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Abstract. Several representations have been created to store topological infor-
mation in normal spatial databases. However, not that much work has been 
done to store such relationships for spatiotemporal data. This paper extends the 
representation of moving objects from [7] so that it can also store and enforce 
some of the topological relationships between the objects. This is done in a 
fashion similar to the Node-Arc-Area model for normal spatial databases. One 
use of such a representation is storing a changing spatial partition. 

1   Introduction 

For purely spatial databases, there are several ways to represent topology. One such 
way is the Node-Arc-Area representation [13]. Each line segment stores a link to the 
two regions that it borders, each point stores a link to each line segment that begins or 
ends in that point and each face (connected region) stores a link to at least one of its 
border curves. This ensures that if the border of one region is updated, the borders of 
all other regions are automatically updated as necessary to maintain known 
topological relationships. 

An important use for topological information is storing a spatial partition, since 
without topological information it is difficult to control whether a given set of regions 
forms a partition or not. [5] presents an abstract model for spatiotemporal partitions 
called the “honeycomb model”. This is called an abstract model in this paper because 
it is based on infinite point sets. A discrete model, by contrast, is based on constructs 
that one could realistically store in a database such as straight line segments. Both 
raster and vector models are discrete models. The “honeycomb” model represents 
time as an extra dimension and represents a spatiotemporal partition as a three-
dimensional partition with the limitation that at any time instant the partition should 
be a legal two-dimensional partition. 

However, no discrete model for spatiotemporal partitions is known to the authors. 
Nor is a discrete model of spatiotemporal information that takes topological relation-
ships into account. 
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1.1   Examples of Moving Partitions 

Here is a collection of examples of where the ability to store a spatiotemporal 
partition might be useful. The first was also mentioned in [5]. 

Example 1: Subdivision of the world into countries: The countries of the world 
make up a partition because they cover all the land and do not overlap each other. The 
borders of countries may also change (such as when east and west Germany merged 
or when Yugoslavia split apart), but only in discrete steps. 

Example 2: Land cover: The type of vegetation that covers different areas changes 
continuously over time. It would be theoretically possible to monitor these changes 
very often, but the mapping agencies do not have the manpower for this. So instead 
snapshots are created that may be decades apart. To visualize the changes in land 
cover it is better to produce an interpolation that yields a best guess as to how the 
borders moved than just do discrete jumps. Land cover within a given area might be 
updated simultaneously. However, land cover regions neighbouring this area may be 
updated at entirely different times. 

Example 3: Soil type classification: All land regions have a soil type and the 
classes are usually distinct, thus making this into a partition. Soil type may also 
change continuously in time. Usually this change is very slow, measured over 
millennia or more, but in some cases changes may happen far more rapidly, such as 
when forest cover is removed and erosion becomes much higher than it was. 

1.2   Examples of Topology Not Involving a Partition 

Here are some examples of situations in which storing explicit topology might be use-
ful even though they do not involve partitions: 

Example 4: Visualization of how the landscape has looked in the past. Landscapes 
change. Rivers alter their courses and lakes grow smaller or larger over time. Glaciers 
grow and shrink. In this case one not only needs to create temporal version of the 
objects, but one also needs to “glue” them together to avoid noticeable inconsis-
tencies. For instance, if a river flows out of a lake, it should end at the lake rather than 
just next to it or slightly inside it. 

Example 5: In an ordinary map database, one might have a glacier that ends over a 
lake. Both the glacier and the lake may grow or shrink over time, but they often bor-
der each other. 

Example 6: When a major oil spill occurs, one might want to find out if any ani-
mals for which its position is known were inside the spill area at any time. 

2   Related Work 

Representations for topological relationships have been studied extensively for purely 
spatial databases as well as for spatiotemporal databases with step wise discrete 
changes. This section describes those earlier works that this paper directly builds on. 

[10] describes a temporal topology that he calls “tropology”. This tropology 
describes the possible chains of events that may occur for a single object. It does not, 
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however, deal with multiple connected objects and does not assume any particular 
storage model. 

A system for reasoning about changes in the topological relationships between 
moving objects is described in [3]. 

[7] describes a discrete model for independent spatiotemporal objects. This model 
is based on time slices. A time slice is a period of time in which the object moves 
according to a simple function. Points move linearly. The end points of line segments 
can move like other points except that the line segment is not allowed to rotate. Area 
objects are represented by their border lines. A rotating line segment is represented as 
two line segments that shrink to points in one or the other end of the time slice. 

[12] describes a method for generating the representation of faces (area objects that 
consist of only one connected component) from [7] using snapshots of the faces. 

For pure spatial data several vector representations have been created that represent 
topology explicitly. The Node-Arc-Area (NAA) representation that is presented in for 
instance [13] is one of them. In the NAA representation, lines store the area objects 
that are to the left and right of the line as well as their start and end points. The border 
of an area object is thus defined in the line objects. Thus if the border of an area is 
updated, the borders of its neighbours are also automatically updated. 

[11] describes how to implement topological relationships on complex regions 
using plane-sweep algorithms on a realm. That paper says nothing on how to make 
that realm accurate from the outset. 

[6] formally describes how to handle topological predicates in spatiotemporal 
database systems. Their basic method is to lift spatial predicates to the spatiotemporal 
case. Lifting a predicate converts a spatial predicate into a spatiotemporal one with a 
temporally varying output. For any time instant the output of the lifted predicate is the 
same as for the spatial predicate with the same objects at that time instant. 

They then define quantification on these such that one might ask whether the pred-
icate is true at some point in the time interval or over the whole time interval. They 
then use the universally quantified operations to define temporal aggregations, for 
example Enters. A point p Enters a region R if p starts outside the region, then meets 
it and then is inside it. They further show that such lifting and defining temporal 
predicates gives a far more expressive language than using the basic Egenhofer 
relations from [4] on 3D objects. 

[2] defines spatiotemporal objects by an initial snapshot and a transformation 
function. Some closure properties of this model are then analysed. For instance, for a 
linear transformation function, the model is closed under union, intersection and dif-
ference for rectangles, but only under union for arbitrary polygons. 

[1] and [8] define discrete models for spatiotemporal data based on constraints. A 
convex region is defined as a set of linear constraints (such as: x + 2y ≤ 5). A non-
convex region is defined as a union of convex regions. The advantage of such a 
system is that it can be easily extended to arbitrary dimensions and can use ordinary 
relational algebra operations to express many spatial operations that need special 
operators in abstract data type approaches. 

One disadvantage of this approach is that it does not take topology into considera-
tion. A region is stored as a set of linear constraints, but their model has no way of 
indicating explicitly that a given region shares a set of line segments (equivalent to 
linear constraints) with another region. This means that if one updates one of the 
regions, there will be an inconsistency unless the relationship is somehow stored 
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explicitly. One can only treat topological relationships indirectly and this makes 
inconsistencies much more likely. 

Another problem is that it is very difficult to find the border of a region from the 
region representation. Changing the constraints from x + 2y ≤ 5 to x + 2y = 5 is not 
enough as a conjunction of such constraints is, in general, unsatisfiable. Rather the 
individual constraints must be converted into line segments, each defined by three 
constraints (one for the infinite line and two for the end points). The border line is the 
disjunction of these line segment constraints. 

3   Possible Models 

In this section three models for storing topological information for moving objects are 
described and analysed. The first subsection discusses which relationships to store 
and says something about what needs to be stored for points, lines and regions. The 
subsequent three subsections describe three different models that might be used to 
store the shared boundaries given in the first subsection. 

3.1   Which Relationships to Store 

The relationships that need to be stored explicitly are those which involve the borders 
of regions or lines as the borders are infinitely thin and even tiny errors may change 
the result of the corresponding predicate. The following definitions of the 
relationships from [4] will be used: 

Table 1. Topological Relationships 

Operation Meaning
Disjoint The two objects do not share either border or interior 

Meet The two objects share borders but not interiors 

Overlap The two objects overlap. This means that the interiors overlap and 

the borders cross each other 

Overlap with 

disjoint border

The interiors of the two objects oevrlap but the borders do not cross

Cover One object is inside the other but shares a part of its border 

CoveredBy The reverse of Covers 

Inside One object is entirely inside the other 

Contain The reverse of Inside 

Equal The two objects have equal shapes  

For a pair of regions the relationships meet, covers, coveredBy and equal involve 
the border and therefore must be handled explicitly. The other predicates (overlaps, 
overlaps with disjoint border, inside, contains and disjoint) deal only with the 
interiors of the regions and can therefore be computed using the geometry of the objects. 
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a) Original snapshots of O1 and O2 b) Sliced representation of O1 and O2
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Fig. 1. Time slices with meeting relationship 

For a point and a region, meet needs to be stored explicitly while disjoint and 
inside can be computed from the geometry. Meet1 can be computed from the geome-
try if the point moves from outside the region to inside. However, the point may also 
stay on the border of the region for some time, or it may graze the region. In these last 
cases the relationship must be stored explicitly or the database might not recognize it. 

For a pair of lines both overlap in the end points and interiors must be stored 
explicitly as in both cases even tiny errors may cause a different answer. 

For a point and a line, one must store explicitly any period of time in which the 
point lies on the line. Crossings can be computed from the geometry. 

The only way to identify shared borders reliably is to store the shared part in a 
shared location like it is done in the Node-Arc-Area representation. For spatio-
temporal data, it therefore becomes important to store shared boundaries between 
spatiotemporal objects. 

Line crossings are points and should therefore be stored as a shared moving point. 
Point crossings may either be a shared moving point (if the point remains on the line 
or region border over time) or a single spatiotemporal point (with a single time 
location rather than moving) if the crossing occurs at a particular time instant. 

3.2   Time Slices 

To maintain the spatial topology in a time slice model, all neighbouring objects must 
have the same time slices. Inside a time slice the shape of the object is linearly 
interpolated. Therefore, for each time there is a new snapshot for one of the 
neighbouring objects, the interpolation of all must change if the borders are to remain 
equal. Changes in topology should only be allowed between time slices. 

The main problem with this approach is that it results in a lot of time slices that are 
unnecessary for each region but necessary for the whole. One cannot assume that all 
the regions are updated at the same time (If they were, the time slice approach would 
work fine). This problem in illustrated in Figure 1. 

A partial solution to this problem is as follows: Whenever one object has a snap-
shot and therefore begins a new time slice, make a new time slice for all neighbouring 

                                                           
1 A point meets a region when it is on the border of the region. 
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objects as well, but not objects that are further away. This means that not all objects 
must have all time slices, but it does mean that each object must have one time slice 
for each time one of its neighbours is updated as well as for when the object itself is 
updated. If an object borders four other objects, it will have 5 times as many time 
slices as if it were isolated. 

In the land cover type this problem might be reduced because land cover is usually 
updated in large areas rather in individual regions. All land cover regions within a 
given satellite image is probably updated at the same time. Thus this problem only 
occurs for those land cover regions that lie on the border between different satellite 
images. 

A time slice model in which all objects have the same time slices may use a basic 
node-arc-area model in each time slice as topology only changes in the instants 
between time slices. 

One problem with a pure time slice approach is handling temporal topological 
relationships like enters and crosses. As the time slices of the two objects are 
probably different, they cannot be used directly as a basis for the topological 
relationships. 

3.3   3D Model 

One way of avoiding the problems of time slice models is to use general 3D  
data types to store moving objects. However, this would require a new model for 
moving objects as well as a new algorithm for creating moving regions from 
snapshots. 

One drawback of 3D types when compared to a sliced representation is that you 
lose the direct correspondence between the non-temporal and moving object types. 
However, one needs only fairly simple operations to extract snapshots from the 3D 
data types. 

Time slices have one other advantage: When you query about a time instant or 
short time interval, the database only needs to fetch those time slices that are relevant 
for the query, which may be only a small fraction of the total. For a pure 3D model, 
on the other hand, the entire geometry of the object needs to be fetched. 

3.4   Hybrid Model 

This last advantage of time slices may be retained if one defines a hybrid model that 
looks as follows: 

At certain instants in time (typically when there is a snapshot available) the shape 
of the object is stored. The intervals in between these time instants are time slices in 
which the shape of the object is inferred. However, rather than using just a linear 
function to infer the shape, the shape may be represented by any 3D surface that can 
be represented by a set of 3D triangles and that yields a legal 2D object at all time 
instants in the time slice. The sliced representation described in [7] would be a special 
case of this representation. 
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4   Defining the Hybrid Model 

In this section, the hybrid data model is defined in more detail. In Section 4.1, a set of 
3D data types is defined. These are then used as building blocks for the hybrid model. 
The hybrid data types are defined in Section 4.2. 

4.1   Building Blocks of the Hybrid Data Types 

In this section, data types for 3D points, lines and triangles are defined. Additionally, 
types for time intervals and temporal line segments are defined. 

3D Point: A 3D point is defined by its coordinates: 
3DPoint x y t, ,( ) x ℜ∈ y ℜ∈ t ℜ∈∧ ∧( ){ }≡

 

3D Line Segment: Each line segment has two end points: 
3DLineSegment s e,( ) s 3DPoint∈ e 3DPoint∈∧( ){ }≡

 
3D Triangle: To make the algorithms for computing intersections easier, surfaces 

should be piecewise straight. The only way to ensure a piecewise straight surface is to 
create it as a set of triangles. Therefore, the 3D surface element of this model is a 
triangle: 

3DTriangle p1 p2 p3, ,( ) p1 3DPoint∈
p2 3DPoint∈ p3 3DPoint∈

∧
∧

(
)

{
}

≡

 
Time Interval: A time interval is a connected set of numbers with a given start 

and end: 
Interval s e,( ) s ℜ∈ e ℜ∈ s e<∧ ∧( ){ }≡  

Temporal Line Segment: A temporal line segment is a 3D line segment where the 
end points have ascending times: 

TempLineSeg s s 3DLineSegment∈ s.s.t s.e.t<∧( ){ }≡  

4.2   Definitions of Spatiotemporal Data Types That Store and Enforce Meeting 
Relationships 

In the hybrid approach outlined in Section 3.4, moving objects are represented by 
time slices. However, the interpolation between the snapshots is more general than the 
one given in [7]. For most of the types, all that needs to change is still the definition 
of the unit, or time slice. The overall type can in most cases remain unchanged from 
the type from [7]. 

In these definitions, the units are given a semantic meaning of their own. A unit is 
assumed to be the period between two updates of the object. Thus for every time a 
moving curve is updated, a new curve unit is added. The same applies to points and 
regions. Examples of the point and line types are given in Figure 2 and Figure 3. 
Examples of the face types are given in Figure 4. 

4.3   Moving Point 

The moving point may be modelled as a set of polylines that for each time instant 
gives only a single point.  
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Fig. 2. Moving Point and Curve 

The moving point may serve two functions: It may be an independent database 
object in its own right (such as a car, building or marked animal), or it may represent 
the meeting point of several moving curves or regions. These two functions have dif-
ferent storage needs. In this definition, both these types are combined into the single 
moving point, but it might be argued that they should be different types. They are 
defined as the same type here to keep the type system small and therefore 
manageable, and because these two roles are not mutually exclusive. 

The following three topological relationships must be dealt with for moving points: 

On line: If the point remains on a given moving curve (including the border of a 
region) over time, this must be stored explicitly as only minor inaccuracies can make 
the point be outside the line. In most cases the point will be on only one line at a time 
and for the other case one can conclude that the lines have the same location. The 
point therefore only needs to store a link to a single line. Since a point is not 
necessarily on the line during its entire lifetime, this relationship should be stored 
with the point units rather than in the main point object. 

End point of curve: A moving point may serve as a meeting point for several 
moving curves or regions. The most efficient way to store this relationship is to store 
it in the curves as a curve can have only two end points but a point may be the end 
point of an arbitrary number of curves. Discovering which curves end in a given point 
can be done by querying a spatial index with the position of the point. This is 
guaranteed to return all the curves that end in the point. Any other curves returned can 
be filtered out by checking their end points. 

Meet: Two moving points may have the same position at a particular time instant 
or in a particular time interval. This relationship may be stored by having the two 
moving point objects share point units when they are at the same position. Meeting at 
a time instant can be stored by letting them share a degenerate point unit that is valid 
only at that time instant. 

Temporal meet: Moving points may be connected in time. If for instance one 
moving point splits into several, there are moving points that meet in time. At the end 
time of one point it is at the same place as another point object begins. 
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The Point Unit is therefore defined as follows: 

UPoint s c,( ) s TempLineSeg∈ c MCurve∈∧{ }≡
 

In this definition, s defines the movement of the point and c represents the on line 
relationship. An MCurve is a moving curve and is defined later. 

The Moving Point is defined as follows: 

MPoint U M,( ) U UPoint⊂ M MPoint⊂
a b, U∈( ): a b≠( ) tempOverlap a.s b.s,( )¬→∀
p M∈( ):t empMeet this p,( )∀

∧ ∧
∧

{

}

≡

 
Where tempMeet(p1, p2) is true iff the valid time of p1 meets the valid time of p2 and 
the two points are at the same location at that time. tempOverlap(s1, s2) is true iff the 
valid times of s1 and s2 overlap. 

In this definition, U is the set of point units that make up this moving point and M 
is the set of points that temporally meet this point. 

4.4   Moving Line 

The moving line type from [9] is defined as a set of moving curves. According to [7], 
any set of moving line segments makes a valid moving line according to this defini-
tion. However, it would be very difficult to deal with topological information with 
such a construct. It would have no end points, and the border curve of a region is the 
ideal place to store a pointer to a neighbouring region. 

As for a moving point, a moving line may serve two purposes. It may be an inde-
pendent database object in its own right, or it may mark the border between two 
particular regions. 

A simple and straightforward definition of a moving curve would be this: A mov-
ing curve is a 3D surface consisting of planar facets whose intersection with any plane 
parallel to the x-y plane would be a valid curve (continuous set of line segments). A 
moving line could then be defined as a set of moving curves. The moving curve may 
additionally have to store the following topological information: 

 t

y 
x  

Fig. 3. Moving Line 

Bordering regions: The curve may be a part of the border of up to two regions. 
This is stored in the main curve object. This makes a curve that serves as a border 
represent the border between two particular regions. 
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End points: Any curve has two end points in space. However, these points only 
needs to be stored explicitly if they serve as meeting points for several curves. 

Points on line: If one wants to query which cars are on a particular road, one may 
want to store which cars are on the road at any given moment. However, this informa-
tion may take up a lot of storage space and can also be discovered through a spatial 
search of the points combined with the on line relationship for points. It is therefore 
not necessary to store directly. 

Meet: Two moving line objects may share moving curve objects. If this 
relationship changes over time, it is handled the same way as two regions that stop 
bordering one another. 

Temporal meet: If two area objects that used to border each other no longer do, 
then the border curve should split into two new curves, one for each area object. 
These new curve objects should store the fact that they are continuations of an old 
curve. 

The curve unit can be defined as follows: 

UCurve vt T,( ) vt Interval∈ T 3DTriangle⊂
t vt∈( ): AtIns t t T,( )tan Curve∈( )∀

∧ ∧{
}

≡

 
The AtInstant function creates the intersection between a flat plane at a given time 

and a given set of 3D objects. The Curve type represents a non-temporal curve. 
The moving curve is a set of curve units: 

MCurve C e1 e2 f1 f2 TM, , , , ,( ) C UCurve⊂
e1 MPoint∈ e2 MPoint∈
f1 MFace∈ f2 MFace∈ TM MCurve⊂

a C∈( ) b C∈( ): Overlap a. i b.i,( ) a b=( )→( )∀∀
endPoint e1( ) endPoint e2( )
borderFace f1( ) borderFace f2( )

Overlap f1 f2,( )¬
mc TM∈( ):TempMeet this mc,( )∀

∧ ∧
∧

∧
∧ ∧

∧ ∧ ∧
∧

∧ ∧

{

}

≡

 
In this definition, endPoint(p) indicates that the point is an end point of this curve, 

and borderFace(f) indicates that the face is bordered by the curve. The MFace type 
represents a moving face and is defined later. 

The moving line is a set of moving curves. It does not require that those curves 
have the same time slices. The reason for this is given in the next section. In the 
example in Figure 3 the different dash patterns indicate different moving curves. 

MLine C C MCurve⊂{ }≡
 

4.5   Moving Region 

The moving region type from [9] is defined as a set of non-overlapping faces. A face 
is a connected area object that may have any number of holes. 

The main topological relationship between faces that should be handled explicitly 
is bordering, that is, which regions border this region. This relationship can be 
deduced from the bordering regions relationship for moving lines. 
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Fig. 4. Moving Face 

A moving cycle is a set of moving curves that for any time instant in the time 
period that the cycle object is valid forms a ring. In the models from [9], a moving 
cycle is considered to consist of only one curve. However, when one wants to store 
topology it is better to think of a cycle consisting of a set of curves. Each curve in the 
set represents the boundary between two particular regions. The moving cycle is 
therefore defined based on the moving line type. 

MCycle l vt,( ) l MLine∈ vt Interval∈
t vt∈( ):AtIns ttan t l,( ) Cycle∈∀

∧ ∧{
}

≡
 

The curve units in each moving curve represent the boundary between two partic-
ular region units. Since the regions bordering a particular cycle may be updated at dif-
ferent times and therefore have snapshots at different times, the curve units in each 
curve in an line must be allowed to have different time slices. 

A moving face consists of one moving cycle representing the outer boundary of the 
face and N moving cycles defining the holes. Discrete changes in the moving face are 
assumed to happen in the instants between time slices. All the cycles in a given face 
unit should be valid in the time that the face unit is valid because changes in topology 
such as the appearance of new holes should only occur between time slices. The face 
unit is therefore defined as follows: 

UFace oc HC vt, ,( )
oc MCycle∈ HC MCycle⊂ vt Interval∈

hc HC∈( ): Inside hc oc,( ) hc .vt vt⊇( )∧( )∀
oc.vt vt⊇( )

∧ ∧ ∧
∧

{

}

≡

 
In this definition, Inside(a ,b) is true iff a is inside b. 
Notice that in this definition the face units may be different from the units of the 

moving curves. This is because a curve has a new unit whenever one of the faces that 
it borders is updated. Thus if curve a borders faces b and c, a has a number of units 
equal to the total number of units of b and c. 
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A moving face is defined as a non-overlapping set of face units: 

MFace UF UF UFace⊂
a UF∈( ) b UF∈( ): Overlap a.vt b.vt,( ) a b=( )→( )∀∀

∧{
}

≡

 

A moving region is a set of moving faces. These are not required to have the same 
time slices. If a region consists of several faces one is not guaranteed that snapshots of 
all the faces from the same time exist. 

MRegion F F MFace⊂
a b, F∈( ): a b≠ Disjo int a b,( )→( )∀

∧{
}

≡

 

5   Constructing the Hybrid Model 

This section presents a method for constructing the hybrid model of moving regions 
from a series of snapshots of the individual regions. This method assumes that the 
regions are updated periodically but not necessarily simultaneously. The topological 
relationships between the regions are stored in an adjacency graph. All topological 
relationships should be maintained unless this graph is explicitly changed. 

Modelling a partition and modelling a network are two sides of the same coin as 
the borders between the regions in a partition forms a network. A model for one also 
works for the other. This also applies to partial partitions (ones that cover only a part 
of the space of interest). 

5.1   Constructing a Moving Partition 

When creating the component objects of a moving partition, it is easier to interpolate 
the border curves than the regions themselves. One approach based on regions would 
be to interpolate each region separately and then ensure that their borders meet.  
Writing a procedure that could do this and ensure consistency in places where more 
than two regions meet would be quite complex. Therefore, the algorithm presented 
here for creating a moving partition is based on interpolating the border curves rather 
than the regions. The algorithm is also based on an adjacency graph2 supplied by the 
cartographer. This adjacency graph must be explicitly updated when the topology 
changes. 

The algorithm assumes that there is a pre-existing partition that one wants to 
update. When creating a partition for the first time, one runs a similar algorithm for 
each cycle in the adjacency graph of the initial partition as well as for each edge that 
does not belong to a cycle. 

When modifying the regions so that they fit together in the partition, the system 
always stores the original versions as well as the modified ones. The original versions 
are used for interpolations whenever a new version of a region is inserted. This is dome 
to ensure that the interpolated versions of the regions stay as close to the original as 
possible, especially if one region is updated several times while another is not. 
                                                           
2 An undirected graph with one node for each face and an edge between each pair of faces that 

border each other. 
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Algorithm. UpdatePartitionInterpolation(nf, FS, ag) 
Input: A new face snapshot nf, the set of faces in the partition FS, and an 

adjacency graph for the faces ag. 
Output: The face set with a new snapshot added 
Method: 
 Let of be the previous snapshot of nf 
 Let fn be the node in ag that represents of 
 Let mf be a copy of nf 
 For each cycle in ag that contains fn do 

  Compute a meeting point for all the faces in the cycle using the original rather 
than the modified snapshots. This is done by adding a buffer of the same size 
for all the faces (if there is a gap) or subtracting an area of the same size for all 
the faces (if they all overlap). 

 End for 
 For each edge in ag that ends in fn do 

  Construct a meeting line between the two faces by adding a buffer to the other 
face and removing overlap until they meet. For each side where there is a cycle 
ensure that the lines end in the meeting points. 

  Update mf by replacing the original line with the new meeting line (See 
Section 5.2) 

 End for 
 Interpolate the lines of the face mf from their version in of 
 Add the interpolation and mf to FS 
 Add nf to FS as the original face (for use in later runs of this algorithm) 
 return FS 

End UpdatePartitionInterpolation 

The adjacency graph is supplied by the cartographer who knows which regions are 
supposed to border each other. Updates to the topology is reflected in updates of the 
adjacency graph. The following updates are possible: 

 •  Removing an edge 
 –  At the edge of the partition: This region no longer borders that region. The 

interpolation system should ensure that from the point in time in which the 
edge was removed there is a small gap between these two regions. (Regions 
in the adjacency graph should not overlap. A region may be added to the 
graph as an isolated node to indicate that it should not overlap any of the 
other regions). 

– In the middle of the partition: These two regions no longer border each other. 
Reduce the meeting line to a point at the time in which the edge was 
removed. This point may then expand into a line between a new pair of 
regions. At the instant when the line is removed neither it nor any newly 
inserted lines exist thus forming a possibly temporary cycle. 

 •  Removing a node 
– As nodes correspond to faces, this means that a face no longer exists. Insert a single 

point representing the face as a new version and interpolate neighbouring faces 
to this point. This point is the new meeting point of the eventual new cycle 
created by removing the node. All the edges from that node are also removed. 
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Adding an edge or node is just like removing one except that the process is 
reversed in time. 

Whenever the adjacency graph is updated, all affected faces must have a new time 
slice, where the state at the beginning of this new time slice is the state according to 
UpdatePartitionInterpolation after the change in the graph. 

5.2   Constructing a Moving Network 

A network may consist either of nodes (points) with curves between them (like graphs 
except that the shape of the curves may be important) or routes and intersections. The 
difference between these two is that the routes-and-intersections model can be equiva-
lent to a non-planar graph as routes may cross each other without intersecting (one 
road goes in a tunnel below another with no means of switching from one to the other). 

If the entire network is updated at the same time instants, representing a changing 
network is trivial. A network unit is simply a collection of moving curves which end 
in the same moving points (nodes). Changes in topology (removal of edges or nodes, 
merging of nodes and edges) happen only between the time slices (at the end of one 
and beginning of the next) in this model. 

When the curves are updated individually, they are interpolated as normal. Addi-
tionally, a new version of the end points are stored. The end points are interpolated in 
time between all the end points of all the curves that meet there. Thus the meeting 
point of four curves would be updated whenever any of the four curves is updated. 
This means that the final line segment of each curve changes more often than the 
other lines, and the interpolation of these line segments cannot use the normal 
algorithm from [12]. One alternative method would be this:  

 •  Create the projection of the final line segments and the changing end point on a 
plane that is parallell to the time axis and has an angle to the x-y axis that is the 
average of the angle of the final line in the two snapshots.  

 •  Create the Delaunay triangulation of the projected lines.  
 •  Use this as the triangulation of the final line segments. Going back to a full 3D 

representation is easy since the triangulation does not insert any new points and 
the 3D coordinates of the points used are known. 

One example of such a curve and the proposed interpolation algorithm is shown in 
Figure 5. 

 

Curve at time 1 

Curve at time 2
Meeting Point 

Meeting Point 

Ordinary Interpolation from [12] 

Delaunay Triangulation 

 

Fig. 5. Interpolating a line in a network 
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For networks consisting of routes and intersections, a modified version of this 
method can be used. Each route is equivalent to a connected set of edges and each 
intersection is equivalent to a meeting point. Places where routes cross but there is no 
intersection are not represented as points. This is a simple way of distinguishing such 
crossings from regular intersections. 

6   Handling Current Time 

The database described so far handles historical spatiotemporal data quite well. How-
ever, when asked about the current state, it can only return the last state of the various 
polygons, and this state can be inconsistent for those polygons which have not been 
updated for some time. The most straightforward method is to assume that the objects 
are static after the last update. This method works well if the objects do not move too 
much. The method basically goes as follows: 

 •  Take the most recent snapshot in the area of interest. 
 •  Insert a new time slice of each object that extends from the last snapshot of the 

object to the current time. The object is considered to be static in this time slice. 
 •  In this new time slice, all the moving points and curves are static and do not 

change from their most recent state. This includes the curves that form the 
boundaries of moving regions. 

This is a fairly simple method that works well in many cases. However, it does not 
take the movement of the objects into account and may therefore produce highly 
inaccurate results in cases in which the objects move fast. 

One alternative is to try to extrapolate them based on past movement. To do this 
for a general line or region is quite complex. A naïve approach would be to 
extrapolate based on the movement of the individual points that make up the line or 
region border. This produces artifacts like shown in Figure 6. 

 

Fig. 6. Extrapolating using a Triangle Representation 

7   Implementing the Model 

In this model many objects should have references to each other. For instance, the 
region object stores its boundary as a set of curve objects. This ensures consistency, 
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but it also creates a problem. To fetch the geometry of a region, one must access all 
the curve objects that make up its boundary, and all the point objects that make up the 
meeting points for those curves. Unless these are stored together, this may slow down 
the system. Border curves cannot be stored together with both of the regions that they 
border as these regions may be stored in entirely different places on the disk. 

An alternative is to store several copies of these objects. For the curve, one would 
store one copy for each of the two regions that have it as part of their boundaries. This 
would make retrieval more efficient, but would introduce the possibility of inconsist-
encies. To solve this one would need a database system that could handle integrity 
rules of the type “Objects A and B should always be equal”. Such a system could then 
enforce this by always updating both curves when one is updated. This would 
increase the cost of updating as well as storage cost, but would reduce query costs. 

For many of the relationships, such as a point serving as an end point, the relation-
ship is stored in only one object, typically the object for which the relationship has the 
lowest cardinality. This is common design practise in relational databases and helps to 
ensure consistency. However, one may choose to store the relationships both ways 
instead. This will increase storage cost as well as update cost to avoid inconsistencies, 
but may reduce query cost. 

[6] defines two relationships as examples of temporal topological relationships: 

 •  Enters: The object starts outside the region and moves inside it. 
 •  Crosses: The object enters the region and later leaves it. 

The time slices in the hybrid model may be used to reduce the amount of data that 
needs to be fetched to do these computations. If each time slice has its own spatio-
temporal bounding box, an index may be used to find those time slices of each object 
in which they may overlap. Then only those time slices need to be used to compute 
the temporal topology as for all other time slices the objects are known to be disjoint. 

8   Summary 

This paper has presented an extension to the sliced representation from [7] that is 
capable of representing explicit topology. This is necessary for several important 
operations, including checking whether two regions border each other. The new 
representation is slightly more complex than the original representation, but many of 
the same algorithms are applicable to both. 
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