Skip to main content

On Randomized Broadcasting in Power Law Networks

  • Conference paper
Book cover Distributed Computing (DISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4167))

Included in the following conference series:

Abstract

Broadcasting algorithms have various range of applications in different fields of computer science. In this paper we consider randomized broadcasting algorithms in power law graphs which are often used to model large scale real world networks such as the Internet. We prove that for certain (truncated) power law networks there exists a time efficient randomized broadcasting algorithm whose communication complexity is bounded by an asymptotically optimal value.

In order to describe these power law graphs, we first consider the generalized random graph model G(d) = (V,E), where d = (d 1, ..., d n ) is a given sequence of expected degrees, and two nodes v i ,v j V share an edge in G(d) with probability p i,j = d i d j /∑\(_{k=1}^{n}\) d k , independently [7]. We show for these graphs that if the expected minimal degree d min is larger than logδ n, δ>2, and the number of nodes with expected degree d i is proportional to (d i d min+1) − β, where β>2 is a constant, then a simple randomized broadcasting protocol exists, which spreads any information r to all nodes of a graph G(d) within O(logn) steps by using at most O(n max{ loglogn, logn/logd min}) transmissions. Furthermore, we discuss the applicability of our methods in more general power law graph models. Please note that our results hold with probability 1– 1/n Ω(1), even if n and d are completely unknown to the nodes of the graph.

The algorithm we present in this paper uses a very simple communication rule, and can efficiently handle restricted node failures or dynamical changes in the size of the network. In addition, our methods might be useful for further research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Chung, F.R.K., Lu, L.: Random evolution in massive graphs. In: Proc. of FOCS 2001, pp. 510–519 (2001)

    Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286 (1999)

    Google Scholar 

  3. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  4. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Rand. Struct. Alg. 18, 279–290 (2001)

    Article  MATH  Google Scholar 

  5. Callaway, D., Hopcroft, J., Kleinberg, J., Newman, M., Strogatz, S.: Are randomly grown graphs really random? Physical Review E 64, 051902 (2001)

    Article  Google Scholar 

  6. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(1), 115–126 (1952)

    Google Scholar 

  7. Chung, F.R.K., Lu, L.: Connected components in random graphs with given expected degre sequences. Annals of Combinatorics 6, 125–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chung, F.R.K., Lu, L.: The average distances in random graphs with given expected degrees. Internet Mathematics 1, 91–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chung, F.R.K., Lu, L., Vu, V.: Eigenvalues of random power law graphs. Annals of Combinatorics 7, 21–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chung, F.R.K., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees. Proc. National Academy of Sciences 100, 6313–6318 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. of PODC 1987, pp. 1–12 (1987)

    Google Scholar 

  12. Elsässer, R.: Bounding the communication complexity of randomized broadcasting in random-like graphs. In: Proc. of SPAA (2006)

    Google Scholar 

  13. Elsässer, R., Monien, B., Schamberger, S.: Load balancing of indivisible unit size tokens in dynamic and heterogeneous networks. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 640–651. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Erdõs, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen. 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  15. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. Comput. Commun. Rev. 29, 251–263 (1999)

    Article  Google Scholar 

  16. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1(4), 447–460 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gasieniec, L., Pelc, A.: Adaptive broadcasting with faulty nodes. Parallel Computing 22, 903–912 (1996)

    Article  MATH  Google Scholar 

  18. Gilbert, E.N.: Random graphs. Ann. Math. Statist. 30, 1141–1144 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 36(6), 305–308 (1990)

    Article  Google Scholar 

  20. Henzinger, M.: Algorithmic challenges in web search engines. Internet Mathematics 1, 493–507 (2003)

    MathSciNet  Google Scholar 

  21. Hethcore, H.W.: Mathematics of infectious diseases. SIAM Review 42, 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  22. Jeong, H., Tomber, B., Albert, R., Oltvai, Z., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 378–382 (2000)

    Google Scholar 

  23. Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proc. of FOCS 2000, pp. 565–574 (2000)

    Google Scholar 

  24. Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location protocols. In: Proc. of STOC 2001, pp. 163–172 (2001)

    Google Scholar 

  25. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Proc. Roy. Soc., 700–721 (1927)

    Google Scholar 

  26. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Leighton, T., Maggs, B., Sitamaran, R.: On the fault tolerance of some popular bounded-degree networks. In: Proc. of FOCS 1992, pp. 542–552 (1992)

    Google Scholar 

  28. Mitzenmacher, M.D.: The Power of Two Choices in Randomized Load Balancing. Ph.D thesis, University of California at Berkeley (1996)

    Google Scholar 

  29. Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Newman, M.E.J.: The spread of epidemic disease on networks. Phys. Rev. E66, 016128 (2002)

    Google Scholar 

  31. Pittel, B.: On spreading rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Raab, M., Steger, A.: "Balls into bins" - A simple and tight analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elsässer, R. (2006). On Randomized Broadcasting in Power Law Networks. In: Dolev, S. (eds) Distributed Computing. DISC 2006. Lecture Notes in Computer Science, vol 4167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11864219_26

Download citation

  • DOI: https://doi.org/10.1007/11864219_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44624-8

  • Online ISBN: 978-3-540-44627-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics