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Abstract. In this paper we reduce the question of validity of a first-order intu-
itionistic formula without equality to generating ground instances of this formula
and then checking whether the instances are deducible in a propositional intu-
itionistic tableaux calculus, provided that the propositional proof is compatible
with the way how the instances were generated. This result can be seen as a form
of the Herbrand theorem, and so it provides grounds for further theoretical inves-
tigation of computer-oriented intuitionistic calculi.

1 Introduction

In its classical formulation, Herbrand’s theorem [9] relates the question of validity of a
first-order formula in Skolem prenex form,∀x1 . . .∀xn φ(x1, . . . ,xn), with the question of
validity of one of itsHerbrand extensions: The formula∀x1 . . .∀xn φ(x1, . . . ,xn) is valid
if, and only if,

∧m
i φ(ti,1, . . . , ti,n) is valid for somem≥ 1 and some collection of ground

Herbrand termsti, j . Since every classical first-order formula can be reduced preserv-
ing satisfiability, through the Skolemisation, to this Skolem prenex form, Herbrand’s
theorem, essentially, provides a way to reduce the question of validity of first-order
formulae to propositional logic. Even though the required Herbrand extension and the
termsti, j cannot be computed recursively (for otherwise first-order logic would be de-
cidable), this result is particularly interesting for the automated reasoning community
as it gives birth to a number of highly efficient proof methods such as resolution [21]
and the inverse method [14]. Availability of similar results for other logics would also
be of significant interest.

Yet, there is no general Herbrand-like theorem for intuitionistic logic, where formu-
lae cannot in general be preprocessed into a prenex normal form, and the construc-
tion of a proof is often sensitive to the order in which the connectives and quanti-
fiers are analysed. The biggest obstacle is that the Skolemisation does not preserve
intuitionistic satisfiability. Consider, for example, formulae¬∀xP(x) ⊃ ∃y¬P(y) and
∃x¬P(x)⊃∃y¬P(y). The first of them is not intuitionistically valid while the other one,
obviously, is; however, the Skolemised forms of the two coincide. These complications
lead to the existence of limited forms of Herbrand’s theorem for particular classes of
intuitionistic formulae only [15, 16, 3].

While classical Herbrand’s theorem is often proved semantically, it can also be ob-
tained as a direct consequence of Gentzen’s cut elimination theorem [7]: The question
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of the deducibility of a first-order formulae in Skolem prenex form can be reduced
to the deducibility of a Herbrand extension, and then the necessary Herbrand terms
can be extracted from the cut-free proof. In fact, a similar idea is used in free-variable
tableau methods [8], where quantifiers are dealt with separately from dealing with the
propositional proof skeleton. Since free-variable tableau techniques are also available
for intuitionistic logic [22, 23], one can hope to obtaindeductiveforms of intuitionistic
Herbrand’s theorem, in which the question of the deducibility of intuitionistic first-order
formulae is reduced to the deducibility of a Herbrand extension.

We base the investigations presented in this paper on our earlier results in [10],
where we introduce a tableau-based calculus without explicit rules dealing with quan-
tifiers. Prior to proof search, we replace in a given formula bound variables with free
variables and parameters depending on the polarity of the bounding quantifiers. Then,
anadmissible substitutionsuggests the correct order of quantifier rule applications, and
a ground tableau proof of the given formula can be reconstructed, making it unneces-
sary to backtrack over different orders of quantifier rule applications. The soundness of
the resulting calculus is provided by ordering restrictions in the way similar to the one
considered in [20, 13, 22, 23] for calculi with quantifier rules.

The method presented in [10] is similar, to some extent, to the connection method
for intuitionistic logic pioneered by Wallen [25] and developed further in [18, 19, 11,
24]. The key difference is in the way how we define admissibility of substitutions.
In [25], the notion of admissibility is used to model proof search in a particular sequent
intuitionistic calculus, and, therefore, this calculus is tightly integrated into the method.
One has to search for an admissible substitution even for propositional intuitionistic
formulae, and it is not easy to replace the chosen sequent calculus with a different proof
system. In our approach, we try to separate dealing with quantifiers, impermutabilities,
and propositional intuitionistic reasoning. To do that, we use admissibility to check
eigenvariable conditions, we use a propositional proof system to check the deducibil-
ity, and, finally, we check that the propositional proof agrees with quantifiers. From the
implementation point of view, some research in this direction was done in [17], where
a tableau-like search for connections is implemented; however, they still use string uni-
fication in admissibility checks. Our admissibility checks are based on much simpler
term unification; the price we have to pay is more complex proof search on the ground
level.

It is this separation of propositional proof search and the search for admissible sub-
stitutions (with further check that the two agree), what allows us to formulate an analog
of Herbrand’s theorem. We reduce the question of the deducibility of an intuitionis-
tic first-order formula to the deducibility of an analog of the Herbrand extension in an
intuitionistic propositional calculus. We solve the problems with impermutabilities by
imposing restrictions on derivations in the propositional calculus.

2 Preliminaries

We use the standard terminology of first-order logic without equality. The first order
language is constructed over asignature Sigcontaining a finite (possibly empty) set
of functional symbols, and a finite (nonempty) set of predicate symbols, the logical



connectives: the universal quantifier symbol∀, the existential quantifier symbol∃, and
the propositional connectives for the implication (⊃), disjunction (∨), conjunction (∧),
and negation (¬).

As for the set of variables Vr, we assume that Vr consists of two disjoint countable
sets: mVr (original variables) and iVr (indexed variables) so that Vr= mVr∪ iVr, where
the following holds: for anyv∈ mVr and any positive integer (index) k (k = 1,2, . . .),
iVr contains the indexed variablekv.

Additionally, we extend the signatureSigin the following way: for any natural num-
ber (index) k (k = 1,2, . . .) and any symbols from Sig, we add theindexed symbolks
to Sig denoting the constructed extension byeSig. For example,1∨, 3 ⊃, and5∀ are
symbols of the extended signature. These left upper indices are used to distinguish
connectives in different copies of the same formula, stemming from multiplicities, to
encode impermutabilities.

The notions of terms, atomic formulae, literals, formulae, free and bound variables,
and scopes of quantifiers over bothSig andeSigare defined in the usual way [8] and
assumed to be known to the reader. We assume that no two quantifiers in any formula
have a common variable, which can be achieved by renaming bound variables.

If the formula F ′ is constructed by renaming (some or all) bound variables in a
formulaF , we callF ′ avariantof F .

An equationis an unordered pair of termssandt written ass≈ t. AssumeL is a lit-
eral of the formR(t1, . . . , tn) (or¬R(t1, . . . , tn)) andM is a literal of the formR(s1, . . . ,sn)
(or ¬R(s1, . . . ,sn), respectively), whereR is a predicate symbol andt1, . . . , tn,s1, . . . ,sn

are terms. ThenΣ(L,M) denotes the set of equations{t1 ≈ s1, . . . , tn ≈ sn}. In this case,
L andM are said to beequal moduloΣ(L,M) (L≈M moduloΣ(L,M)).

A substitution, σ, is a finite mapping from variables to terms denoted byσ = {x1 7→
t1, . . . ,xn 7→ tn}, where variablesx1, . . . ,xn are pairwise different andxi 6= ti for all i =
1. . .n. For an expressionEx and a substitutionσ, the result of the application ofσ to
Ex is denoted byEx·σ. For any setΞ of expressions,Ξ ·σ denotes the set obtained by
the application ofσ to every expression inΞ. If Ξ is a set of (at least two) expressions
andΞ ·σ is a singleton, thenσ is called aunifier of Ξ.

Expressions of the formTφ or Fφ, whereφ is a formula, are termedsigned formu-
lae, andT andF are calledsigns. A sequentis a non-empty multiset of signed formulae
having no common bound variables in pairs. Capital Greek lettersΓ, ∆,. . . denote mul-
tisets of signed formulae, and we writeTΓ (or F∆) to express the fact that all formulae
in Γ (in ∆) are of the formTφ (of the formFψ, respectively). We denote by sf(Γ) the
multiset of allsign freeformulae obtained from the formulae inΓ by deleting signs. For
example, sf({Tp,Fq}) = {p,q}.

We say that an occurrence of a subformulaφ in ψ is

– positiveif φ is ψ;
– positive(negative) if ψ is of the form(χ∧ξ), (ξ∧χ), (χ∨ξ), (ξ∨χ), (χ⊃ ξ), ∀xξ,

or ∃xξ andφ is positive (negative) inξ;
– negative(positive) if ψ is of the form(χ ⊃ ξ) or ¬χ andφ is positive (negative) in

χ.

The polarity of an occurrence of a subformulaφ in a sequentS= TΓ,F∆ is deter-
mined by the polarity of the corresponding occurrence ofφ in the formula(

∧
sf(TΓ))⊃



Γ,TA,FA
(Ax)

Γ,TA∧B

Γ,TA,TB
(T∧)

Γ,FA∧B

Γ,FA Γ,FB
(F∧)

Γ,TA∨B

Γ,TA Γ,TB
(T∨)

Γ,FA∨B

Γ,FA
(F∨1)

Γ,FA∨B

Γ,FB
(F∨2)

Γ,TA⊃ B,Fφ
Γ,TA⊃ B,FA Γ,TB,Fφ

(T ⊃)
Γ,FA⊃ B

Γ,TA,FB
(F⊃)

Γ,T¬A,Fφ
Γ,T¬A,FA

(T¬)
Γ,F¬A

Γ,TA
(F¬)

Γ,T∀xA(x)

Γ,T∀xA(x),TA(t)
(T∀)

Γ,F∀xA(x)

Γ,FA(y)
(F∀)

Γ,T∃xA(x)

Γ,TA(y)
(T∃)

Γ,F∃xA(x)

Γ,FA(t)
(F∃)

No sequent contains more than one formula of the formFξ. In theT ⊃ andT¬ rules, the expres-
sion Fφ might be empty (that is, the sequent contains no formula of the formFψ). In the rule
(Ax), A is an atomic formula. In the rules(F∀) and(T∃) the variabley has no free occurrences in
the conclusions of the rule.

Fig. 1.Tableau calculusTJ for intuitionistic logic

(
∨

sf(F∆)): If a subformulaφ occurs positively in sf(F∆) or negatively in sf(TΓ), we
say that the occurrence ofφ is positivein S, otherwise, the occurrence ofφ is negative.

If an occurrence of a subformula∀xψ is positive (or an occurrence of∃xψ is nega-
tive) in a formulaφ (or in a sequentS), we say that the quantifier∀x (respectively,∃x)
is strongin the formulaφ (in the sequentS); otherwise, the quantifier∀x (respectively,
∃x) is weakin the formulaφ (in the sequentS). If a quantifierQx, whereQ is ∀ or ∃, is
strong (weak) in a sequentS, the variablex is calledstrong(weak) in S.

An indexed variablekv can be afree variableor parameterdepending onv being
weak or strong, respectively in a sequentS. For technical reasons only, ifv is a weak
(strong) variable, thenkv (kv) denotes its free variable (parameter) ‘copy’.

A formula φ is intuitionistically valid if, and only if, the sequentFφ can be derived,
for example, in the calculusTJ adapted from [23], with the sole difference that we use
the tableau notation whereas [23] uses the sequential one.

3 CalculusTJ∗

The results of this paper are based on our research published in [10]. In order to make
this paper self-contained, we repeat the necessary notions and definitions in this section.

Let µ(φ) be the quantifier-free result of removing all quantifiers fromφ. Let for a
formulaφ fix the one-to-one functionω mappingstrongin φ variablex ∈ mVr into the
parameter1x ∈ iVr and a weak inφ variablex ∈ mVr into the free variable1x ∈ iVr



(mind the left upper indices!). We also assign left upper indices to the occurrences of
logical connectives inω(φ)—originally, the left upper index of all logical connectives
is 1; in the process of derivation other indices are also assigned, seeConventionbelow.

For example, ifφ is ∀x(∃yP(x,y) ⊃ P(x,x)), thenµ(φ) = P(x,y) ⊃ P(x,x), ω(φ) =
1∀1x(1∃1yP(1x,1y)1⊃P(1x,1x)), andµ(ω(φ)) = P(1x,1y)1⊃P(1x,1x).

We extend the definition ofµ andω to sequents and arbitrary sets of formulae in the
obvious way. (There is no ambiguity in the definition ofω since all the formulae of any
sequent have no common variables in pairs.)

In any tableaux-style calculus one has to deal with the necessity to apply quantifier
rules. A distinctive feature of our approach is that we remove quantifiers from given
formulae; and multiple quantifier rule applications can be modelled by means of the
(TCopying) rule defined below.

If ψ is a formula,Q is one of∀ or ∃, andQxφ is its subformula, we callQxφ amaxi-
mal Q-subformulaof ψ if Qxφ is not an immediate subformula of anotherQ-subformula
of ψ and we callx a principal variableof Qxφ. In addition, all variables bounded by
quantifiers withinQxφ are calledlatent in Qxφ.

For example, bothφ1 = ∀x¬∀y∀zP(x,y,z) and φ2 = ∀y∀zP(x,y,z) are maximal
∀-subformulae ofψ = ∀x¬∀y∀zP(x,y,z). The variablesx, y, and z are all latent in
φ1, but onlyy andz are latent variables inφ2. Note that∀zP(x,y,z) is not a maximal
subformula ofψ.

Convention. If φ is a maximalQ-subformula containing indexed variables, andj is
an index, thenjφ denotes the result of replacing the indices ofall logical connectives
and the indexes of alllatentvariables inφ with j. For example, ifφ = P(3x,1y) 3∧Q(3x),
j = 5, and bothx andy are latent, then5φ = P(5x,5y) 5∧Q(5x). If, however, onlyy is
latent inφ, then5φ = P(3x,5y) 5∧Q(3x).

The notion of a maximalQ-subformula is extended to the case ofµω-images of
sequents in the following way: If a formulaQxφ is a maximalQ-subformula of a (usual)
sequentS, then for everyj ∈N, the formulajµ(ω(Qxφ)) is a maximalQ-subformula of
Sµω. Besides,jx is called aprincipal variableof jµ(ω(Qxφ)). Moreover, if a variabley
is latent inQxφ, then for everyj ∈ N, the variablejy is latent in jµ(ω(Qxφ)).

Assume we are interested in the validity of a closed formulaφ. In our calculusTJ∗,
proof search begins with the starting sequentSµω = Fµ(ω(φ)). The rules ofTJ∗ are
given in Fig. 2. Note that the quantifier rules became redundant and are absent from the
calculus.

(Quasi)-proof. A sequent is said to beclosed if it contains occurrences of both
TA and FA, whereA is an atomic formula. A sequent isquasi-closedif it contains
occurrences of bothTA andFB, whereA andB are atomic formulae andA≈ B modulo
Σ(A,B). Applying the above-mentioned rules ‘from top to bottom’ to a starting sequent
and afterwards to its ‘consequences’, and so on, we construct a so-calledinference tree
for the starting sequent. An inference tree is called aquasi-proof (proof) tree for a
starting sequentif all its leaves are quasi-closed (closed).



Γ,TA k∧B

Γ,TA,TB
(T∧)

Γ,FA k∧B

Γ,FA Γ,FB
(F∧)

Γ,TA k∨B

Γ,TA Γ,TB
(T∨)

Γ,FA k∨B

Γ,FA
(F∨1)

Γ,FA k∨B

Γ,FB
(F∨2)

Γ,TA k ⊃ B,Fφ

Γ,TA k ⊃ B,FA Γ,TB,Fφ
(T ⊃)

Γ,FA k ⊃ B

Γ,TA,FB
(F⊃)

Γ,T k¬A,Fφ

Γ,T k¬A,FA
(T¬)

Γ,F k¬A

Γ,TA
(F¬)

Γ,Tφ

Γ,Tφ,T l φ
(TCopying)

No sequent contains more than one formula of the formFξ. In the (T ⊃) and(T¬) rules, the
expressionFφ might be empty (that is, the sequent contains no formula of the formFψ).
In the rule (TCopying):

– φ is a maximal∀-subformula ofSµω;
– l is a new index, that is,l φ does not have common latent variables with other formulae of the

sequent.

Fig. 2.CalculusTJ∗

3.1 Main Result for TJ∗

Let φ be a formula. By(i,φ) we denote thei-th occurrence of a logical connective
(which could be a propositional connective or a quantifier) inφ when the formulaφ is
read from left to right. If(i,φ) is the occurrence of a logical connective�, we also refer
to this occurrence asi�. Moreover, in what follows, any occurrencei� of a symbol�
in a formulaF is treated as a new symbol. Therefore,i� and j� are different symbols
which denote the same logical “operation”�. We also refer to a bound variablex bound
by the quantifieriQx asix.

For a formulaφ, we writei�≺φ j�′ if, and only if, inφ, the selected occurrencej�′

of the logical connective�′ is in the scope of the selected occurrencei� of�. For exam-
ple, if φ is (1¬ ψ 2∧ (ξ 3∨ χ)), then2∧≺φ 1¬ and 2∧≺φ 3∨. We extend the relation≺φ
to bound variables:x≺φ y if the quantifierQy is in the scope of the quantifierQ′x (recall
that no two quantifiers in any formula have a common variable, which can be achieved
by renaming bound variables). For example, for the formulaφ = 1∀x 2∃yP(x,y), we
have:x≺φ y.

We also extend the (transitive and irreflexive) relation≺φ to the case of indexed
logical connectives in the following way: for anyi and j and for any formulaφ, we have
k
i � ≺φ

l
j�′ if, and only if, i� ≺φ j�′. Similarly for indexed variables,ix≺φ

jy if, and
only if, x≺φ y.

Let Tr be an inference tree in the calculusTJ∗ then the union of the relations≺φ,
defined for all formulaeφ from Tr, is a transitive and irreflexive relation denoted by
≺Tr.

Any substitutionσ induces a (possibly empty) relation�σ as follows:y�σ x if,
and only if, there existsx 7→ t ∈ σ such thatx is a free variable, the termt containsy,



andy is a parameter. For example, consider the substitutionσ = {1x 7→ f (2y,1v,1z)}.
Then,2y�σ

1x and1z�σ
1x (note that1x and1v are not in the relation�σ).

A substitutionσ is admissiblefor a formulaφ (for an inference treeTr) if, and only
if, for everyx 7→ t ∈ σ, x is a free variable, and the transitive closureCφ,σ of ≺φ ∪ �σ
(CTr,σ of ≺Tr ∪�σ) is an irreflexive relation.

Let Tr be an inference tree for a starting sequentSµω in TJ∗. Supposel1j1�1, . . ., lr
jr�r

is the sequence of propositional connectives occurrences in formulae fromSµω, which
are eliminated inTr by applying inference rules, written in the rules applications order
leading to the construction ofTr. Then the sequence of such rules applications is called
properfor Tr. We denote such sequence byαTr(

l1
j1
�1), . . ., αTr(

lr
jr�r). (It must be clear

that there can exist more than one proper sequence for an inference treeTr.)
Further, an inference treeTr for Sµω is calledcompatiblewith the substitutionσ if,

and only if, there exists a proper sequenceαTr(
l1
j1
�1), . . ., αTr(

lr
jr�r) for Tr such that for

any natural numbersm andn, the propertym< n implies that the ordered pair〈lnjn�n,
lm
jm�m〉 does not belong toCTr,σ.

The following result can easily be extracted from [10].

Proposition 1. A sequentFφ is deducible in the calculus TJ if, and only if, a quasi-
proof tree Tr forF(µ(ω(φ))) can be constructed in the calculus TJ∗, and there exists a
substitutionσ such that (i) Tr·σ is a proof tree, (ii)σ is an admissible substitution for
Tr, and (iii) the tree Tr is compatible withσ.

4 Herbrand’s Theorem

This section develops the ideas suggested in [12]: Given a first-order intuitionistic for-
mula, we generate ground instances of this formula and then check whether the in-
stances are deducible in a propositional intuitionistic tableaux calculus, provided that
the propositional proof is compatible with the way how the instances were generated.

First, we introduce a specialisedconvolution calculus, which allows one to “gather”
the required multiple occurrences of subformulae. Then, we introduce the notion of a
Herbrand quasi-universeand formulate the main result of this paper.

4.1 The Convolution Calculus

We reduce the deducibility of first-order sequents to the deducibility of quantifier-free
sequents. LetTr be an inference tree for a starting sequentS (of the formFφ) in the
calculusTJ∗. To every sequentSqin Tr, we assign the sequentι(Sq), termed thespur
of Sq, as follows.

– If Sq is a leaf of Tr, having the form TF1, . . . ,TFn,FG, then ι(Sq) is
TF1, . . . ,TFn,FG.

– If Sqis not a leaf node and spurs are assigned to all its successors, we assignι(Sq)
to Sqin accordance with the rules of the convolution calculus given in Fig. 3: If a
ruleRof the calculusTJ∗ is applied to the sequentSqin Tr, the spur is assigned to
Sqas prescribed by the rule↑ Rof the convolution calculus applied “bottom up”.



Γ,Tι(A)∧ ι(B)

Γ,Tι(A),Tι(B)
(↑ T∧)

Γ,Fι(A)∧ ι(B)

Γ,Fι(A) Γ,Fι(B)
(↑ F∧)

Γ,Tι(A)∨ ι(B)

Γ,Tι(A) Γ,Tι(B)
(↑ T∨)

Γ,Fι(A)∨ ι(B)

Γ,Fι(A)
(↑ F∨1)

Γ,Fι(A)∨B

Γ,Fι(B)
(↑ F∨2)

Γ,T(ι(A)⊃ ι(B))∧ (ι(A)⊃ ι(B)),Fι(φ)

Γ,Tι(A)⊃ ι(B),Fι(A) Γ,Tι(B),Fι(φ)
(↑ T ⊃)

Γ,Fι(A)⊃ ι(B)

Γ,Tι(A),Fι(B)
(↑ F⊃)

Γ,T ¬ι(A)∧¬ι(A),Fφ

Γ,T¬ι(A),Fι(A)
(↑ T¬)

Γ,F¬ι(A)

Γ,Tι(A)
(↑ F¬)

Γ,Tι(φ)∧ l ι(φ)

Γ,Tι(φ),T l ι(φ)
(↑ TCopying)

The rule(↑ T¬) assigns the spurΓ,T ¬ι(A)∧¬ι(A),Fφ to the sequentΓ,T k¬A,Fφ.

Fig. 3.Convolution Calculus

The result of the assignment of spurs to all sequents inTr is called thespurred image
of Tr and is denoted byι(Tr). The top node ofι(Tr) is denoted byι(S), whereS is a
starting sequent. It should be clear thatι(Tr) consists of quantifier-free formulae only.
Moreover, any formula inι(Tr) consists of the symbols of the original signature only.

Next, we are going to reduce the deducibility of sequences to the deducibility of
spurs in a tableau propositional calculus. Note that, since all the necessary multiple
occurrences of subformulae are introduced to the spur, the propositional calculus is
contraction free.

Let pTJ be the calculus obtained fromTJ by deleting all its quantifier rules and
replacing the rules (T ⊃) and (T¬) with

Γ,TA⊃ B,Fφ
Γ,FA Γ,TB,Fφ

(pT ⊃)
Γ,T¬A,Fφ

Γ,FA
(pT¬) ,

respectively. We extend the definitions of admissible substitutions and compatibility of
inference trees and substitutions to the case ofpTJ.

The following properties of proof trees can be easily proved by induction on the
number of rules applications.

Proposition 2. Let Tr be an inference tree for a starting sequent S in the calculus TJ∗

andσ a substitution. Then the following properties hold w.r.t.ι(Tr), ι(S), andσ:
1) ι(Tr) and Tr contain the same variables;
2) ι(Tr) is an inference tree in TJ∗ for ι(S) (up to multiple applications of theF∧);
3) ι(Tr) ·σ is an inference tree in the calculus pTJ for the initial sequentι(S) ·σ;
4) ι(Tr) ·σ is a proof tree in pTJ if, and only if, Tr·σ is a proof tree in TJ∗;
5) σ is admissible forι(Tr) if, and only if,σ is admissible for Tr;
6) ι(Tr) is compatible withσ if, and only if, Tr is compatible withσ.

Taking this proposition into account, we can reformulate Proposition 1 as follows.



Proposition 3. A sequentFφ is deducible in the calculus TJ if, and only if, a quasi-
proof tree Tr forF(µ(ω(φ))) can be constructed in the calculus TJ∗, and there exists a
substitutionσ such that (i)ι(Tr) ·σ is deducible in pTJ, (ii)σ is an admissible substi-
tution for ι(Tr), and (iii) the treeι(Tr) is compatible withσ.

4.2 Intuitionistic Herbrand Theorem

Now we introduce our modification of the notions of the multiplicity [2, 25] and the
Herbrand quasi-universe [12].

Let φ be a formula andφ1, . . . ,φn its variants. Ifφ,φ1, . . . ,φn does not have any
bound and latent variables in pairs, thenφ1∧ . . .∧φn (n > 0) is called avariant n-fold
∧-duplication. The formulaφ∧ . . .∧φ is called anidentical n-fold∧-duplicationof φ.

Herbrand extension.Let ψ be a formula andξ a∧-duplication ofφ. The result of the
replacement ofφ in ψ with ξ is called aone-step Herbrand extension ofψ if one of the
following condition is satisfied:

(i) φ is a maximal negative∀-subformula ofψ andξ is a variant duplication ofφ, which
has no common bound and latent variables withψ;

(ii) φ is a negative⊃-subformula (negative¬-subformula) ofψ, andξ is a identical
duplication ofφ.

Finally, the result of a finite sequence of one-step extensions consequently applied to a
given formulaψ is called aHerbrand extensionof ψ.

The notion of a Herbrand quasi-universe, introduced in [12] and modified here for
the intuitionistic case, plays the same role in our research as the usual Herbrand universe
in the case of classical logic. Unlike the “usual” Herbrand universe, the quasi-universe
also contains parameters in the case where strong variables occur in an initial sequent.

Herbrand quasi-universe.Let S be a sequent. ThenHQ(S) denotes the following
minimal set of terms called aHerbrand quasi-universe: (i) every constant and every
parameter, occurring inS, belong toHQ(S) (if there is no constant inS then the special
constantc0 ∈ HQ(S)); (ii) if f is a k-ary functional symbol and termst1, . . ., tk ∈
HQ(S) then f (t1, . . ., tk) ∈ HQ(S).

Theorem 1. A sequentFφ is deducible in the calculus TJ if, and only if, there exist
a Herbrand extension HE(φ) of φ and a substitutionσ of terms from the Herbrand
quasi-universe HQ(Fµ(HE(φ))) for all free variables in µ(HE(φ)) such that (i)σ is an
admissible substitution for µ(HE(φ)) and (ii) there exists a proof tree forFµ(HE(φ)) ·σ
in pTJ, compatible withσ.

Proof. Note that we can assume thatσ substitutes terms from a Herbrand quasi-universe
only, which is followed from the subformula property of the calculi given above and
from the fact that we can restrict ourselves with the consideration of substitutions being
simultaneous most general unifiers of certain sets of terms.



Necessity. Let Fφ be deducible in the calculusTJ. By Proposition 3, there exist a
quasi-proof treeTr for the sequentFµ(ω(φ)) in TJ∗ and a substitutionσ such that (i)
ι(Tr) ·σ is a proof tree inpTJ, (ii) σ is admissible forTr, and (iii) ι(Tr) is compatible
with σ.

Consider the top sequentι(Fφ) of ι(Tr). By definitions of the convolution calculus
and a Herbrand extension, there exists a sequence of one-step Herbrand extensions such
that the sequentsι(Fφ) andFµ(HE(φ)) coincide. This proves both items (i) and (ii).

Sufficiency. As in the case on the necessity, it follows from Proposition 3 and the
properties of the convolution calculus andHE(φ).

We demonstrate our approach on a series of examples.

Example 1 (The r̂ole of admissibility).
Let φ be the following formula∀x∃yP(x,y) ⊃ ∃y′∀x′P(x′,y′). All Herbrand exten-

sionsξk (= HE(φ)) of φ are of the form:

(∀ 1x1∃ 1y1P(1x1,
1y1)∧ . . .∧∀ 1xk∃ 1ykP(1xk,

1yk))⊃ ∃ 1y′∀ 1x′P(1x′,1y′).

The Herbrand quasi-universe for this case isQH(HE(µ(φ))) =
{c0,

1y1, . . . ,
1yk,

1x′}. It easy to see that the substitutionσi of the form
{1xi 7→1 x′,1y′ 7→1 yi ,

j x 7→ c0 : j 6= i} transformsFµ(ξk) into the sequent

Fµ(ξk) ·σi = F(P(c0,
1y1)∧ . . .∧P(c0,

1yi−1)∧P(1x′,1yi))∧P(c0,
1yi+1)∧ . . .

∧P(c0,
1yk))⊃ P(1x′,1yi),

which is deducible inpTJ.
However,σi is not admissible forξk since we have1xi ≺ξk

1yi , 1y′ ≺ξk
1x′, 1x′ �σi

1xi , and1yi �σi
1y′, and therefore,1xi Cξk,σi

1xi . As a consequence of Theorem 1,Fφ is
not deducible in inTJ. NoteFφ is also not classically deducible as shown in [12].

Next, consider the formulaφ = ∃y∀xP(x,y)⊃ ∀x′∃y′P(x′,y′). Then similarly to the
case considered above,HE(φ) = ∃ 1y1∀ 1x1P(1x1,

1y1) ⊃ ∀ 1x′∃ 1y′P(1x′,1y′) and the
substitutionσ = {1x1 7→1 x′,1y′ 7→1 y1}, is admissible forHE(φ). Moreover, the sequent
Fµ(HE(φ)) ·σ is deducible inpTJ and any its proof tree is compatible withσ. Thus,
the sequentFφ is deducible inTJ, i.e. it is intuitionistically valid.

Example 2 (The r̂ole of multiplicities).Let φ be the formula∃y∀xB(x,y)⊃ ∃z(B(a,z)∧
B(b,z)) andSbe the sequentFφ, wherex, y, andz are variables;a andb are constants;
andB is a predicate symbol. We show thatφ is an intuitionistically valid formula.

If we do not introduce copies of subformulae, there is no substitutionσ of a term
from HQ(µ(S)) = {a,b,y} for the free variablex such thatHQ(µ(S)) ·σ is deducible in
pTJ. Therefore, Theorem 1 is not applicable.

If, however, we consider a Herbrand extension ofφ,

HE(φ) = ∃y(∀ 1xB(1x,y)∧∀ 2xB(2x,y))⊃ ∃z(B(a,z)∧B(b,z)),

and substitutionσ = {1x 7→ a,2x 7→ b,z 7→ y}, then the sequentFHQ(µ(S)) ·σ is de-
ducible in pTJ. Obviously,σ substitutes terms fromHQ(µ(HE(φ))) and it is admis-
sible forµ(HE(φ)). Moreover, any proof tree forFµ(HE(φ)) ·σ in pTJ is compatible
with σ. By Theorem 1, we come to the conclusion that the sequentFφ is deducible in
TJ and, therefore,φ is an intuitionistically valid formula.



Example 3 (The r̂ole of compatibility).Let us consider the formulaφ = (¬∀xP(x) ⊃
∃y¬P(y)). There exists no Herbrand extension ofφ butφ itself. Therefore,QH(HE(φ))
= {c0,x} and the only possible admissible substitutionσ = {y 7→ x} transformsFµ(φ)
into the sequentS= F¬P(x)⊃ ¬P(x), which is deducible inpTJ.

The only possible proof treeTr for S in pTJ is as follows.

1. F¬P(x)⊃ ¬P(x) (starting sequent)

2. T¬P(x),F¬P(x) (from (1), by(F⊃)-rule)

3. T¬P(x),TP(x) (from (2), by(F¬)-rule)

4. TP(x),FP(x) (from (3), by(T¬)-rule: Axiom)

Notice thatTr is not compatible withσ: the (F ⊃)-rule application (the 2nd step)
precedes to the(T ⊃)-rule application (the 3rd step), although the compatibility con-
dition requires the inverse order of rule applications. Since there is no other way to
construct a proof tree forS, we conclude that the sequentFφ is not deducible inTJ, as
implied by Theorem 1, and the formulaφ is not intuitionistically valid.

5 Conclusions and Future Work

Herbrand’s theorem in intuitionistic context is inherently complex. The ultimate goal
is to be able to compute given a first-order formulaφ a series of its ground Herbrand
extensionŝφ1, φ̂2, . . . in such a way that

φ is intuitionistically valid if, and only if, for somen≥ 1, φ̂n is intuitionistically
valid.

(1)

To our best knowledge, nobody yet succeeded to do that for arbitrary intuitionistic for-
mulae. We are aware of three approaches to this problem.

Classical Herbrand extension for fragments of intuitionistic logic. For certain
fragments of intuitionistic logic, (1) still holds for the classical Skolemisation and
Herbrand extensions. The simplest case of intuitionistic formulae in prenex form
is considered in [15, 3] while [15, 16] gives a full characterisation of intuitionistic
formulae for which the classical Skolemisation and Herbrand extensions do the job.
As the example considered in the Introduction shows, the classical Skolemisation
does not work for all intuitionistic formulae.

Reduction to a different language.Alternatively, one can reduce validity of first-
order formulae to validity of formulae in logics “between” propositional and first-
order. This approach was pursued by Fitting through predicate abstractions [5] and
by Baaz&Iemhoff through existence predicates and the eSkolemisation [1]. The
main disadvantage of such an approach for the automated reasoning community is
the necessity to develop specialised provers for these “intermediate” logics.



Constraining proofs. Finally, one can extract an admissible substitution and a Her-
brand extension from a sequent, tableau, or connection method proof [20, 13, 22,
23, 25, 18, 19, 11, 24]. Then a given formula is valid if, and only if, there exists a
sequent, tableau, or connection method (resp.)restrictedproof for the Herbrand
extension. Note that the resulting Herbrand extension and the proof search process
are tightly integrated with each other, and it is not possible, say, to use Herbrand
extension from one approach and proof method from the other.

This papers extends further the third approach. Our main contribution is that we
separate the generation of ground instances from checking the propositional deducibil-
ity and these two processes are only connected through compatibility check. We can
formulate the notion of compatibility with a substitutionregardlessof the particular
set of tableaux inference rules used. For example, one can introducepLJ, a variant of
Gentzen’s intuitionistic calculusLJ, which differs fromLJ, in only that it lacks quan-
tifier rules and the thinning rule. The definition of an inference tree compatible with
a substitution can be easily transferred toLJ. Then, the following proposition can be
proved. (We use tableau form ofLJ.)

Proposition 4. A sequentFφ is deducible in the calculus LJ if, and only if, there exist
a Herbrand extension HE(φ) of φ and a substitutionσ of terms from the Herbrand
quasi-universe HQ(Fµ(HE(φ))) for all free variables in µ(HE(φ)) such that (i)σ is an
admissible substitution for µ(HE(φ)) and (ii) there exists a proof tree forFµ(HE(φ)) ·σ
in pLJ, compatible withσ.

This result suggests the following conjecture.

Conjecture 1.For any propositional tableau intuitionistic calculuspC it is possible to
formulate the notion of compatibility with a substitution such that any formulaφ is
intuitionistically valid if, and only if, there are an Herbrand extensionHE(φ) of φ and
a substitutionσ of terms from the Herbrand quasi-universeHQ(Fµ(HE(φ))) for all
free variables inµ(HE(φ)) such that (i)µ(HE(φ)) · σ is intuitionistically valid as a
propositional formula, (ii)σ is an admissible substitution forµ(HE(φ)), and (iii) for
Fµ(HE(φ)) ·σ, there exists a proof tree inpC compatible withσ.

We are planning to further explore this conjecture especially for contraction-free [4],
multi-succedent [24], and labelled [6] tableau proof systems.
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R. Hähnle, and J. Posegga, editors,Handbook of Tableau Methods, pages 255–296. Kluwer,
Dordrecht, 1999.

25. L. Wallen.Automated Deduction in Nonclassical Logics. MIT Press: Cambridge, 1990.


