Skip to main content

Online Marking of Defective Cells by Random Flies

  • Conference paper
Cellular Automata (ACRI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4173))

Included in the following conference series:

Abstract

Defect-tolerance, the ability to overcome unreliability of components in a system, will be essential to realize computers built by nanotechnology. This paper presents a novel approach to defect-tolerance for nanocomputers that are based on self-timed cellular automata, a type of asynchronous cellular automaton. According to this approach, defective cells are detected and isolated by configurations of random flies that move around in cellular space. We show that detection and isolation are realized in an on-line manner, i.e., while computation takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durbeck, L.J.K., Macias, N.J.: The cell matrix: an architecture for nanocomputing. Nanotechnology 12, 217–230 (2001)

    Article  Google Scholar 

  2. Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-Tolerance in Nanocomputers: A Cellular Array Approach. IEEE Transaction on Nanotechnology 3(1), 187–201 (2004)

    Article  Google Scholar 

  3. Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14, 469–485 (2003)

    Article  Google Scholar 

  4. Isokawa, T., Abo, F., Peper, F., Kamiura, N., Matsui, N.: Defect-tolerant computing based on an asynchronous cellular automaton. In: Proceeding of SICE Annual Conference, pp. 1746–1749 (2003)

    Google Scholar 

  5. Isokawa, T., Kowada, S., Takada, Y., Peper, F., Kamiura, N., Matsui, N.: On Defect-Tolerance in Cellular Computers. In: Proceedings of the 5th IEEE Conference on Nanotechnology, TU–P7–5 (2005)

    Google Scholar 

  6. Mange, D., Sipper, M., Marchal, P.: Embryonic electronics. BioSystems 51(3), 145–152 (1999)

    Article  Google Scholar 

  7. Stauffer, A., Mange, D., Tempesti, G., Teuscher, C.: A Self-Repairing and Self-Healing Electronic Watch: The BioWatch. In: Liu, Y., Tanaka, K., Iwata, M., Higuchi, T., Yasunaga, M. (eds.) ICES 2001. LNCS, vol. 2210, pp. 112–127. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Bradley, D., Ortega-Sanchez, C., Tyrrell, A.: Embryonics + Immunotronics: A Bio-Inspired Approach to Fault Tolerance. In: The Second NASA/DoD workshop on Evolvable Hardware, pp. 205–224 (2000)

    Google Scholar 

  9. Canham, R., Tyrrell, A.: A Multi-layered Immune System for Hardware Fault Tolerance within an Embryonic Array. In: Proc. 1st International Conference on Artificial Immune Systems, pp. 3–11 (2002)

    Google Scholar 

  10. Ueno, R.: Universal reversible logic elements with 3 inputs, 3 outputs and 2 states. Master’s thesis, Hiroshima University (in Japanese) (2006)

    Google Scholar 

  11. Peper, F., Isokawa, T., Kouda, N., Matsui, N.: Self-timed cellular automata and their computational ability. Future Generation Computer Systems 18(7), 893–904 (2002)

    Article  MATH  Google Scholar 

  12. Lee, J., Peper, F., Adachi, S., Morita, K., Mashiko, S.: Reversible computation in asynchronous cellular automata. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) Third International Conference on Unconventional Models of Computation 2002, pp. 220–229. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Isokawa, T., Kowada, S., Peper, F., Kamiura, N., Matsui, N. (2006). Online Marking of Defective Cells by Random Flies. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds) Cellular Automata. ACRI 2006. Lecture Notes in Computer Science, vol 4173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861201_41

Download citation

  • DOI: https://doi.org/10.1007/11861201_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40929-8

  • Online ISBN: 978-3-540-40932-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics