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Abstract. This paper presents a model for positional relations among bodies of 
arbitrary shape in three dimensions. It is based on an existing model for 
projective relations among regions in two dimensions. The motivation is to 
provide a formal qualitative spatial relations model for emerging 3D 
applications. Two sets of relations are defined: ternary projective relations 
based on the concept of collinearity between a primary object and two reference 
objects and quaternary projective relations based on the concept of coplanarity 
between a primary object and three reference objects. Four sets of JEPD 
relations are defined for points and bodies in R³. 

1. Introduction 

The aim of this paper is to define a model for positional relations among bodies of 
arbitrary shape in three dimensions. The result is obtained by extending a model for 
projective relations among regions that was presented in [4, 6]. We approach the 
problem without considering any external frame of reference for defining the 
relations. Therefore, a kind of implicit frame of reference is determined by objects 
taking part of the relation. To explain this concept, let us consider two bodies in 3D 
space: without a frame of reference, the only relations that can be assessed are binary 
topological relations, such as being disjoint or intersecting [16]. If we consider three 
bodies in 3D, then we can express relations such as a body A is before bodies B and 
C, where bodies B and C implicitly define a direction, or such as a body A is between 
bodies B and C. In these cases, we talk about ternary projective relations, where the 
first object can be considered a primary object and the second and third one are the 
reference objects. In classical reasoning with orientation relations (see, for instance, 
[10]), we find a primary object, which is compared to a reference object in a given 
frame of reference. In our approach, we could say that the reference objects have the 
same role of a combination of the reference object and frame of reference in classical 
approach. Going a step farther, if we consider four bodies in 3D, we are able to define 
other projective relations, such as a body A is above or below the bodies B, C, and D. 
The need of considering quaternary projective relations arises because three bodies 
are necessary to define a concept of coplanarity, which in turn can define what is 



Ternary projective relations between points in 2D are extensively presented in [3, 
4]. Note that other approaches have given similar results (see, e.g., [8, 13, 14]). As a 
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above or below. In this view, there is again a primary object A and three reference 
objects B, C, and D. Quaternary relations are the main difference when we extend the 
model from 2D to 3D, since in 2D ternary relations are sufficient, being based on the 
concept of collinearity of three regions [5]. Previous work on projective relations 
among bodies is rather limited [2, 9]. 

With the development of 3D GIS, virtual reality, augmented reality, and robot 
navigation, qualitative relations are a key issue to perform relevant spatial analysis. 
Navigation in geographic environments, such as a city landscape [1], is a kind of 
application that can take advantage from our model to have a formal description of 
geometric relations among objects of the environment. Such a description is needed to 
build reasoning systems on these relations and facilitate a standard implementation in 
spatial database systems. Our work attempts to contribute to the enrichment of 
available formally-defined qualitative spatial relations. 

The rest of the paper is organized as follows: after some mathematical background 
in Section 2, in Section 3 we describe the ternary projective relations among points in 
3D. In Section 4, we deal with quaternary relations among points in 3D. In Section 5 
and 6, we develop the model for ternary and quaternary relations among bodies, 
respectively. In Section 7, we outline further work and draw some conclusions.  

2. Mathematical background 

Readers who are not familiar with projective geometry can find support in, e.g., 
[7]. Hereby, we limit the mathematical background to a brief outline of the general 
mathematical context and to a formal introduction to the concept of “body”.   

We consider ordinary objects of point-set topology, such as points and bodies, 
which are embedded in the Euclidean three-dimensional space R³. We avoid using 
any metric properties of objects, such as lengths, areas, and angles, and restrict 
ourselves to use the minimal number of geometric concepts in order to remain inside 
the domain of projective geometry. We take an axiomatic view of projective 
geometry, where fewer axioms than in Euclidean geometry are assumed. The 
classification of geometries based upon the action of a group of allowable 
transformations on a set was introduced by F. Klein [11]. Therefore, projective 
geometry is defined by projective transformations. The names “projective 
transformation”, “homography”, “collineation” and “projectivity” are all equivalent. 

Bodies are bounded point-sets and will be indicated with capital letters A, B, C, etc. 
The interior of a body A is indicated with A°. The closure of a body A is indicated 
with A . Bodies are simple if they are regularly closed (i.e., °= AA ) and without 
holes and disconnected components. Bodies are complex if they are regularly closed 
and have holes or disconnected components. 

3. Ternary projective relations between points in a 3D space 
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brief recall, we can say that the ternary projective relations model is based on an 
elementary concept of projective geometry: collinearity among points. At least three 
points are needed to define collinearity, and therefore it is intrinsically a ternary 
relation. Three points x,y,z (y and z being the reference points) are said to be collinear 
if they lie on the same line; we write coll(x,y,z). From this basic projective relation, it 
is possible to build 9 other relations among three points. First, the aside relation is the 
negation of collinear relation. Knowing that the line joining the two reference points 
divides the space into two half-spaces; HP+  and yzHP− , it is possible to specialise the 
aside relation into rightside and leftside relations depending on which half-space the 
point x lies on. In the case the two reference points are coincident, we refine the 
relation collinear in the relations inside and outside. In the case the two reference 
points are distinct, we refine the relation collinear in the relations between and 
nonbetween. The relation nonbetween can be refined in the relations before and after. 
The set of ternary relations among points rightside, leftside, between, before, after, 
inside, outside is a jointly exhaustive and pairwise disjoint set of relations (JEPD) in 
R². 

 
Ternary projective relations in R³ are almost totally equivalent to those in R². All 

the definitions presented in Table 1 stand in R² and R³ except the specialisation of the 
aside relation into rightside and leftside which is only possible in R². Indeed, the line 
joining the two reference points does not partition R³ into two parts anymore (as it 
was the case in R²). Therefore, it is impossible to refine the aside relation. The set of 
ternary relations among points aside, between, before, after, inside, outside is a JEPD 
set of relations in R³ (figure 1). 

 
Table 1. The definitions of ternary projective relations among points in R³.  

Name short name Definition drawing 
Collinear coll(x,y,z) : , ,line l x l y l z l∃ ∈ ∈ ∈  

Aside as(x,y,z) ¬ coll(x,y,z) 
 

Inside in(x,y,z) x=y ∧  y=z 
 

Outside ou(x,y,z) x y≠ ∧  y=z 
 

Between bt(x,y,z) y z≠ ∧ [ , ]x y z∈  

Nonbetween nonbt(x,y,z) coll(x,y,z)∧ y z≠ ∧ [ , ]x y z∉  
 

Before bf(x,y,z) coll(x,y,z)∧ y z≠ ∧ ( , )x yyz∈ −∞  

After af(x,y,z) coll(x,y,z)∧  y z≠ ∧ ( , )x z yz∈ +∞  
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Fig. 1. A decision tree for the ternary projective relations among points in R³. 

4. Quaternary projective relations between points in a 3D space 

Another set of projective relations can be defined in R³ when considering one 
primary point and three reference points. Three non collinear points define one and 
only one plane in the space. Any plane in R³ is a hyperplane1 which means that it 
divides the whole space in two regions, called halfspaces (HS). Depending on the 
order of the three reference points (clockwise or counterclockwise), the plane can be 
oriented in R³, which allows to distinguish between a positive and a negative 
halfspace (HS+, HS-). Based on this partition, one can define projective relations 
between a point and three reference points: these relations are therefore quaternary. 

A point w lying in a plane defined by the three reference points x, y and z is said to 
be coplanar with x, y and z, we write copl (w,x,y,z). This coplanar relation can be 
refined depending on the relative position of the reference points. If the three 
reference points are collinear, then they define an infinity of planes that fill all the 
space. In such a degenerate case of coplanarity, we identify two quaternary projective 
relations called inside and outside. A point w is inside x, y and z if the three reference 
points are collinear and w belongs to the convex hull2 of x, y and z (which 
corresponds to the segment joining the three points); otherwise, w is said to be outside 
x, y and z. These two relations are conceptually similar to inside and outside ternary 
relations. If the three reference points are aside then they generate two zones in the 

 
1 A subset A of Rd is an affine subspace if, for any distinct points x, y belonging to A, the 
straight line defined by x and y lies in A. Points, straight lines, planes, and R3 itself are the only 
affine subspace of R3. Their respective dimensions are 0, 1, 2 and 3. An affine subspace of 
dimension d-1 of Rd is named hyperplane. 
2 The convex hull (CH) of two objects is formed by line segments joining each pair of objects’ 

points; these line segments belong to objects’ 1-transversals. 
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reference plane; a zone defined by the convex hull of the three points and its 
complementary zone on the plane. A point w, coplanar with x, y and z, is said to be 
internal to x, y and z if it lies on the convex hull of x, y and z; otherwise it is said to be 
external to x, y and z. If the point w does not belong to a plane defined by the three 
reference points x, y and z, it is said to be non coplanar with x, y and z. This relation 
can be refined looking in which half-space the point w lies on. A point w which is non 
coplanar with x, y and z is said to be above x, y and z if it belongs to xyzHS + , or below 

x, y and z if it belongs to xyzHS− . Table 2 summarizes the quaternary projective 
relations between points in R³, which are illustrated in Figure 2. 

The set of quaternary relations among points above, below, internal, external, 
inside and outside is a JEPD set of relations in R³ (Figure 3).  

  
Table 2. The definitions of quaternary projective relations among points in a 

3D space. 
Name short name Definition 
Coplanar copl(w,x,y,z) pzpypxpwpplane ∈∈∈∈∃ ,,,:  

Non coplanar non_copl(w,x,y,z) ¬ copl(w,x,y,z) 
Above ab(w,x,y,z) +∈ xyzHSw  

Below be(w,x,y,z) −∈ xyzHSw  

Internal int(w,x,y,z) ),,( zyxaside ∧ ),,( zyxCHw∈  
External ext(w,x,y,z) copl(w,x,y,z) ∧   ),,( zyxaside ∧  

( , , )w CH x y z∉  
Inside in(w,x,y,z) coll(x,y,z) ∧ ),,( zyxCHw∈  
Outside ou(w,x,y,z) coll(x,y,z) ∧ ),,( zyxCHw∉  

 

    
Coplanar Non coplanar Above Below 

  

 
 

 

 

 

Internal External Inside Outside 

 
 

Fig. 2. Quaternary projective relations among points in R³. 
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Fig. 3. A decision tree for the quaternary projective relations among points in R³. 

5. Ternary projective relations between bodies in a 3D space 

The importance of semantics of collinearity relies on the fact that modelling all 
ternary projective relations properties of spatial data can be done as a direct extension 
of such a property. The relation collinear among bodies can be introduced as a 
generalization of the same relation among points. Conceptually, collinearity relation 
between bodies in a 3D space does not differ from collinearity between regions in 2D. 
Among various definitions of collinearity [5], the most useful one is stated as follow:  

Given three simple bodies  A, B, C ∈R³, coll(A,B,C) def≡ x A∀ ∈ °  [ y B∈ °

z C∃ ∈ °

( ) ( )CH B CH C∩ ( ) ( )H B CH C

∃  
[  [coll(x,y,z)]]];   

 
Let us examine the geometric realization of collinearity among bodies. Similar to 
points, where we had a degenerate case of collinearity for coincident reference points, 
we have a degenerate case of collinearity among bodies if reference bodies have non-
disjoint convex hulls: a body A is always collinear to bodies B and C if the 
intersection  is non-empty. If the intersection C ∩  is 
empty, we can identify a part of the space where a body A that is completely 
contained into it satisfies the relation collinear. Let us call this part of the space the 
collinearity subspace of B and C, Coll(B,C). Such a subspace can be built by 
considering all the lines that are intersecting both B and C. Knowing that a line that 
intersects a family of convex sets is called a 1-transversal [15], the collinearity 
subspace can be equally defined as the set of all 1-transversals to (convex hulls of) 
bodies B and C. 

 
In R², the collinearity zone which is the 2D equivalent of the collinearity subspace 

was limited by the internal and external tangents of the two references objects 
(regions). In R³, the collinearity subspace is limited by two types of tangent planes; 
internal tangent planes that separates the two objects in different half-spaces (figure 
4.a) and external tangent planes that leave the objects in the same half-space (figure 
4.b). The intersection of all the half-spaces defined by internal tangent plan d es an

( , , , )copl w x y z
U

int ext

( , , )coll x y z

( , , )w CH x y z∈

ou 

( , , )w CH x y z∈ ( , , )w CH x y z∉

in

¬ ( , , )coll x y z

( , , )w CH x y z∉

¬

be ab 

( , , , )copl w x y z

xyzw HS −∈ xyzw HS +∈
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containing the first reference body, union with the intersection of all the half-spaces 
defined by internal tangent planes and containing the second reference body, union 
with the intersection of all the half-spaces defined by external tangent planes and 
containing the two reference objects define the collinearity subspace (figure 4.c). 

 

   
a. An internal tangent plan b. An external tangent plane c. Collinearity subspace of 

Fig anes to two bod

y definition, the convex hull of the union of two bodies is part of their collinearity 
su

ich will b
 

 

e 
to two bodies 

. 4. Tangent pl

 
to two bodies 
ies in R³. 

two bodies 

 
B
bspace. The collinearity subspace of two bodies B and C (figure 5.a) can be 

subdivided in three parts; the convex hull of  CB ∪  (figure 5.b) and two disjoint 
parts separated by the convex hull of CB ∪  wh e called collinear subspace 

∞−CS (touching B) and collinear subspace ∞+CS  (touching C) (figure 5.c). 

   
a. Collinearity subspace of b. Convex hull of the union o c. Collinear subspaces 

Fig o bodi

 general, the part of the space where a body A that is c y contained into it 
sa

he definition ear can be extended to co
co

bodies B and C 
. 5. Partition of 

f 
B and C 

ace of tw
∞−CS  and ∞+CS  

the collinear subsp es in R³. 
 
In ompletel

tisfies a relation r is called the acceptance subspace of r. The collinearity subspace 
and all acceptance subspaces of relations are open sets: this corresponds to 
considering the interior of bodies in all the definitions of relations. This choice allows 
us to avoid limit cases: a point x in the boundary of body A that is falling in the 
boundary of an acceptance subspace does not influence the relation. If we had made 
the opposite choice, the point x would have contributed at the same time to the 
collinear and aside relations. 

 
T of the relation collin mplex bodies by 
nsidering the convex hulls of the reference objects in place of the reference objects. 

The definition of collinear together with other projective relations for bodies is given 
in Table 3. Besides each definition, also the corresponding acceptance subspace is 
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Table 3. The definitions of projective relations among regions.  
relation Defi

given. The relation collinear, in the case the two reference bodies have not disjoint 
convex hulls, can be refined in two relations that are called inside and outside. The 
relations between and nonbetween are refinements of the relation collinear, in the case 
the two reference bodies have disjoint convex hulls. The relation nonbetween can be 
refined in the two relations before and after, respectively. 

 

nition Acceptance subspace 
coll(A,B,C) x A∀ ∈ °  [ ∃ ( )y CH B∈ °  

[ z CH∃ ∈ °  [coll(x,y ]]] 
∪  

CH B C  ( )C ,z)
Coll(B,C) = ( ∞−CS )°
( ∞+CS )°∪ ( ( ))∪ °

as(A,B,C) x A°  [ y∀ ∈
[ z C C∀ ∈ °  [as(x,y,z ] 

side(B  =(R³ - Coll(B,C  ∀ ∈ ( )CH B °  
( )H )]]

A ,C) ))°

in(A,B,C) ( ) (B CH C∩ )CH ≠ ∅  ∧  
( ( ))A CH B C° ⊆ ∪ °

Inside(B,C) = ( ( ))CH B C∪ °  
 

ou(A,B,C) ( ) ( )CH B CH C∩ ≠ ∅  ∧  
( ( ))A CH B C°∩ ∪ =

Outside(B,C) = R³ - ( )CH B C∪  
∅  

bt(A,B,C) ∅=∩ )()( CCHBCH  ∧  
( ( ))A CH B C° ⊆ ∪ °  

Between(B,C) = ( )( CBCH ∪ )° 

nonbt(A,B,C) Coll(A,B,C) ∧  
C ∅  ( ) ( )CH B CH∩ = ∧  

A CH°∩

Between( ∞−CS )°∪  

( )B C∪ =∅  

Non B,C) =  (
( ∞+CS )° 

bf(A,B,C) ( ) (CH B CH C ∅)∩ =  ∧  
A CS−∞° ⊂  

Before  = ∞−(B,C)  ( CS )° 

af(A,B,C) ( )CH B C C∩ = ∅  ( )H ∧  
A CS+∞° ⊂  

After(B,C) = ( ∞+CS )° 

 
imilarly to ternary projectiv tions between regions in R² [4] se the basic 

rel

 empty  
su

∩Before(B,C), A∩Betwe C

S e rela , we u
ations aside, between, before, after, inside, and outside to build a model for 

projective relations between three bodies of R³. The subspaces corresponding to the 
first four relations make a partition of the space R³ in the case the two reference 
bodies have disjoint convex hulls. If the two reference bodies have non disjoint 
convex hulls, the space is partitioned in two subspaces, corresponding to relations 
inside and outside. 

Let us consider /non-empty intersections of a body A with the four 
bspaces: 
 
(A en(B, ), A∩A ,fter(B C), A∩Aside(B,C

 value 0 indicates an e n, while a value 1 indicates a n p
int

)) 
 
A mpty intersectio on-em ty 
ersection. The 4-intersection can have 24–1 different configurations. Each 

configuration corresponds to a projective relation among three bodies A, B, and C, 



It is possible to extend the concept of quaternary relations between points in R³ to 
bodies. The concept of coplanarity between four bodies can be introduced as a 
generalisation of the same relations among points. Following the same reasoning as 
when defining collinearity among bodies, we propose the following definition of 
coplanarity among bodies: 
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( ) ( )CH B CH C∩ =∅
( ) ( )CH B CH C∩ ≠ ∅

∩

where . Four values equal to zero does not correspond to a 
relation. For , we consider the following 2 intersections: 

 
(A Inside(B,C), A∩Outside(B,C)) 
 
which can assume the values (0 1), (1 0), and (1 1). Overall, we obtain a model that 

is able to distinguish among a set of 18 ternary projective relations among three 
bodies of R³, which are JEPD. 

 
We can use a linear notation for the relation, by listing 6 bits that represent the 

intersection of body A with Before(B,C), Between(B,C), After(B,C), Aside(B,C), 
Inside(B,C), Outside(B,C). 

In this notation, the basic relations are expressed as follows: bf(A,B,C) = (1 0 0 0 | 
0 0), bt(A,B,C) = (0 1 0 0 | 0 0), af(A,B,C) = (0 0 1 0 | 0 0), as(A,B,C) = (0 0 0 1 | 0 0), 
in(A,B,C) = (0 0 0 0 | 1 0), ou(A,B,C) = (0 0 0 0 | 0 1). Other relations correspond to 
cases with more than one non-empty value: for example, a relation that is a 
combination of two basic relations, such as a “before and aside”, is indicated as: 
bf:as(A,B,C) = (1 0 0 1 | 0 0). Figure 6 contains three examples of ternary projective 
relations among bodies in R³. 

 

   
a. bf(A,B,C) b. bt(A,B,C) c. bf:as(A,B,C) 

Fig. 6. Some examples of ternary projective relations among bodies in R³. 

6. Quaternary projective relations between bodies in a 3D space 

 
Let us examine the geometric realization of coplanarity among bodies. Similar to 

points where we had a degenerate case of coplanarity for collinear reference points, 
we have a degenerate case of coplanarity among bodies if reference bodies have at 
least a triplet of collinear points. If there exists at least one triplet of collinear points x, 
y and z, the relation coplanar with any point w of R³ is true; the coplanar subspace in 

w A∀ ∈ °  [ x∃ ( )CH B∈ ° ( )y CH C ° ( )z CH D[ ∃ ∈ [ ∃ ∈ ° [copl(w,x,y,z)]]]] 
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this case is R³ itself. Otherwise, we can identify a part of the space where a body A 
that is completely contained into it satisfies the relation coplanar. Let us call this part 
of the space the coplanarity subspace of B, C and D, Copl(B,C,D). Such a subspace 
can be built by considering all the planes that are intersecting B, C and D. Knowing 
that a plane that intersects a family of convex sets is called a 2-transversal [15], the 
coplanarity subspace can be equally defined as the set of all 2-transversals to (convex 
hulls of) bodies B, C and D. 

 
Like the collinear subspace, the coplanarity subspace can be seen as the 

intersection of half-spaces defined by internal tangent planes combined with the 
intersection of half-spaces defined by external tangent planes and containing the three 
reference objects. In this case, internal tangent planes separate two objects in one half-
space and the third one in the other half-space and external tangent planes leave the 
three objects in the same half-space. By definition, there are 6 internal tangents planes 
and 2 external tangents planes to three bodies that do not contain triplets of collinear 
points [12].  Figure 7 shows an external tangent plane (etp2) and an internal tangent 
plane (itp2) of three bodies (B, C and D). The coplanar subspace partitions R³ in two 
distinct subspaces. Considering an order among the reference bodies (clockwise or 
counterclockwise), it is possible to consider a general orientation of the coplanarity 
subspace in R³. One ends up with three subspaces, the coplanar subspace, the non-
coplanar subspace NCS+(B,C,D) and the non-coplanar subspace NCS-(B,C,D)). 

 
 

  

a. An external tangent plane (etp2) of B, 
C and D 

a. An internal tangent plane (itp2) of B, 
C and D 

Fig. 7. Internal and external tangent planes to three bodies in R³. 
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Fig. 8. Combination of internal and external tangent planes to three bodies in R³. 
 
Figure 8 illustrates the combination of internal and external tangent planes. There 

are six internal tangent planes called itp1, …, itp6 and two external tangent planes 
etp1 and etp2. The six internal tangent planes form the top part of the coplanarity 
subspace (Figure 9.a) with etp1 and the bottom part of the coplanarity subspace 
(Figure 9.a) with etp2. Figure 9.b represents the corresponding coplanarity subspace. 

 

  
a. Top and bottom of the coplanarity 

subsapce 
b. Corresponding coplanarity subspace 

Fig. 9. Coplanarity subspace of three bodies in R³ (bodies are not represented). 
 
Knowing that the convex hull of the union of three bodies is part of their 

coplanarity subspace, one can partition further the coplanarity subspace of three 
bodies B, C and D considering the convex hull of  and its complement in B C D∪ ∪
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B C D∪ ∪

B C D∪ ∪

the coplanarity subspace. These two subspaces are respectively called Internal(B,C,D) 
and External(B,C,D). 

 
The definition of the relation coplanar can be extended to complex bodies by 

considering the convex hulls of the reference objects in place of the reference objects. 
The definition of coplanar together with other quaternary projective relations for 
bodies is given in Table 4. Besides each definition, also the corresponding acceptance 
subspace is given. If there is no plane joining any points of A, B, C and D, body A is 
non coplanar with B, C and D. The relation coplanar, in the case the three reference 
bodies are collinear, can be refined in two relations that are called inside and outside, 
depending if body A is included or not in the convex hull of . Otherwise, 
the coplanar relation can be refined into internal and external relations depending if 
body A is included or not in the convex hull of . The non coplanar relation 
can be also specialised into above and below relations depending in which non-
coplanar subspaces body A is included.  

 
Table 4. The definitions of projective relations among regions.  

relation Definition Acceptance subspace 
copl(A,B,C,D) w A∀ ∈ °

( )
 

[ x CH B∃ ∈ ° ( )y CH C[ ∃ ∈ °
( )z CH D∃ ∈ °

( ( ))CH B C D∪ ∪ ° ∪[
[copl(w,x,y,z)]]]] 

Copl(B,C,D) = 
 

External(B,C,D) 
non_copl(A,B,C,D) w A∀ ∈ °

( )
 

[ x CH B ° ( )y CH C∀ ∈ [∀ ∈ °
(z CH∀ ∈

[
[non_copl(w,x,y,z)]]]])D °

Non_copl(B,C,D) = R³ - 
Copl(B,C,D) 

in(A,B,C,D) coll(B,C,D) ∧  
 ( ( ))A CH B C D° ⊆ ∪ ∪ ° ( ( )CH B C D∪ ∪

Inside(B,C,D) = 
 )°

ou(A,B,C,D) coll(B,C,D) ∧  
 ( ( ))A CH B D°∩ ∪ = ∅ ( ( ))CH B C D∪ ∪C ∪

Outside(B,C,D) = R³ - 
 

int(A,B,C,D) as(B,C,D) ∧  
 ( ( ))A CH B C D° ⊆ ∪ ∪ ° ))°

Internal(B,C,D) = 
 ( (CH B C D∪ ∪

ext(A,B,C,D) as(B,C,D) ∧  copl(A,B,C,D) 
 ∧ ( ( ))A CH B C D°∩ ∪ ∪ = ∅

External(B,C,D) 

ab(A,B,C,D) as(B,C,D) ∧  A NCS+° ⊂  Above(B,C,D) = NCS+  
be(A,B,C,D) as(B,C,D) ∧  A NCS−° ⊂  Below(B,C,D) = NCS−  

 
Like for the ternary projective relations, the all set of quaternary relations between 

four bodies can be obtained based on empty/non-empty intersections of the primary 
body A with the subspaces which satisfy the basic quaternary relations.  

Let us consider empty/non-empty intersections of a body A with the four 
subspaces: 

 
(A Internal(B,C,D), A External(B,C,D), A
 

∩ ∩ ∩Above(B,C,D), A∩Below(B,C,D)) 
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( ) ( ) ( )CH B CH C CH D∩ ∩ =∅
( ) ( ) ( )CH B CH C CH D

The 4-intersection can have 24–1 different configurations. Each configuration 
corresponds to a quaternary projective relation among four bodies A, B, C and D, 
where . Four values equal to zero does not 
correspond to a relation. For ∩ ∩ ≠ ∅

∩ ∩

, we consider the 
following 2 intersections: 

 
(A Inside(B,C,D), A Outside(B,C,D)) 
 
which can assume the values (0 1), (1 0), and (1 1). Overall, we obtain a model that 

is able to distinguish among a set of 18 quaternary projective relations among three 
bodies of R³, which are JEPD. 

 
We can use a linear notation for the relation, by listing 6 bits that represent the 

intersection of body A with Internal(B,C,D), External(B,C,D), Above(B,C,D), 
Below(B,C,D), Inside(B,C), Outside(B,C). 

In this notation, the basic relations are expressed as follows: int(A,B,C,D) = (1 0 0 
0 | 0 0), ext(A,B,C,D) = (0 1 0 0 | 0 0), ab(A,B,C,D) = (0 0 1 0 | 0 0), be(A,B,C,D) = (0 
0 0 1 | 0 0), in(A,B,C,D) = (0 0 0 0 | 1 0), ou(A,B,C,D) = (0 0 0 0 | 0 1). Other relations 
correspond to cases with more than one non-empty value: for example, a relation that 
is a combination of two basic relations, such as a “internal and below”, is indicated 
as: int:be(A,B,C,D) = (1 0 0 1 | 0 0). Figure 10 contains four examples of quaternary 
projective relations among bodies in R³. 

 

  
a. ext(A,B,C,D) b. int(A,B,C,D) 
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c. ab(A,B,C,D) d. ext:ab(A,B,C,D) 

Fig. 10. Some Examples of quaternary projective relations among bodies in R³ 
(bodies are not represented). 

In this paper, we have first presented ternary projective relations among points and 
among bodies in R³. The resulting model uses the concept of collinearity among 
bodies, which has been extended from previous work on points and regions in R². The 
points’ model provides a set of six JEPD ternary relations in R³ instead of seven in 
R²: aside, between, before, after, inside and outside. The bodies’ model provides a set 
of eighteen JEPD ternary relations in R³ based on the same basic six relations.  
As a second part, considering three reference objects, the concept of coplanarity has 
been introduced. In this case, the points’ model provides a set of six JEPD quaternary 
relations in R³: above, below, internal, external, inside and outside, when the bodies’ 
model provides a set of eighteen JEPD ternary relations in R³ based on the same basic 
six relations. Formal definitions and models to express all these relations have been 
proposed.  

7. Conclusions 

The study of the formal properties of relations and the development of a reasoning 
system is a future major issue. Development of algorithms to compute such 3D 
relations is needed and will complete the work already done for ternary relations 
among points and regions in R². More generally, the study of properties of such 
relations will be important for optimizing the computation of more complex kinds of 
queries and for integrating ternary and quaternary projective relations as operators in 
a spatial database system. Finally, work needs to be done to “map” these concepts and 
models to specific 3D environments; e.g. to map the bottom of a coplanarity subspace 
on the topographic surface and use projective relations in the corresponding deformed 
space. 



Projective relations in a 3D environment      15 

References 

1. Bartie, P.J. and W.A. Mackaness, Development of a Speech-Based 
Augmented Reality System to Support Exploration of Cityscape. Transactions 
in GIS, 2006. 10(1): p. 63-86. 

2. Bennett, B., et al., Region-based qualitative geometry. 2000, University of 
Leeds, School of Computer Studies, LS2 9JT, UK. Technical Report 
2000.07. 

3. Billen, R. and E. Clementini. Introducing a reasoning system based on 
ternary projective relations. in Developments in Spatial Data Handling, 11th 
International Symposium on Spatial Data Handling. 2004. Leicester, UK: 
Springer-Verlag. p. 381-394. 

4. Billen, R. and E. Clementini. A model for ternary projective relations 
between regions. in EDBT2004 - 9th International Conference on Extending 
DataBase Technology. 2004. Heraklion - Crete, Greece: Springer-Verlag. p. 
310-328. 

5. Billen, R. and E. Clementini, Semantics of collinearity among regions, in 
OTM Workshops 2005 - 1st Int. Workshop on Semantic-based Geographical 
Information Systems (SeBGIS'05), R. Meersman, Editor. 2005, Springer-
Verlag: Agia Napa, Cyprus. p. 1066-1076. 

6. Clementini, E. and R. Billen, Modeling and computing ternary projective 
relations between regions. IEEE Transactions on Knowledge and Data 
Engineering, 2006. 18(6): p. 799-814. 

7. Coxeter, H.S.M., Projective Geometry, 2nd ed. 1987, New York: Springer-
Verlag. 

8. Freksa, C., Using Orientation Information for Qualitative Spatial Reasoning, 
in Theories and Models of Spatio-Temporal Reasoning in Geographic Space, 
A.U. Frank, I. Campari, and U. Formentini, Editors. 1992, Springer-Verlag: 
Berlin. p. 162-178. 

9. Gapp, K.-P. From Vision to Language: A Cognitive Approach to the 
Computation of Spatial Relations in 3D Space. in Proc. of the First 
European Conference on Cognitive Science in Industry. 1994. Luxembourg. 
p. 339-357. 

10. Hernández, D., Qualitative Representation of Spatial Knowledge. Lecture 
Notes in Artificial Intelligence. Vol. LNAI 804. 1994, Berlin: Springer-
Verlag. 

11. Klein, F., Vergleichende Betrachtungen über neuere geometrische 
Forschungen. Bulletin of the New York Mathematical Society, 1893. 2: p. 
215-249. 

12. Lewis, T., B. von Hohenbalken, and V. Klee, Common supports as fixed 
points. Geometriae Dedicata, 1996. 60(3): p. 277-281. 

13. Ligozat, G.F. Qualitative Triangulation for Spatial Reasoning. in European 
Conference on Spatial Information Theory, COSIT'93. 1993. Elba Island, 
Italy: Springer Verlag. p. 54-68. 

14. Scivos, A. and B. Nebel, The Finest of its Class: The Natural Point-Based 
Ternary Calculus for Qualitative Spatial Reasoning, in Int. Conf. Spatial 
Cognition. 2004, Springer. p. 283-303. 



16      Roland Billen and Eliseo Clementini  

15. Wenger, R., Progress in geometric transversal theory, in Advances in 
Discrete and Computational Geometry, B. Chazelle, J.E. Goodman, and R. 
Pollack, Editors. 1998, Amer. Math. Soc.: Providence. p. 375-393. 

16. Zlatanova, S., 3D GIS for Urban Development. 2000, University of Graz - 
ITC. 

 
 


