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Abstract. In this paper, a qualitative shape representation is described
for the purpose of characterising linear geographical and artificial ob-
jects. In particular, we focus on the curve progression telling us how
objects spread across the landscape. For instance, sinuosities of rivers
provide important information about imperilled locations in the case of
flood waters. However, precise geometrical descriptions are overdeter-
mined and frequently difficult or sometimes impossible to obtain. By
contrast, we introduce a concept which allows curves to be classified on
the basis of a qualitative representation that defines properties of linear
objects, which derive from how segments of objects are located relative
to other segments, arriving at conclusions such as how twisty a curve is.
Especially, the new method can be applied if only coarse information is
available and even then if objects are given incompletely.

1 Introduction

In geographical information systems topological relations between geographical
objects are useful [3]. It may, for example, be crucial to a particular query that
there is a forest and that there is a river which is not connected to the forest; but
it does not matter at all what the boundary of the forest looks like, or how far the
river is from the forest provided that they are not in contact; such geometrical
relationships are not important when we are interested in those cases where only
the given topological relationships hold. Precise correspondences would retrieve
fewer results than there are actually in the database. But sometimes topological
relationships do not sufficiently characterise the query. For example, it might
be crucial to take the curve progression of the river into account. How can
different meanders of rivers, such as those in Fig. [[l be described? Similarly,
there are many kinds of geographical and artificial objects for which curvature
information is important, including among others contour lines in topographic
maps, coastlines, borders of countries and other regions, transportation networks,
such as roads and railways, irrigation networks, and sewer systems.

Modern geographic information systems demand concepts that provide means
which are closely related to how people deal with spatial information, since it
is desirable that user interfaces become more natural. Capturing commonsense
knowledge about objects, qualitative representations lend themselves to provide
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Fig. 1. Rivers differing in their curvatures

appropriate representational concepts [2]. Especially, qualitative boundary based
approaches which are related to linear objects record features of boundaries while
walking along them. Those which have been devised most recently include
[BTTIT4I10). [T1] base their approach on a discretisation of tangent bearing and
curvature, considering the rate of change of curvature, and they give a set of tokens
from which higher-level tokens can be derived. By contrast, all other approaches
rely on polygonal approximations of the underlying boundaries. There are several
reasons for this. Most importantly, polygons are at the core of geographical infor-
mation systems; the discrete space used in computer representations inherently
deals with polygons; depending on the application at hand objects can be approxi-
mated at a number of different granularity levels when using polygons; frequently,
polygons are directly given (when recording the path of a navigating system the
position of which is measured at intervals, for example); polygons provide concise
representations of even highly complex objects, forming an appropriate basis for
the qualitative characterisation of shapes from both the local and global points
of view. Considering linear objects such as rivers, we are actually concerned with
open polygons, i.e. simple polylines. Below, we simply speak of polygons, denoting
both simple polylines and simple polygons.

This paper addresses the problem of how to represent smooth curves by poly-
gons in such a way that the curve progression of linear objects is made ex-
plicit. Improving user interfaces in such a manner that distinctions made by
the system are easily comprehensible by humans, a qualitative representation
is recommended. As such section 2 introduces the qualitative representation on
which we shall define qualitative features for the purpose of characterising me-
anders of linear objects in section 3. A number of examples in section 4 illustrate
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Fig. 2. The conceptual neighbourhood graphs of BA»; (middle) and B.Aiz (right)

how those qualitative features apply to linear objects. An extended concept of
neighbourhood relations is introduced in section 5, which forms the basis for the
introduced concepts and which generalises to other qualitative representations.
We conclude in section 6, suggest topics for future research, and summarise in
section 7.

2 A Qualitative Feature Scheme

In this section we will summarise previous work on a qualitative feature scheme
on which the current approach is based. This feature scheme consists of a number
of relations which describe arrangements between line segments in two dimen-
sions. Such relations have been referred to as bipartite arrangements, BA for
short [7]. Fig. 2l shows these relations.

If one line of a polygon is made the basis, the position of every other line can
be described relative to it, using the relations of B.As3 which are shown on the
left hand side of Fig. 2l In this way, the qualitative context of a polygonal line,
x, is considered, and for a polygon with n lines we obtain a list of relations to
which we refer to as the course of reference segment x, in short C(x):

C(X) = (Xyys s Xy ), Xy, € BAgz,i=1,..,n (1)

with Xy, meaning that line segment y; is described with respect to reference seg-
ment x[] In particular, it holds that x, = Id. A subset BA;3 C BAsz, shown
on the right hand side of Fig. @l provides a set of atomic relations in the
sense that all other relations can be obtained by combining B.A;3 relations (e.g.

C, = BO,D/FO)).

! Instead of the common infix notation we use indices in order to be able to list many
BAss relations in a compact way.
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The entire range of relations (accordingly to B.A;3) where C(x) runs along is
called its scope, and the number of different B.A;3 relations involved is called
the extent, n(C(x)) for short. The shortest extent is 0 in which case there is
no other line segment than the reference segment x itself; the largest possible
extent is 12 (which is [B.Ay3 \ {ld}|) in which case the course runs completely
around x. Scopes of such courses are also referred to as universal scopes since
all relations of BAss are realisable within these scopes. Eventually, there exist
different scopes which have the same extent, for instance, one course may go
from F| to F, and another one from B, to B,; both courses, however, have an
extent of 3.

While [9] distinguishes local and global features, here we simplify matters
by representing both local and global features by bipartite arrangements. That
is, we conceive each pair of line segments in a simple polygon as to be free of
intersections, meaning that especially adjacent line segments have no point in
common. For this purpose, we stipulate that each point which connects two line
segments belongs to the first line segment in an oriented polygon. This enables
us to get by with B.Ass relations, as depicted in Fig.

Having a polygon with n line segments there exist n courses, each one com-
prising n bipartite relations, i.e. such a feature scheme comprises a total of n?
relations. Writing down all courses, one below the other, for a polygon with six
lines the following matrix is obtained (compare the polygon on the left hand side
of Fig. Bl and note that singular relations, such as between x and y, are dealt
with in accordance to [g]):

Id u, uyux uy u; :1d D, D, BO, B, By,
o ld vy v vy v, :De Id F Fy Fr G
wy wy Id wewy w,: B B Id F G, By
Xy Xy Xw ld %y x; : By By By Id D, D,
Yu Vv Yw ¥x ld y; : F, FO, D, D, Id F,
Zy Zy Zw 2« 2y |d : D, D, BO, B, B/ Id

3 Towards the Characterisation of Meanders

A bend in a river is referred to as a meander, emerging from a stream flowing
through a wide valley or flat plain thereby tending to form a meandering stream
course as it alternatively erodes and deposites sediments along its course. The
result is a snaking pattern as the stream meanders back and forth across its
floodplain.

In the following, we shall generalise this concept, using the term meander
broadly for linear objects which are shaped by several twists and turns, and we
will characterise winding courses, i.e. how a polygon develops from the point
of view of one of its line segments, to which we will refer to as the reference
segment. The simplest way of characterising a course consists in referring to
its BAgs relations. But what does a list of many B.Ass relations tell us? (Have
a look at the matrix above.) We shall rather identify more abstract features
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Fig. 3. Circulation directions around a reference line

which derive from this matrix, and which concisely describe a course, such as
whether it runs around the reference segment clockwise or anticlockwise, whether
it comprises reversals, and towards which directions the course runs along. In
this way we will characterise differently shaped meanders.

Formally, at the finest level sequences of B.As3 relations are considered (equa-
tion[Il), and at a coarser level sequences of generalised directions are considered
(section B]). In the latter case atomic B.Agg relations are put together in order
to form yet a coarser description than B.Ass relations. Following a list of B.Aas
relations or generalised directions a course either orbits clockwise or anticlock-
wise around the reference segment (section [3:2). Taking the first derivative of a
course amounts to consider changes in direction to which we refer to as rever-
sals (section B3]). Positions at which such changes occur are analogous to local
minima and maxima of functions and they are referred to as inflection segments

(section B.A4).

3.1 Generalised Directions

Suppose a polygon is described with respect to one of its line segments, x. As far
as we are only interested in the overall direction towards which the course of x
runs along, different B.As3 relations can be put together which make up the same
direction at a coarser granularity level. Such coarser directions form subsets of
BAjgs. Leaving out the identity relation, there are 222 = 4194304 such subsets.
Some of them are particularly useful as coarse directions; for example, a course
may run somewhere left of the reference segment:

C(X) =|= ngx I Xy S {F|,FO|,D|,C|, BO|, B|} (2)

These six relations combine to 2° = 64 different sets which form the basis of sev-
eral different courses, all of them running left of the reference segment. C(x) =r
(right of), C(x) = F (in front of), C(x) = B (back of), etc., can be defined in the
same way. By this means, complex concepts are based on fewer relations than
when taking individual B.As3 relations. Altogether, we introduce generalised di-
rections as to be defined over sets of atomic B.A;3 relations:
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C(x) = FeFr C(x) = F,FO, C(x) =D, C(x) = BO,

/FWMW

Fig. 4. Five polygons with three of them leading in a single direction (F., D, and
BO:) with respect to line segment x, while two of them are almost limited to one
direction

Definition 1 (Generalised direction)
x 18 line segment of a polygon and C(x) is its course. A generalised direction of

C(x), w(C(x)), is a set M € P(BA;3).

For instance, the right hand side of Fig.[Blshows a polygon which can be described
as to run (somehow) right of x, thus w(C(x)) = r; but this is not entirely true for
the polygon on the left hand side.

How do generalised directions of different reference segments combine? Taking
into account simultaneously the directions of all courses, properties such as the
convexity of closed polygons can be derived. For an arbitrary closed polygon, P,
which is oriented anticlockwise it holds

Proposition 1
convex(P) < Vyep : w(C(x)) = |

Proof: reduction on the triangle orientation: for three adjacent points of a convex
polygon P which is oriented anticlockwise, their triangle orientation is anticlock-
wise. Accordingly, the first two points define a reference segment, x, while the
third point lies left of this line, as does each following point. As a consequence,
each line segment, y, defined by two such following points, lies left of x. As x can
be defined by two arbitrary points of P, for each course it holds that all its line
segments lie left of the reference segment, and it holds that Vyep : w(C(x)) = 1.
Conversely, if Vxep : w(C(x)) = |, then for each pair of lines it holds that the
primary segment lies left of the reference segment. The same holds for the end-
points of such pairs of line segments, which define triangle orientations which
are all oriented anticlockwise, indicating that the polygon is convex. (|

While both BAjys relations and generalised directions describe how parts of a
polygon are located relative to other parts of that same polygon, considering
meanders we are interested in how these relative locations change when following
the courses of the reference segments.
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Fig. 5. Two polygons describing the same course with respect to line segment x

3.2 Circulation Direction

Irrespective of generalised directions introduced in the previous section, it can
be distinguished whether a course circulates left around or right around the
reference segment:

Definition 2 (Circulation direction)

x is line segment of a polygon. The circulation between two neighbouring line
segments, y andy’, is left of x, i.e. p(xy, %y ) = |, if the path from the first relation
xy to the second relation xy Tuns anticlockwise around x; otherwise, it is right
of x, in short r. If the direction does not change it holds that p(xy,x,) =€, as it
does if y and y' are not adjacent line segments.

p(xy,%;) = € denotes the case that it cannot be determined from the point of view
of x whether the circulation direction from y to z is clockwise or anticlockwise
with respect to x. This indeterminacy can either be compensated by another
reference segment, or y and z are not adjacent in which case their circulation
direction cannot be derived from y and z alone.

Fig. Bl shows two examples. On the left hand side the course of x circulates
entirely right of x. On the right hand side it also runs right of x, but it then
turns back and as a consequence runs left of x. Note how this is different from
the generalised direction w(C(x)) =r.

Further examples clarify the meaning of the circulation direction: p(F\FO;) = I,
p(FOIF) =r, p(FIFm) =1, p(FIFOnBO,) =rr, p(FIFOyFO,FO,D,) = rlr, and
p(FOFIdD,BO,) = rr. Equal neighbouring directions can be omitted in order
to obtain only the changes, i.e. changes between left and right, or anticlockwise
and clockwise, respectively. It then holds that the number of changes between
left and right of p(C(x)) is less than or equal to the length of the course.

Taking each of the line segments of the polygon on the left hand side of
Fig.Blas a reference segment, the circulation direction is always either r (clock-
wise) or e (indeterminate). But the circulation directions of different reference
segments of the same polygon are not always equal, as demonstrated by the poly-
gon on the right hand side of Fig. Bl Here, p(uw, ux) = p(Dy, BO,) = r, whereas
p(zw,z¢) = p(Fi,FO|) = I. The circulation direction depends on the position of
the reference segment with respect to the other line segments of the same
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C(x) = F,FO,BO.BnBOFOF|FFO,BO,BmBO, C(x) = F,FO,D,BO,B,

Fig. 6. Polygons without reversals from the point of view of x

polygorE. Changing the circulation direction is what we will focus on in the
next section.

3.3 Reversals

As soon as a course changes its circulation direction from left to right or right
to left, the course includes a reversal, as indicated by its first derivative. For
example, C(x) = F,FO,D,FO,F, comprises a reversal since the circulation direc-
tion is changed after D, with the second FO, relation.

Definition 3 (Reversal)
x is a line segment of a polygon and C(x) is its course. If C(x) comprises two

sections which circulate in different directions around x, C(x) contains a reversal,
and it holds o(C(x)).

Examples of courses without reversals from the viewpoint of line segment x are
depicted in Figs. [ and [0l Examples of courses with exactly one reversal with
respect to x are depicted in Fig. [l As the left hand side of Fig. [l shows, all
reversals of a polygon cannot always be deduced from single courses. It is rather
necessary to test all courses of a polygon in order to determine whether there
are reversals in the polygon.

An algorithm which determines reversals of a course C(x) derives from

Proposition 2
0(C(X)) € Futvrnwx (U <V <WAX, # X Axy = xw AN(C(x,u,w)) < 12) (3)

Proof: u, v, and w are line segments which are unequal to x, and u<v <w
ensures an ordering among them, i.e. there is a section, s, of the course C(x)
which consists of at least three line segments. As it holds that x, # x, there is at
least one change in direction in s while x, = x,, ensures that the first direction
in s is again satisfied at the end of s. Let C(x, u,w) refer to the section s of C(x)
which starts with line segment u and ends with line segment w. Then, the course
of s must have been turned backwards in the meantime since it holds that the
extent of s, i.e. n(C(x,u,w)), is less than the extent of the universal scope. O

2 Tt depends also on its orientation relative to the other line segments. However, the
current work solely relies on relative positions and analyses their relationships.



120 B. Gottfried

C(x) = F.FO,D/FO.F, C(x) = D,BO,B.BO.D,
e :
S

Fig.7. Polygons with reversals; note that relations are put together when they are

equal and adjacent

3.4 Inflection Segments

Determining line segments at which reversals occur enables reversals to get dis-
tinguished according to B.Ass, that is, by describing inflection segments regarding
their B.Agg relation. Such line segments are defined as follows:

Definition 4 (Inflection segment)

x is a line segment of a polygon, C(x) is its course, and it holds that o(C(x)).
'y denotes the predecessor of y and y' its successor. Then it either holds that
P(Xry, Xy, Xyr) = Ir o1 p(xry, %y, Xyr) = rl. The first line segment after that reversal,
namely y', is called the inflection segment.

While p(xry,%y) =1 and p(xy,x,) =r, y' denotes the inflection segment which
runs around x the other way round than that line segment which is immediately
before y'.

Consider, for example, Fig.[7l Inflection segments are marked by circles. Note
that these segments are inflection segments from the point of view of reference
segment x. There are probably other inflection segments when considering other
reference segments than x. To identify each inflection segment of a polygon it is
necessary to analyse all courses, for the same reason as it is necessary to analyse
all courses in order to find all reversals.

4 A Case Study: Differentiating Meanders

To illustrate the method, we shall compare the similarity of a number of German
streams. What we want to know is whether their meanders can be distinguished
in determining their reversals, and how the streams relate when ranking them
regarding the number of reversals they comprise. For instance, while the Mosel
has many twists and turns, the Fulda is less curved but comprises also some
windings. Does the concept of reversals as introduced above account for those
distinctions?

In order to obtain polygons the rivers have been approximated by the polyg-
onal approximation algorithm of [12]. Using 1:5,000,000 small scale maps’, the

3 Note that the images shown are scaled up and down slightly to fit in the layout.
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Fig. 8. The river Mosel approximated and simplified by a polygon

Mosel has been approximated by 51 line segments while the Fulda has been ap-
proximated by 22 line segments, allowing for the same error in both cases, namely
not exceeding a cell in a raster representation. The Fulda comprises 8 reversals
(on average, 0.36 per line segment) and the Mosel comprises 94 reversals (on
average, 1.84 reversals per line segment). This shows that the method identifies
the Mosel as to be five times more curved than the Fulda. But is this still a
qualitative difference? It is at least based on qualitative distinctions, namely at
the level of BA relations where we are rather concerned with differences in kind
than of measurement. However, counting the number of reversals we obviously
turn to some quantitative measurement. On the other hand, the number of re-
versals involved is in itself without meaning (nor is the normalisation). Instead
it is the ordering of those quantities which matters, allowing the streams to get
ordered, this ordering being of relative (and hence qualitative) nature.

For the Fulda in Fig. [0 we have printed the inflection segments in pale-grey,
in order to visualise how inflection segments appear at those parts of a polygon
where indeed large turns are made. Note that such locations can be identified on
the basis of qualitative relations alone without requiring precise computations.
But instead of precise inflection points of zero curvature we obtain extended
portions of the polygon at which the curvature changes.

In Figs. [0 and [l there are fourteen of the largest streams in Germany and
their polygonal approximations. They have been ordered regarding their me-
anders, i.e. for each stream the number of reversals has been determined and
normalised with the number of line segments involved. The polygonal approxi-
mations have been printed enlarged in order to allow them to be compared more
easily. The first stream with the fewest reversals is the river Havel, that stream
with the most reversals is the river Mosel. The shown ordering can in fact be
comprehended very well: beginning with the Havel the streams getting more and
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Fig. 9. The river Fulda approximated and simplified by a polygon; inflection segments
are printed in pale-grey

more complex. It shows that both little meanders like in the case of the Mosel
and larger meanders which extend larger portions of the stream like in the case
of the Elbe and the Fulda are equally identified by this method.

5 Extending the Concept of Neighbourhood Relations

According to [5] two relations are conceptual neighbours if one of the objects
involved can be continuously enlarged, shortened, or moved, so that one rela-
tion transforms into the other one without passing any third relation. We shall
extend this concept of neighbouring relations by including the circulation direc-
tion. That is, while transforming one relation into another one we distinguish
whether the line segment which undergoes some deformation circulates around
the reference segment clockwise or anticlockwise during this deformation step.
This changes nothing about the notion of conceptual neighbourhoods but al-
lows a finer distinction to be made, either during a transformation step or while
describing the course of the reference segment.

Definition 5 (Directed neighbourhood relation)

x is a line segment of a polygon and C(x) is its course. Then, two relations, x, and
Xy, i C(x) are left-directed neighbours, if they can be directly transformed into
one another by continuously deforming (i.e. shortening, lengthening, or moving)
y by circulating left around x without passing any third relation. Right-directed
neighbours are defined accordingly.

This definition adapts to all those qualitative representations which define con-
ceptual neighbourhood graphs, such as [, [4], and [I3]. For the time domain,
this amounts to distinguish a transformation towards the past and towards the
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future; in the domain of regions this allows for the differentiation whether two
moving regions merge or separate. Directed neighbourhood relations are uniquely
defined for these domains. Informally, this can be read off the neighbourhood
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Fig. 11. German streams and their reversals: shown is the absolute number of reversals

(first number) and the number of reversals on average per segment (second number)

graphs. In fact, this differentiation is partly implied in the ordering of relations
in the time domain, since Allen distinguishes relations such as before and after.

In our case directed neighbourhood relations are necessary in order to distin-
guish two circulation directions, and as a consequence, in order to be able to recog-
nise reversals as well as inflection segments. But directed neighbourhood relations
are yet more fundamental. Qualitative representations frequently define sets of
binary [4] or sometimes sets of ternary relations [15] among a number of two or
three objects, respectively. But here we are concerned with single objects which
are to be characterised qualitatively. The idea behind the qualitative characteri-
sation of single objects relies on the partitioning of objects into parts in order to
describe relations among those parts. However, this requires to take into account
the ordering of qualitative relations between parts accordingly to how those parts
define some object. For instance, concepts such as the circulation direction can
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then be defined, and this makes the distinction between figure and ground pos-
sible which requires the orientation of an object’s boundary to be determined.
In this sense, the concept of directed neighbourhood relations is essential as an
additional means for determining specific features among objects or parts.

6 Discussion

Having defined generalised directions and reversals, polygons can be classified ac-
cordingly. A polygon, for instance, which comprises reversals for neither of its
courses would be classified as to be straight. Conversely, the more reversals a poly-
gon has the more curved it is. Describing reversals in combination with generalised
directions allow yet finer classifications to be made. Accordingly, sections without
reversals can be described by generalised directions. Similarly, inflection segments
can be referred to either by B.As3 relations or generalised directions.

An advantage of this approach is its ability to cope with indeterminacy: In-
completeness arises if there are gaps in the polygon; nonetheless, all relations
between the discernible segments can be used in the described way; this allows to
describe the incomplete shape at least partly. Imprecision is dealt with implicitly
by the coarseness of B.Ass relations. Overall, the strength of these techniques is
that the approach is particularly well suited for dealing with coarse shape in-
formation. Once precise shape details matter it may be appropriate to apply
quantitative methods instead. However, even if information about a stream has
been acquired incompletely or imprecisely, it is possible to determine reversals. In
order to analyse the robustness of the method, we currently investigate to what
extent the chosen precision of the polygonal approximation algorithm affects the
number of reversals which are detected.

This generalises to the question of how qualitative features do depend on
the granularity level at which polygons approximate linear objects. It is worth
investigating to what extent the number of reversals, for example, depends on
the chosen granularity level. Whenever there is a part of a course which crosses a
singularity this will be the case regardless of whether the course is approximated
with many or only with a few line segments. For instance, a course might run
first of all left of some reference segment and afterwards in the front of that
segment. In this case the course must contain the FO; relation somewhere, and
this course must contain another FO, relation later if it contains a reversal.
Dealing with a reversal which is even visible at a coarse approximation level,
this same reversal will also be perceivable at each finer granularity level. But
things are unfortunately not always that simple: a quite small reversal might be
probably smoothed away at coarser granularity levels. However, objects should
be approximated at a level of abstraction so that distinctions can be made which
are crucial for the application at hand. Otherwise, if it is not possible to find a
granularity level on the basis of the given application, objects which are to be
compared should at least be approximated at the same granularity level.

The course of a reference segment determines directions at which other
line segments are situated relative to the reference segment. However, further
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investigations concern the involvement of line segment orientations and their
relations to positional relations, as they have been used in the current work. In
particular, it is of interest which properties there are that cannot be defined on
positional relations alone. Moreover, the question arises whether the method can
be refined so as to make it possible to distinguish small Mosel-like meanders, and
large Fulda-like meanders. Eventually, it is of interest to thoroughly analyse how
courses of different reference segments of the same polygon are related. For this
purpose it might be useful to use the algebraic properties of the B.A relations,
as they have been defined in [7].

7 Summary

A qualitative shape representation has been described which allows linear ob-
jects to be characterised. This representation is based on arrangements of line
segments in the two-dimensional plane, as they especially occur in polygons.
The qualitative relations used distinguish both a left-right and a front-back di-
chotomy, including several intermediate relations such as front-middle and front-
overlap left, for instance. Furthermore, an ordering of the relations is defined in
accordance to the ordering of line segments in polygons.

A number of properties of linear objects have been defined on the basis of
these relations for the purpose of distinguishing different grades of meanders of
linear objects. Applying this method to several German streams shows that they
can be ordered regarding their meanders, so that less complex meanders can be
distinguished from more complex ones, resulting in an ordering which can be
intuitively comprehended. In particular, small meanders and large meanders are
both allowed for.
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