a formula and a A-duplication of. The result of the
replacement ofp in Y with & is called aone-step Herbrand extensionfif one of the
following condition is satisfied:

(i) ois a maximal negativé-subformula ofp andg is a variant duplication a, which
has no common bound and latent variables with

(ii) @is a negatived-subformula (negative--subformula) ofy, andg is a identical
duplication ofe.

Finally, the result of a finite sequence of one-step extensions consequently applied to a
given formulay is called aHerbrand extensionf .

The notion of a Herbrand quasi-universe, introduced in [12] and modified here for
the intuitionistic case, plays the same role in our research as the usual Herbrand universe
in the case of classical logic. Unlike the “usual” Herbrand universe, the quasi-universe
also contains parameters in the case where strong variables occur in an initial sequent.

Herbrand quasi-universelLet S be a sequent. TheRQ(S) denotes the following
minimal set of terms called Blerbrand quasi-universd(i) every constant and every
parameter, occurring i, belong toHQ(S) (if there is no constant iBthen the special
constantcy € HQ(9)); (ii) if f is ak-ary functional symbol and ternts, ..., t €
HQ(S) thenf(ty, ..., t) € HQ(S).

Theorem 1. A sequenf@ is deducible in the calculus TJ if, and only if, there exist
a Herbrand extension HE) of @ and a substitutioro of terms from the Herbrand
quasi-universe H@FL(HE(@))) for all free variables in (HE(¢)) such that (i)o is an
admissible substitution for(fH E(@)) and (i) there exists a proof tree féiu(HE (@) -0

in pTJ, compatible witl.

Proof. Note that we can assume tliesubstitutes terms from a Herbrand quasi-universe
only, which is followed from the subformula property of the calculi given above and
from the fact that we can restrict ourselves with the consideration of substitutions being
simultaneous most general unifiers of certain sets of terms.



NecessityLet F@ be deducible in the calculuBJ. By Proposition 3, there exist a
quasi-proof tred r for the sequenEp(w(@)) in TJ* and a substitutiow such that (i)
((Tr)-ois a proof tree irpTJ, (ii) o is admissible foiTr, and (iii) 1 (Tr) is compatible
with o.

Consider the top sequer(F@) of 1(Tr). By definitions of the convolution calculus
and a Herbrand extension, there exists a sequence of one-step Herbrand extensions such
that the sequentgF@) andFu(HE(@)) coincide. This proves both items (i) and (ii).

Sufficiency As in the case on the necessity, it follows from Proposition 3 and the
properties of the convolution calculus aHEE ().

We demonstrate our approach on a series of examples.

Example 1 (Thedle of admissibility).
Let @ be the following formulavx3yP(x,y) D Jy'VXP(X,y’). All Herbrand exten-
sions§y (= HE(o)) of @ are of the form:

(v 3 tyiP(txe, yn) A AY B3 TPt yi)) © 3 LYY IXP(EX LY.

The Herbrand quasi-universe for this case IQHHE(u(®)) =
{cotyr,....'yi,'x}. It easy to see that the substitution; of the form
{1 =¥y =Ly ixi—co: j #i} transformsFp(&y) into the sequent

FU(&k) - 0i = F(P(Co, y1) A ... AP(Co, yim1) AP(IX yi)) AP(Co,tyia) A ..
AP(Co, yk)) D P(PX M),

which is deducible ipTJ.

However,q; is not admissible fo since we havex; <g, yi, 1y <¢ X, X <,
%, andly; <; 1y, and thereforelx; <, o, 1%;. As a consequence of TheorenFlpis
not deducible in inT J. NoteF@is also not classically deducible as shown in [12].

Next, consider the formul@= 3yvxP(x,y) D ¥X'3yP(X,y). Then similarly to the
case considered aboveE (@) = 3 1y;V 1x;P(*x1,ty;) D V X3 yP(IX 1Y) and the
substitutiono = {1x; 1 X1y 1y}, is admissible foH E(@). Moreover, the sequent
FU(HE(@)) - o is deducible inpT J and any its proof tree is compatible with Thus,
the sequenk@is deducible inTl J, i.e. it is intuitionistically valid.

Example 2 (Thedale of multiplicities) Let @ be the formuladyvxB(x,y) > 3z(B(a,z) A
B(b,z)) andSbe the sequerkg, wherex, y, andz are variablesa andb are constants;
andB is a predicate symbol. We show thgis an intuitionistically valid formula.

If we do not introduce copies of subformulae, there is no substitatioha term
fromHQ(W(S)) = {a,b,y} for the free variable such thaHQ(l(S)) - o is deducible in
pTJ Therefore, Theorem 1 is not applicable.

If, however, we consider a Herbrand extensiomof

HE (@) = 3y(V 'xB(*x,y) AV 2xB(%x,y)) D 3z(B(a,z) A B(b,2)),

and substitutiors = {1x — a,2x — b,z y}, then the seque®HQ(U(S)) - o is de-
ducible inpTJ. Obviously,o substitutes terms frotil Q(W(HE())) and it is admis-
sible fory(HE(@)). Moreover, any proof tree fdfu(HE(@)) - 0 in pT Jis compatible
with a. By Theorem 1, we come to the conclusion that the seqgt@iié deducible in
TJand, thereforegis an intuitionistically valid formula.



Example 3 (Thedle of compatibility).Let us consider the formula = (-VxP(x) D
Jy-P(y)). There exists no Herbrand extensionpdiut @itself. ThereforeQH(HE(@))
= {cp,x} and the only possible admissible substitutma- {y — x} transforms~p(@)
into the sequer= F-P(x) D —P(x), which is deducible irpT J.

The only possible proof tre€r for Sin pT Jis as follows.

1. F=P(x) D =P(x) (starting sequent)
2. T-P(x),F-P(x) (from (1), by (F D)-rule)
3. T-P(x), TP(x) (from (2), by (F—)-rule)

4. TP(x),FP(x) (from (3), by(T—)-rule: Axiom)

Notice thatTr is not compatible witto: the (F D)-rule application (the 2nd step)
precedes to th€T D)-rule application (the 3rd step), although the compatibility con-
dition requires the inverse order of rule applications. Since there is no other way to
construct a proof tree fd, we conclude that the sequdfp is not deducible ifT J, as
implied by Theorem 1, and the formugais not intuitionistically valid.

5 Conclusions and Future Work

Herbrand’s theorem in intuitionistic context is inherently complex. The ultimate goal
is to be able to compute given a first-order formgla series of its ground Herbrand
extensionsp;, @, ... in such a way that

@is intuitionistically valid if, and only if, for some > 1,<Apn is intuitionistically 1)
valid.

To our best knowledge, nobody yet succeeded to do that for arbitrary intuitionistic for-
mulae. We are aware of three approaches to this problem.

Classical Herbrand extension for fragments of intuitionistic logic. For certain
fragments of intuitionistic logic, (1) still holds for the classical Skolemisation and
Herbrand extensions. The simplest case of intuitionistic formulae in prenex form
is considered in [15, 3] while [15, 16] gives a full characterisation of intuitionistic
formulae for which the classical Skolemisation and Herbrand extensions do the job.
As the example considered in the Introduction shows, the classical Skolemisation
does not work for all intuitionistic formulae.

Reduction to a different language. Alternatively, one can reduce validity of first-
order formulae to validity of formulae in logics “between” propositional and first-
order. This approach was pursued by Fitting through predicate abstractions [5] and
by Baaz&lemhoff through existence predicates and the eSkolemisation [1]. The
main disadvantage of such an approach for the automated reasoning community is
the necessity to develop specialised provers for these “intermediate” logics.



Constraining proofs. Finally, one can extract an admissible substitution and a Her-
brand extension from a sequent, tableau, or connection method proof [20, 13, 22,
23,25,18, 19,11, 24]. Then a given formula is valid if, and only if, there exists a
sequent, tableau, or connection method (remsiricted proof for the Herbrand
extension. Note that the resulting Herbrand extension and the proof search process
are tightly integrated with each other, and it is not possible, say, to use Herbrand
extension from one approach and proof method from the other.

This papers extends further the third approach. Our main contribution is that we
separate the generation of ground instances from checking the propositional deducibil-
ity and these two processes are only connected through compatibility check. We can
formulate the notion of compatibility with a substitutisegardlessof the particular
set of tableaux inference rules used. For example, one can intrgduca variant of
Gentzen’s intuitionistic calculusJ, which differs fromLJ, in only that it lacks quan-
tifier rules and the thinning rule. The definition of an inference tree compatible with
a substitution can be easily transferred_tb Then, the following proposition can be
proved. (We use tableau form bj.)

Proposition 4. A sequenF@is deducible in the calculus LJ if, and only if, there exist
a Herbrand extension HE) of @ and a substitutioro of terms from the Herbrand
quasi-universe H@FU(HE(@))) for all free variables in (HE(¢)) such that (i)o is an
admissible substitution for(fH E(@)) and (i) there exists a proof tree féu(HE (@) -0

in pLJ, compatible witlo.

This result suggests the following conjecture.

Conjecture 1.For any propositional tableau intuitionistic calculp€ it is possible to
formulate the notion of compatibility with a substitution such that any fornqia
intuitionistically valid if, and only if, there are an Herbrand extenditi(¢) of ¢ and
a substitutiono of terms from the Herbrand quasi-univeld®(Fu(HE(¢g))) for all
free variables inu(HE(@)) such that ()u(HE()) - o is intuitionistically valid as a
propositional formula, (ii)o is an admissible substitution f@(HE(¢)), and (iii) for
FU(HE(@)) - 0, there exists a proof tree {pC compatible witho.

We are planning to further explore this conjecture especially for contraction-free [4],
multi-succedent [24], and labelled [6] tableau proof systems.
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