Skip to main content

Automated Reasoning About Metric and Topology

  • Conference paper
Logics in Artificial Intelligence (JELIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4160))

Included in the following conference series:

Abstract

In this paper we compare two approaches to automated reasoning about metric and topology in the framework of the logic \(\mathcal{MT}\) introduced in [10]. \(\mathcal{MT}\)-formulas are built from set variablesp 1,p 2,... (for arbitrary subsets of a metric space) using the Booleans ∧, ∨, →, and ¬, the distance operators∃ < a and ∃  ≤ a, for \(a\in {\mathbb Q}^{> 0}\), and the topological interior and closure operators I and C. Intended models for this logic are of the form \(\mathfrak I=(\Delta,d,p_{1}^{\mathfrak I},p_{2}^{\mathfrak I},\dots)\) where (Δ,d) is a metric space and \(p_{i}^{\mathfrak I} \subseteq \Delta\). The extension \(\varphi^{\mathfrak I} \subseteq \Delta\) of an \(\mathcal{MT}\)-formula ϕ in \(\mathfrak I\) is defined inductively in the usual way, with I and C being interpreted as the interior and closure operators induced by the metric, and \((\exists^{<a}\varphi)^{\mathfrak I} = \{ x \in \Delta \mid \exists y\in \varphi^{\mathfrak I}\ d(x,y)<a \}\). In other words, \((\mathbf{I}\varphi)^{\mathfrak I}\) is the interior of \(\varphi^{\mathfrak I}\), \((\exists^{<a}\varphi)^{\mathfrak I}\) is the open a-neighbourhood of \(\varphi^{\mathfrak I}\), and \((\exists^{\le a}\varphi)^{\mathfrak I}\) is the closed one. A formula ϕ is satisfiable if there is a model \({\mathfrak I}\) such that \(\varphi^{\mathfrak I} \ne \emptyset\); ϕ is valid if ¬ϕ is not satisfiable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal of Artificial Intelligence Tools 15(1) (2005)

    Google Scholar 

  2. Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38–52. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Letz, R., Stenz, G.: DCTP - A disconnection calculus theorem prover - system abstract. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 381–385. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.M.: Encoding two-valued nonclassical logics in classical logic. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1403–1485. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  5. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Comm. 15(2-3), 91–110 (2002)

    MATH  Google Scholar 

  6. Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the first-order translation of modal formulae. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 412–426. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Schulz, S.: E: A Brainiac theorem prover. AI Comm. 15(2/3), 111–126 (2002)

    MATH  Google Scholar 

  8. Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)

    Google Scholar 

  9. Wolter, F., Zakharyaschev, M.: Reasoning about distances. In: Proc. of IJCAI 2003, pp. 1275–1280. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  10. Wolter, F., Zakharyaschev, M.: A logic for metric and topology. Journal of Symbolic Logic 70, 795–828 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hustadt, U., Tishkovsky, D., Wolter, F., Zakharyaschev, M. (2006). Automated Reasoning About Metric and Topology. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds) Logics in Artificial Intelligence. JELIA 2006. Lecture Notes in Computer Science(), vol 4160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853886_44

Download citation

  • DOI: https://doi.org/10.1007/11853886_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39625-3

  • Online ISBN: 978-3-540-39627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics