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Abstract. In this paper, we propose a simple scheme which produces a
new S-box from a given S-box. We use the well-known conversion tech-
nique between the polynomial functions over F2n and the boolean func-
tions from F

n
2 to F2. We have applied the scheme to Rijndael S-box and

obtained 29 new S-boxes, of which only one is a bijection with better
algebraic expression than the original Rijndael S-box and has the same
spectral properties as the original Rijndael S-box. All others turned out
to be non-bijective, and have different spectral properties, and hence,
they all are inequivalent to the original as boolean functions.

Keywords: Rijndael, AES, S-box, Hadamard transform, Avalanche
transform.

1 Introduction

It is widely known that the properties of substitution box (S-box) are funda-
mental to the secrecy of symmetric encryption algorithms after Shannon [10].
Since S-boxes are usually implemented as look up tables, they are attractive for
fast software encryption algorithms [3]. Most of popular block ciphers and some
of stream ciphers have adopted various S-boxes and a lot of research has been
given to designing “better” S-boxes.

There have been proposed [3] several methods to generate cryptographically
useful S-boxes, such as the selection of nearly optimal (for differential [2] and
linear [9] attacks) boolean functions as components of the S-boxes, random gen-
eration, using finite field operations and heuristic algorithms. Among these, finite
field power operation based S-boxes achieve [3] several security criteria simulta-
neously, and have been used in many cipher proposals including Rijndael [14,15],
major portfolio of NESSIE [19], ARIA [17] in Korea, and CRYPTREC [18] in
Japan, mentioned only a few.

Rijndael was selected as the Advanced Encryption Standard (AES) by the
US NIST in October 2000, and published as FIPS-197 [16] in November 2001.
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Rijndael S-box is the finite field inversion together with a bitwise affine trans-
formation. Until Rijndael was selected as AES, it was generally claimed that
such S-box would prevent algebraic attacks. There have been some progress in
the research of algebraic aspect of Rijndael S-box. It is known [13, 3, 7] that
every component function of Rijndael S-box is a single term trace function on
finite field GF(256), and has a property of algebraic linear redundancy that is
inherent in finite field exponentiation. At the same time, researchers successively
have proposed several improved S-boxes. In [7], the research effort has focused
on the S-boxes with no simple algebraic expression while Fuller and Millan in [3]
concentrates on the S-boxes with no linear redundancy.

This paper is organized as follows. In Section 2, we first introduce some back-
ground materials including one-to-one correspondence between the polynomial
functions over a finite field and the boolean functions. Some definitions which
are frequently used in the cryptanalysis of boolean functions will also be given.
Section 3 describes the design scheme which produces a new S-box from a given
S-box working on 4-bit inputs and outputs. We apply this scheme in Section 4
to Rijndael S-box and obtain 29 new S-boxes, of which only one is a bijection
with better algebraic expression than the original Rijndael S-box and has the
same spectral properties as the original Rijndael S-box. All others turned out
to be non-bijective, and have different spectral properties, and hence, they all
are inequivalent to the original as boolean functions. We give some concluding
remarks and open problems in Section 5.

2 Preliminaries

2.1 Sequences, Trace-Represented Polynomial Functions and
Boolean Functions

Let F2n be a finite field with 2n elements and a = {at}N−1
t=0 be a sequence over F2

of period N = 2n − 1. Let α be a primitive element in F2n . The discrete Fourier
transform (DFT) of a is defined as

Ak =
N−1∑

t=0

atα
−tk, k = 0, 1, · · · , N − 1 .

Its inverse formula is given as follows:

at =
N−1∑

k=0

Akαkt, t = 0, 1, · · · , N − 1 .

For a given sequence a, there exists a polynomial function f(x) from F2n

to F2, associated with a, such that at = f(αt), t = 0, 1, · · · , N − 1. We write
a ↔ f , and call a as an evaluation of the function f at α. By the inverse DFT
or Lagrange interpolation, we have [5]:
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at = f(x)
∣∣∣∣
x=αt

, t = 0, 1, ...N − 1 ,

=
∑

j∈Γ (N)

Tr
nj

1

(
Ajx

j
) ∣∣∣∣

x=αt

, Aj ∈ F2n ,
(1)

where Γ (N) is the set of cyclotomic coset leaders modulo N with respect to 2,
Cj is the coset which contains j, nj = |Cj |, Tr

nj

1 (x) is the trace [8] function
from F2nj to F2, and Aj ∈ F2nj is the DFT coefficient of a. Then the sum
of trace functions of (1) is a desired polynomial function and called the trace
representation of sequence a.

Now, let g(xn−1, · · · , x0) be a boolean function in n-variables. By applying the
Lagrange interpolation, its polynomial representation f(x) of g(xn−1, · · · , x0)
can be determined as: (x is just indeterminant)

f(x) =

{
g(0, · · · , 0) x = 0,∑2n−1

j=1 djx
j x ∈ F

∗
2n ,

(2)

with coefficient dj , 1 ≤ j ≤ 2n − 1, being

dj =
∑

λ∈F
∗
2n

g(xn−1, · · · , x0)λ−j , (3)

where λ =
∑n−1

i=0 xiαi, and {α0, · · · , αn−1} is a basis of F2n over F2, denoted by
F2n = 〈{α0, · · · , αn−1}〉.

A conversion from a polynomial function to a boolean function is given by

g(xn−1, · · · , x0) = f
(
x0α0 + · · · + xn−1αn−1

)
, where F2n = 〈{α0, · · · , αn−1}〉 .

(4)
In the rest of this paper, by a boolean function f in n variables, we mean two
notations f(x) = f(xn−1, · · · , x0), x ∈ F

n
2 and f(x), x ∈ F2n interchangeably.

2.2 Transform Domain Analysis Tools

For transform domain analysis of cryptographic functions, see Gong and Golomb
[4], for example. The following definitions are mainly from [5, Ch. 6 and 10] with
the same notation as above. For a ↔ f(x), the Hadamard transform (HT) of a
or f(x) is defined by

f̂(λ) =
∑

x∈F2n

(−1)Tr(λx)+f(x), λ ∈ F2n .

The Walsh transform of a boolean function f(x) is defined by

f̂(w) =
∑

x∈F
n
2

(−1)w·x+f(x), w ∈ F
n
2 .
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The Hadamard transform of f(x) and the Walsh transform of f(x) have the
relation:

f̂(w) = f̂(λ), w ∈ F
n
2 , λ ∈ F2n , where w · x = Tr(λx) .

Nonlinearity Nf of a boolean function f in n variables is defined as

Nf = min
w∈F

n
2 , c∈F2

d
(
f(x),w · x + c

)
,

where d(x,y) denotes the Hamming distance between x and y, and is calculated
using Hadamard transform of f :

Nf = 2n−1 − 1
2

max
w∈F

n
2

∣∣f̂(w)
∣∣

= 2n−1 − 1
2

max
λ∈F2n

∣∣f̂(λ)
∣∣ .

(5)

The Avalanche transform (AT) or additive correlation (convolution) of f(x)
is defined by

(f ∗ f)(w) = F (w) =
∑

x∈F2n

(−1)f(x+w)+f(x), w ∈ F2n . (6)

Avalanche transform analysis of cryptographic functions was first introduced
by Webster and Tavares [12]. We say that a boolean function f satisfies Strict
Avalanche Criterion (SAC) if its Avalanche transform F (w) = 0 for all w with
binary hamming weight wt(w) = 1.

2.3 Equivalence Classes of Boolean Functions

Let f and g be two boolean functions in n-variables. If there exist a non-singular
binary matrix D of order n, two n-tuple binary vectors a and b, and a binary
constant c such that for all x ∈ F

n
2

g(x) = f
(
DxT ⊕ aT

) ⊕ b · xT ⊕ c ,

where b · xT = b1x1 ⊕ b2x2 ⊕ · · · ⊕ bnxn denotes a linear function selected by b,
then f and g are said to be (affine) equivalent [3].

The absolute values of the Hadamard transform and the correlation transform
are both re-arranged by affine transform and thus nonlinearity of a boolean
function is unchanged under affine transform [3].

2.4 Description of Rijndael S-Box

An n-bit processing substitution box is a a vector valued boolean function s(x)
from F

n
2 to F

n
2 . If we let s(x) =

(
sn−1(x), · · · , s1(x), s0(x)

)
, then each si(x),



Improved Rijndael-Like S-Box and Its Transform Domain Analysis 157

i = 0, · · · , n − 1, is an ordinary boolean function in n variables and called a
component function or coordinate function of the given S-box. By (4), si(x),
x ∈ F

n
2 can be identified as si(x), x =

∑n−1
i=0 xibi ∈ F2n where {b0, b1, . . . , bn−1}

is a basis of F2n over F2.
We take bi = αi for 0 ≤ i < 8 where α is a root of z8 + z4 + z3 + z1 +1, which

is the defining irreducible (but not primitive) polynomial of F = F28 for the
Rijndael cipher. This transforms eight boolean functions into eight polynomial
functions from F to F2, which are

s0(x) = Tr(β166x−1) + 1 = Tr(β83x127) + 1
s1(x) = Tr(β53x−1) + 1 = Tr(β154x127) + 1
s2(x) = Tr(β36x−1) = Tr(β18x127)
s3(x) = Tr(β11x−1) = Tr(β133x127)
s4(x) = Tr(β72x−1) = Tr(β36x127)
s5(x) = Tr(β76x−1) + 1 = Tr(β38x127) + 1
s6(x) = Tr(β51x−1) + 1 = Tr(β153x127) + 1
s7(x) = Tr(β26x−1) = Tr(β13x127),

(7)

where β = α + 1 is a primitive element of F , and x =
∑7

i=0 xibi ∈ F . The
above algebraic expressions of component functions si(x) have been determined
by Inverse DFT or Lagrange interpolation (2), dual basis approach [13], or q-
polynomial method [7].

3 Proposed Scheme of Designing a New S-Box from a
Given S-Box

We will describe a proposed scheme of designing a new S-box from a given one.
For convenience, we explain using a smaller size example, e.g., over F24 .

Consider the following S-box denoted as SB-0 (the left-most one in Table 1),
defined by s(x) = x−1 over the field F = F24 using the irreducible polynomial
g0(z) = z4 + z3 + z2 + z + 1. Then, the following algorithm produces SB-1 and
SB-2 in the middle and right-most in Table 1, respectively.

Table 1. Three S-boxes (in hexadecimal)

00 01 10 11 00 01 10 11 00 01 10 11

00 0 1 f a 00 0 1 a f 00 0 c 7 0

01 8 6 5 9 01 6 8 5 9 01 6 7 4 7

10 4 7 3 e 10 2 b d c 10 e 2 e 6

11 d c b 2 11 3 e 7 4 11 8 a 5 a

SB-0 SB-1 SB-2
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Polynomial functions for each of the 4 coordinate boolean functions of SB-0
over F can be found using Lagrange interpolation explained in Section 2:

s(x) =
(
s3(x), s2(x), s1(x), s0(x)

)
, or

s(x) =
(
s3(x), s2(x), s1(x), s0(x)

)

=
(
Tr4

1(β
14x7), T r4

1(β
7x7), T r4

1(β
10x7), T r4

1(β
8x7)

)
, (8)

where x = (x3, x2, x1, x0) is the input to SB-0, x =
∑3

i=0 xibi ∈ F ∼= 〈{bi | bi =
αi, 0 ≤ i < 4}〉, α is a root of g0(z) which is the defining polynomial of F , and
β = 1 + α is a primitive element of F .

Now, we let K be the field defined by g1(z) = z4+z3+1. Then the polynomial
functions of SB-0 over K are determined as

r(x) =
(
r3(x), r2(x), r1(x), r0(x)

)

=

⎛

⎜⎜⎝

Tr4
1(γ10x + γ12x3 + γ14x7) + Tr2

1(γ10x5)
Tr4

1(γ
3x + γ4x3 + γ5x7) + Tr2

1(x
5)

Tr4
1(γ

9x + γ10x3 + γ13x7) + Tr2
1(γ

5x5)
Tr4

1(γ2x + γ13x3 + γ6x7) + Tr2
1(γ5x5)

⎞

⎟⎟⎠

T

(9)

where x =
∑3

i=0 xici ∈ K ∼= 〈{ci | ci = γi, 0 ≤ i < 4}〉 and γ is a root of g1(z).
To obtain polynomial functions for the new S-box, which we call SB-1, we

simply replace the coefficients (some powers of γ in (9)) with the corresponding
powers of β. This gives new polynomial functions from (9), which are

h3(x) = Tr4
1(β

10x + β12x3 + β14x7) + Tr2
1(β

10x5),

h2(x) = Tr4
1(β

3x + β4x3 + β5x7) + Tr2
1(x

5),

h1(x) = Tr4
1(β

9x + β10x3 + β13x7) + Tr2
1(β

5x5),

h0(x) = Tr4
1(β

2x + β13x3 + β6x7) + Tr2
1(β

5x5).

Finally, to construct SB-1 shown in the middle of Table 1, we evaluate the above
polynomial functions over F = F24 with multiplication mod g0(z).

There is another irreducible polynomial of degree 4 over F2, which is g2(z) =
z4 + z + 1. We denote E by the field defined by g2(z). Then, similarly, over E ,
the polynomial functions of SB-0 are determined as

t(x) =
(
t3(x), t2(x), t1(x) , t0(x)

)

=

⎛

⎜⎜⎝

Tr4
1(δ

2x + γ9x3 + δ10x7) + Tr2
1(δ

5x5)
Tr4

1(δ
4x + δ12x3 + δ12x7) + Tr2

1(x
5)

Tr4
1(δ

6x + δ2x3 + δ14x7) + Tr2
1(x

5)
Tr4

1(δ11x + δ11x3 + δ2x7) + Tr2
1(δ10x5)

⎞

⎟⎟⎠

T

(10)

where x =
∑3

i=0 xidi ∈ E ∼= 〈{di | di = δi, 0 ≤ i < 4}〉 and δ is a root of g2(z).
By replacing δ in (10) with β, we obtain another set of polynomial functions

from (10):
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u3(x) = Tr4
1(β

2x + β9x3 + β10x7) + Tr2
1(β

5x5),

u2(x) = Tr4
1(β

4x + β12x3 + β12x7) + Tr2
1(x

5),

u1(x) = Tr4
1(β

6x + β2x3 + β14x7) + Tr2
1(x

5),

u0(x) = Tr4
1(β

11x + β11x3 + β2x7) + Tr2
1(β

10x5).

This, in turn, gives a third S-box, SB-2, shown in the right-most of Table 1, when
we evaluate the above polynomial functions over F = F24 with multiplication
mod g0(z).

Remark 1. Observe that SB-1 is a bijection but SB-2 is not. The reason why
they are so different would be a topic of further research.

Remark 2. A simple calculation shows that all three S-boxes in Table 1 have
the same spectral properties. That is, they have the same profiles of Hadamard
transform and Avalanche transform, where the transform is applied to each of
the coordinate boolean functions. It turned out that the spectral properties do
not have to be all the same when this scheme is applied to larger S-boxes, which
we will discuss in the next section.

4 Application of Proposed Scheme to Rijndael S-Box

4.1 Using z8 + z4 + z3 + z2 + 1

We apply the proposed design scheme explained in Section 3 to the original
Rijndael S-box, which we denote by BOX-0. From now on, we use the parallel
notations in Section 3, but g0(z) and g1(z) are changed to:

g0(z) = z8 + z4 + z3 + z1 + 1, and g1(z) = z8 + z4 + z3 + z2 + 1,

where g0(z) is the defining polynomial of F28 for the Rijndael cipher and g1(z)
is a primitive polynomial of degree 8 over F2.

Recall that the polynomial functions si(x), 0 ≤ i < 8, for the coordinate
boolean functions of BOX-0 were determined as in (7) over F = F28 defined by
g0(z), where β = 1 + α is a primitive element of F , where α is a root of g0(z),
and x =

∑7
i=0 xibi ∈ F ∼= 〈{bi|bi = αi, 0 ≤ i < 8}〉.

Now, over K = F28 defined by g1(z), the same boolean functions give some
other polynomial functions ri(x), 0 ≤ i < 8, where, for example,

r7(x) = Tr2
1(γ

85x85) + Tr4
1(γ

238x17 + γ34x51 + γ136x119)

+ Tr8
1(γ

4x1 + γ43x3 + γ60x5 + γ3x7 + γ54x9 + γ155x11)

+ Tr8
1(γ

86x13 + γ157x15 + γ157x19 + γ48x21 + γ163x23 + γ98x25)

+ Tr8
1(γ

50x27 + γ92x29 + γ67x31 + γ69x37 + γ181x39 + γ1x43)

+ Tr8
1(γ

2x45 + γ194x47 + γ110x53 + γ145x55 + γ105x59γ246x61)

+ Tr8
1(γ

192x63 + γ45x87 + γ20x91 + γ160x95 + γ144x111 + γ13x127) ,

(11)
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Table 2. Polynomial functions ri’s of BOX-0 over K (hi’s of BOX-1 over F)

k nk r7 r6 r5 r4 r3 r2 r1 r0

const. − 1 1 − − − 1 1

85 2 85 0 170 0 170 170 0 85
17 4 238 0 102 136 136 68 17 119
51 4 34 102 238 17 85 17 17 85
119 4 136 0 187 85 0 ∞ 187 51
1 8 4 129 65 213 52 83 14 127
3 8 43 251 43 12 233 23 174 30
5 8 60 163 162 197 79 57 166 24
7 8 3 19 50 233 134 193 246 119
9 8 54 221 120 97 33 139 159 33
11 8 155 31 242 163 92 ∞ 2 226
13 8 86 80 199 91 17 151 208 153
15 8 157 143 74 56 242 41 86 214
19 8 157 ∞ 231 16 99 148 65 251
21 8 48 28 69 3 190 33 106 136
23 8 163 48 100 173 16 198 248 120
25 8 98 78 37 9 197 242 225 72
27 8 50 29 25 115 16 157 189 167
29 8 92 74 21 220 162 25 71 174
31 8 67 49 69 157 233 130 107 35
37 8 69 253 52 155 32 6 219 230
39 8 181 145 68 145 114 121 12 91
43 8 1 125 168 228 244 242 217 58
45 8 2 253 127 200 25 64 133 164
47 8 194 246 233 173 43 102 108 119
53 8 110 23 129 77 16 133 245 136
55 8 145 173 74 35 6 143 159 64
59 8 105 65 121 186 228 90 182 108
61 8 246 176 111 176 17 161 213 100
63 8 192 252 141 80 142 81 213 178
87 8 45 7 157 61 230 6 98 78
91 8 20 239 73 76 251 20 123 94
95 8 160 236 186 66 236 222 156 248
111 8 144 41 149 35 167 32 154 210
127 8 13 141 14 91 90 220 166 71

LS 254 247 255 254 254 242 255 255

where γ is a root of g1(z) in this section, and is a primitive element of K. For
the other ri(x), see Table 2.

The first and second column of Table 2 represents cyclotomic coset leaders
and sizes, respectively. The values in the third column are the exponents of the
coefficients of xk in the trace representation of r7(x), with the convention of
γ∞ = 0, where γ is a primitive element in K. The bottom row of Table 2 shows
the number of nonzero terms in each ri(x). Note that these values are very large
(255 is the maximum) compared to that of the expression in (7).
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By replacing the coefficients (which are the powers of γ in (11)) with the
corresponding powers of β, as described in Section 3, we obtain a set of 8 new
polynomial functions hi(x), 0 ≤ i < 8, one of which is

h7(x) = Tr2
1(β

85x85) + Tr4
1(β

238x17 + β34x51 + β136x119)

+ Tr8
1(β

4x1 + β43x3 + β60x5 + β3x7 + β54x9 + β155x11)

+ Tr8
1(β

86x13 + β157x15 + β157x19 + β48x21 + β163x23 + β98x25)

+ Tr8
1(β

50x27 + β92x29 + β67x31 + β69x37 + β181x39 + β1x43)

+ Tr8
1(β

2x45 + β194x47 + β110x53 + β145x55 + β105x59 + β246x61)

+ Tr8
1(β

192x63 + β45x87 + β20x91 + β160x95 + β144x111 + β13x127),

(12)

where β = 1 + α is the primitive element of F , where α is a root of g0(z). Now,
evaluating these polynomials over F = F28 with multiplication mod g0(z) gives
a new S-box, BOX-1, shown in Table 3.

Table 3. BOX-1 (in hexadecimal)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 7b 77 6b f2 6f c5 76 ab fe d7 67 2b 01 30

1 82 ca c9 7d fa 59 f0 47 72 c0 a4 9c af a2 ad d4

2 c3 23 04 c7 05 9a 96 18 eb 27 75 b2 12 07 80 e2

3 93 26 fd b7 cc f7 36 3f d8 71 31 15 34 a5 f1 e5

4 fc 20 b1 5b 53 d1 ed 00 be 39 cb 6a cf 58 4a 4c

5 1b 6e a0 5a 83 09 2c 1a b3 d6 52 3b 2f 84 e3 29

6 33 85 4d 43 fb aa d0 ef f9 45 02 7f 50 3c a8 9f

7 f5 38 92 9d 40 8f a3 51 bc b6 21 da ff 10 f3 d2

8 16 bb b0 54 2d 0f 99 41 8c a1 0d 89 e6 bf 42 68

9 28 df 55 ce e9 87 9b 1e f8 e1 98 11 69 d9 94 8e

a 4b bd 8a 8b dd e8 74 1f 2e 25 ba 78 b4 c6 a6 1c

b c1 86 1d 9e 61 35 b9 57 b5 66 3e 70 0e f6 48 03

c ac 62 d3 c2 79 e4 91 95 06 49 24 5c e0 32 0a 3a

d ea f4 6c 56 ae 08 7a 65 8d d5 a9 4e c8 e7 37 6d

e ee 46 b8 14 de 5e db 0b 90 88 2a 22 dc 4f 60 81

f c4 a7 3d 7e 5d 64 19 73 17 44 5f 97 13 ec 0c cd

We now list some cryptographic properties of BOX-1 in parallel with those of
BOX-0. We will use hi(x) in Table 2 for BOX-1 and si(x) in (7) for BOX-0.

1. BOX-1 is a bijective map. So is BOX-0.
2. The component boolean functions of BOX-1 are balanced. So is BOX-0.
3. It is not difficult to show that the highest degree in its algebraic normal

form (ANF) of a boolean function f is the maximum binary Hamming weight
wt(k) as k runs through all the exponents in the trace representation of f [5].
For k = 127, wt(k) = 7 and every coordinate function hi(x), i = 0, · · · , 7,
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has the term θx127 in its trace representation for some nonzero θ ∈ F
∗
2n .

The ANF of any boolean function can be found by exhaustive “truth table
summation” [11]. In fact, the number of linear and highest degree terms in
the ANF of hi(x) and si(x) turns out to be given as follows:

h0 h1 h2 h3 h4 h5 h6 h7 s0 s1 s2 s3 s4 s5 s6 s7

Number of linear terms 4 3 4 4 6 3 3 3 6 4 6 4 6 2 4 4

Number of degree 7 terms 4 4 5 1 5 4 3 3 5 4 2 4 2 3 4 4

4. Since the linear span of a function or a sequence is just the number of nonzero
terms in its polynomial function [5], we have:

h0 h1 h2 h3 h4 h5 h6 h7 s0 s1 s2 s3 s4 s5 s6 s7

Linear span 255 255 242 254 254 255 247 254 9 9 8 8 8 9 9 8

5. Hadamard transform of a boolean function has a connection (5) with nonlin-
earity and with the first-order correlation immunity [11]. Hadamard trans-
form profile of component functions of BOX-1 and BOX-0 are determined
as:

Absolute HT value 0 4 8 12 16 20 24 28 32 Total

hi for all 0 ≤ i < 8 17 48 36 40 34 24 36 16 5 256

si for all 0 ≤ i < 8 17 48 36 40 34 24 36 16 5 256

6. From the above calculation, it is easy to see that nonlinearity of every co-
ordinate function of BOX-1 is 112, which is the same as that of BOX-0, the
original Rijndael S-box.

7. The frequency distribution of Avalanche (additive correlation) transform of
each component function of BOX-1 and BOX-0 is determined as:

Absolute AT value 0 8 16 24 32 Total

hi for all 0 ≤ i < 8 32 84 74 52 13 255

si for all 0 ≤ i < 8 32 84 74 52 13 255

8. It is interesting to observe that for all i = 0, 1, · · · , 7, hi and si have the
same Hadamard and Avalanche transform spectrum (as a profile), which is
not an accident due to the following theorem.

Theorem 1. Let Γ = {s0, s1, · · · , s7, h0, h1, · · · , h7} be the set consisting of
all the component functions of BOX-0 and BOX-1. Then any two boolean
functions in Γ are pairwise equivalent.

Proof. Since si(x) = Tr(θix
−1) + ei for some θi ∈ F28 , i = 0, · · · , 7, and ei

is either 1 or 0 as shown in (7), it is easily shown [3, Theorem 3] that si and
sj are equivalent for any 0 ≤ i, j ≤ 7.

Now it is enough to establish the affine equivalence between s0 and hi for
all i = 0, 1, · · · , 7. Some calculation shows that h0(x) = s0(D0xT ), where
binary 8 × 8 square matrix D0 is given as

D0 = [ 11d 148d 182d 82d 224d 8d 105d 31d ] ,
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where the first column 11d is the decimal form of [00001011]T . Similarly, for
i = 1, 2, · · · , 7, we have hi(x) = s0(DixT ) + ci, where

D1 = [ 51d 150d 235d 156d 223d 77d 28d 1d ]
D2 = [ 47d 78d 142d 86d 149d 164d 62d 240d ]
D3 = [ 35d 112d 68d 4d 213d 186d 121d 129d ]
D4 = [ 26d 94d 156d 1d 172d 55d 85d 124d ]
D5 = [ 42d 101d 4d 220d 237d 35d 247d 191d ]
D6 = [ 47d 90d 18d 241d 151d 137d 143d 122d ]
D7 = [ 67d 146d 81d 29d 161d 199d 246d 61d ]

,

and constant ci is given by c2 = c3 = c4 = c7 = 1 and c1 = c5 = c6 = 0. �

9. Finally, we check SAC for BOX-1 and BOX-0.
00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000

h7 0 -16 -8 -24 -32 -8 16 8

h6 24 -16 8 -8 8 -24 16 -32

h5 8 16 24 24 24 -8 -16 -8

h4 24 -8 -16 -8 32 0 24 16

h3 -32 16 24 -16 8 -8 16 -16

h2 24 -16 32 24 -16 0 0 -8

h1 -8 0 24 -16 8 -8 8 -24

h0 -8 16 24 -8 -8 0 16 0

s7 -8 16 -8 -16 24 24 -16 -8

s6 -8 8 -8 -16 0 -8 -16 -32

s5 24 -32 0 16 24 -8 16 -8

s4 -32 0 16 24 -8 16 -8 -16

s3 24 8 -32 0 0 16 16 8

s2 8 24 0 -16 0 -24 -16 -16

s1 24 0 -16 0 -24 -16 -16 8

s0 0 -16 0 -24 -16 -16 8 -8

Since an affine transformation rearranges additive correlation values, the
Avalanche transform of hi is possibly non-identical to that of si. However, for
w ∈ F

8
2 with binary Hamming weight one, the maximum absolute correlation

value of (hi ∗ hi)(w) is equal to that of (sj ∗ sj)(w) for 0 ≤ i, j ≤ 7, and the
frequency of occurrences of each possible values of both BOX-1 and BOX-0
are very similar. Therefore, BOX-1 and BOX-0 have almost the same level
of performance in correlation aspect.

4.2 Using All Other Irreducible Polynomials of Degree 8

Analysis result of BOX-1, especially the items from 4 to 7 in the above list, and
Theorem 1, shows that BOX-1 is equivalent to the original S-box of Rijndael in
many aspects.

The effect of replacing the irreducible polynomial in Rijndael has been enough
studied previously. Any replacement of irreducible polynomial in Rijndael cipher
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with different one can create a new cipher, but it is equivalent to the original
in all aspects. Barkan and Biham [1] concluded that the arbitrary choice for the
irreducible polynomial to be replaced works the same always, and hence, there
is no advantage to changing the original irreducible polynomial with any other.
Careless conclusion from the above information would lead to a guess that the
remaining S-boxes, BOX-2, ... , BOX-29, using each of the remaining irreducible
polynomials of degree 8, respectively, would have the similar properties. That is,
every BOX-i for 2 ≤ i ≤ 29 might be a balanced bijection with the same spectral
properties (the same Hadamard and correlation transform profile) and whose
coordinate functions would be all affine equivalent to that of Rijndael S-box. To
our surprise, it turned out that this is not the case. Careful examination of the
proposed scheme described in Section 3 will reveal that our scheme is completely
different from simply changing the irreducible polynomial in Rijndael cipher.
Instead, it is a method of constructing only a new S-box from the given one, and
the whole cipher runs over the field defined by the same irreducible polynomial.

For example, we examine BOX-2, which is constructed using the irreducible
polynomial g2(z) = z8 + z5 + z3 + z1 +1 in the conversion process. Again we use
the parallel notations with Section 3, but in this case, we use the field E defined
by g2(z). BOX-2 is shown in Table 4. The polynomial functions for BOX-2 are
denoted by ui(x), their Hadamard transform profiles and SAC table are given
in Table 5 and Table 6, respectively.

In summary, BOX-2 is completely different from BOX-1 or BOX-0:

1. BOX-2 is not bijective and no coordinate function is balanced. Therefore, it
is worse against the linear attack than BOX-0.

Table 4. BOX-2 (in hexadecimal)

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 12 31 1d f9 50 e6 22 4f 2f 2e e8 18 f1 03 08

1 4a eb 84 c2 b9 90 34 d4 02 b6 61 6c ea 29 46 2b

2 cd d3 c7 f2 2f 34 9e d4 c3 14 b3 56 7b 9d d0 58

3 ff d4 7e 82 85 55 90 88 21 ba af 23 b2 aa ba 49

4 1e ac 27 2f 94 cb 0c eb 7f c3 9f b1 53 2b 19 d2

5 78 2e dd ca c3 18 a3 51 12 31 22 6e 2d 59 87 da

6 4a ec f2 a7 a8 1e 1b 33 5e 60 94 f5 07 f4 6d ac

7 9b 01 64 55 93 d9 80 1c 2b de 98 78 42 eb 65 c5

8 3f 56 f3 dc e1 18 f0 db 59 e7 ab cc fa 3d 89 18

9 a8 3c 62 8b 70 55 7c 7a 0d aa c7 4c 9e d4 bf 00

a e7 48 50 7c 48 9b 89 72 cb c4 a5 40 05 b1 00 fc

b 4a b4 ac 85 bb 62 98 22 6d b4 e4 b7 ac 30 d0 70

c ce 09 bb e8 ef 11 e6 f8 3a 14 ac 7c 75 29 c1 79

d 1b ff 9c 31 49 7b 5a 57 cb b6 d0 3e b9 48 47 c8

e 1d 02 eb 7d d7 df 31 3f 72 9c a3 91 b5 75 c9 08

f 38 06 a4 b9 2d f6 20 99 3a 9b 5e 6e 7e 36 58 14
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Table 5. Hadamard transform profile (frequency distribution) of BOX-2

Absolute HT value 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Total

u7 27 59 45 28 21 30 25 7 5 4 2 0 3 0 256
u6 26 45 46 42 31 22 17 13 6 4 1 2 1 0 256
u5 22 55 42 38 32 23 18 8 10 3 4 1 0 0 256
u4 25 45 38 33 42 31 15 17 5 2 3 0 0 0 256
u3 23 46 44 46 34 25 16 7 5 3 4 1 2 0 256
u2 33 53 38 32 33 22 15 15 5 6 3 0 1 0 256
u1 22 55 40 39 35 21 21 10 6 1 3 1 1 1 256
u0 30 44 47 41 29 20 15 16 4 6 2 1 1 0 256

Table 6. Check for SAC of BOX-2

10000000 01000000 00100000 00010000 00001000 00000100 00000010 00000001

u7 -8 8 -8 -24 0 -8 8 -24
u6 16 24 -24 -24 0 -24 0 8
u5 40 24 8 -8 -8 0 -8 -24
u4 24 -32 16 0 8 0 56 8
u3 24 16 -24 8 -8 8 24 -32
u2 -8 8 -8 -8 -24 -8 24 0
u1 0 8 8 32 16 -8 16 16
u0 40 16 24 -16 0 16 -8 0

2. BOX-2 has worse spectrum in transform domain than BOX-0.
3. The Hadamard transform profiles of the eight component functions of BOX-2

are all distinct.
4. All coordinate functions of BOX-2 are pairwise inequivalent as boolean func-

tions, which is one of the desirable characteristics of an S-box.
5. None of the component functions of BOX-2 has a simple algebraic expression

over F2n with the multiplication performed modulo any irreducible polyno-
mial, while all coordinates of BOX-0 do have the simplest equations such as
(7) with the current Rijndael irreducible polynomial. Therefore, BOX-2 is
better against the interpolation attack [6] than the original S-box, BOX-0.

We have experimentally checked all the remaining 27 S-boxes which are con-
structed from Rijndael S-box using the remaining 27 irreducible polynomials of
degree 8, respectively. We have verified that all these share almost the same
properties listed above with BOX-2.

5 Concluding Remarks

We proposed a simple scheme which produces a new S-box from the given S-box,
which are based on operations over F2n . The essential steps of the construction
are (i) to determine the trace-represented polynomial functions of the given S-box
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over F2n with the multiplication performed modulo some other irreducible poly-
nomial than the one originally used, (ii) to replace the coefficients in the trace-
represented polynomial functions with the corresponding powers of the original
primitive element, and finally, (iii) to evaluate new polynomials in F2n with the
multiplication now performed modulo the original irreducible polynomial.

We have applied the scheme to Rijndael S-box, BOX-0, and constructed
29 different S-boxes, denoted by BOX-1, BOX-2, ... , BOX-29. All 29 S-boxes
have much improved algebraic expressions over F2n with the multiplication per-
formed modulo the original irreducible polynomial g0(z) (compare with (7)).
Only BOX-1 has almost the same cryptographic properties as BOX-0. It is be-
cause only BOX-1 is equivalent to BOX-0 as boolean functions. Only BOX-0 and
BOX-1 have the property that the algebraic expressions over F2n with the mul-
tiplication performed modulo some appropriate irreducible polynomial turned
out to consist of a single trace function. No other S-boxes have such a simple
algebraic expression.

Some theoretical developments that would be interesting are the following:

Q1 When and why the resulting S-box is a bijection or not a bijection?
Q2 When and why the resulting S-box has the same or different spectral prop-

erties as the original S-box?
Q3 Restricting to the case of Rijndael S-box, why is only BOX-1 similar to the

original S-box? This is very surprising considering that g1(z) is an arbitrary
choice among 29 irreducible polynomials of degree 8 over F2.

Q4 What are the distinctive properties of g1(z) = z8 + z4 + z3 + z2 +1 relative
to g0(z) = z8 + z4 + z3 + z1 + 1 compared with all other 28 irreducible
polynomials of degree 8 over F2?
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