Skip to main content

A Modification of the Level Set Speed Function to Bridge Gaps in Data

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

Level set methods have become very popular means for image segmentation in recent years. But due to the data-driven nature of this methods it is difficult to segment objects that appear unconnected within the data. We propose a modification of the level set speed function to add a “bridging force” that allows the level set to leap over gaps in the data and segment an object despite artifacts or partial occlusions. We propose two methods to define such a force, one model-based and one image-based. Both versions have been applied to a series of test images, as well as medical data and photographic images to show their adequacy for image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Gharbieh, R., Gustavsson, T., Kaminski, C., Hamarneh, G.: Flame Front Matching and Tracking in PLIF Images using Geodesic Paths and Level Sets. In: IEEE Int. Conf. on Comp. Vis., Workshop on Variational and Level Set Methods in Comp. Vis., pp. 112–118 (2001)

    Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic Active Contours. Int. J. Comp. Vis. 22(1), 61–79 (1991)

    Article  Google Scholar 

  3. Deschamps, T.: Curve and Shape Extraction with Minimal Path and Level-Set techniques. Applications to 3D Medical Imaging. Ph.D. thesis. L’Univerité de Paris-Dauphine (2001)

    Google Scholar 

  4. McInerney, T., Terzopoulos, D., Hamarneh, G.: Deformable Organisms for Automatic Medical Image Analysis. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 66–76. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. Comp. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  6. Malladi, R., Sethian, J.A.: Image Processing: Flows under Min/Max Curvature and Mean Curvature. Graph. Mod. and Image Proc. 58(2), 127–141 (1996)

    Article  MathSciNet  Google Scholar 

  7. Malladi, R., Sethian, J.A., Vemuri, B.: Shape Modelling with Front Propagation: A Level Set Approach. IEEE Trans. on PAMI 17(2), 158–175 (1995)

    Google Scholar 

  8. McInerney, T., Terzopoulos, D.: A Dynamic Finite Element Surface Model for Segmentation and Tracking in Multidimensional Medical Images with Application to Cardiac 4D Image Analysis. Comput. Med. Imaging Graph. 19(1), 69–83 (1995)

    Article  Google Scholar 

  9. Mulder, W., Osher, S.J., Sethian, J.A.: Computing Interface Motion in Compressible Gas Dynamics. J. Comp. Phys. 100, 209–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Osher, S., Sethian, J.A.: Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulation. J. Comp. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Trans. on PAMI 22(3), 266–280 (2000)

    Google Scholar 

  12. Rink, K., Törsel, A.M., Tönnies, K.: Segmentation of the Vascular Tree in CT Data using Implicit Active Contours. In: Bildverarbeitung für die Medizin, pp. 136–140 (2006)

    Google Scholar 

  13. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  14. Sethian, J.A., Popovici, A.M.: 3-D traveltime computation using the fast marching method. Geophysics 64(2), 516–523 (1999)

    Article  Google Scholar 

  15. Van Bemmel, C.M., et al.: A Level-Set-Based Artery-Vein Separation in Blood-Pool Agent CR-MR Angiograms. IEEE Trans. Med. Imag. 22(10), 1224–1234 (2003)

    Article  Google Scholar 

  16. Whitaker, R.T.: Isosurfaces and Level-Set Surface Models. Technical Report UUCS-02-010. School of Computing, Univ. of Utah (2002)

    Google Scholar 

  17. Young, S., Pekar, V., Weese, J.: Vessel Segmentation for Visualization of MRA with Blood Pool Contrast Agent. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 491–498. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rink, K., Tönnies, K. (2006). A Modification of the Level Set Speed Function to Bridge Gaps in Data. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_16

Download citation

  • DOI: https://doi.org/10.1007/11861898_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics