Constructing Shared Objects that are Both
Robust and High-Throughput

Danny Hendler* and Shay Kutten**

Faculty of Industrial Engineering and Management,
Technion, Haifa, Israel

Abstract. Shared counters are among the most basic coordination struc-
tures in distributed computing. Known implementations of shared coun-
ters are either blocking, non-linearizable, or have a sequential bottleneck.
We present the first counter algorithm that is both linearizable, non-
blocking, and can provably achieve high throughput in semisynchronous
executions. The algorithm is based on a novel variation of the software
combining paradigm that we call bounded-wait combining. It can thus
be used to obtain implementations, possessing the same properties, of
any object that supports combinable operations, such as stack or queue.
Unlike previous combining algorithms where processes may have to wait
for each other indefinitely, in the bounded-wait combining algorithm a
process only waits for other processes for a bounded period of time and
then ‘takes destiny in its own hands’.

In order to reason rigorously about the parallelism attainable by our al-
gorithm, we define a novel metric for measuring the throughput of shared
objects which we believe is interesting in its own right. We use this met-
ric to prove that our algorithm can achieve throughput of 2(N/log N)
in executions where process speeds vary only by a constant factor, where
N is the number of processes that can participate in the algorithm.

We also introduce and use pseduo-transactions - a technique for concur-
rent execution that may prove useful for other algorithms.

1 Introduction

At the heart of many distributed systems are shared objects - data structures
that may be concurrently accessed by multiple processes. The most widely-used
correctness condition for shared objects is linearizability, introduced by Herlihy
and Wing [14]. Intuitively, linearizability requires that each operation appears
to take effect instantaneously at some moment between its invocation and re-
sponse. Lock-free implementations of shared objects require processes to coordi-
nate without relying on mutual exclusion. They are considered more robust, as
they avoid the inherent problems of locking, such as deadlock, convoying, and
priority inversion.

* Supported in part by the Technion Aly Kaufman Fellowship and by the Israeli min-
istry of science and technology.
** Supported in part by the Technion foundation for the promotion of research.

2 Danny Hendler, Shay Kutten

A shared counter is an object that holds an integer and supports the
fetchéincrement operation for atomically incrementing the counter and return-
ing its previous value. Shared counters are among the most basic coordination
structures in distributed computing. Consequently, efficient implementations of
shared counters received considerable attention in the literature. In spite of these
efforts, existing counter implementations are either non-linearizable, blocking, or
inherently sequential. This paper presents the first counter algorithm that is both
linearizable, nonblocking, and highly parallel.

If the hardware supports the fetchéincrement primitive, then the simplest
way to implement a counter, shared by N processes, is by using the following
trivial algorithm: all processes share a single base object on which they perform
the fetchéincrement operation to get a number. Although this central counter is
both linearizable and nonblocking (it is, in fact, wait-free [11]), it has a sequential
bottleneck. Specifically, the worst-case time complexity of this implementation
is £2(N): if all processes attempt to apply their operations simultaneously to the
central counter, the last to succeed incurs a delay linear in N while waiting for
all other earlier processes to complete their operations.

Fich et al. [4] proved an 2(N) time lower bound on obstruction-free [12]
implementations of a wide class of shared objects, that includes counters, stacks
and queues. This lower bound establishes that no nonblocking counter algorithm
can improve on a central counter in terms of worst-case time complexity. This
does not preclude, however, the existence of nonblocking counter algorithms
that achieve better worst-case time complexity in semisynchronous executions.
Indeed, the worst-case time complexity of our algorithm in such executions is
O(log N), yielding maximal throughput of 2(N/logN).

To allow parallelism, researchers proposed using highly-distributed coordina-
tion structures such as counting networks. Counting networks were introduced by
Aspnes et al. [2]. Though they are wait-free and allow parallelism, the counting
networks of [2] are non-linearizable. Herlihy et al. demonstrated that counting
networks can be adapted to implement wait-free linearizable counters [13]. How-
ever, the first counting network they present is blocking while the others do not
provide parallelism, as each operation has to access 2(N) base objects.

A well-established technique for constructing highly parallel shared objects is
that of combining. Goodman et al. [5] and Yew et al. [19] used combining for im-
plementing fetchéadd. In both these algorithms, the current value of the counter
is stored at the root of a binary tree. A process applies its operation starting
from its leaf and climbing along the path to the root. Whenever two processes
meet at an internal node, they combine their operations by generating a single
request for adding the sum of both requests. One of these processes proceeds in
climbing the tree while the other is blocked and waits at the node. When a pro-
cess reaches the root, it adds to the central counter the sum of all the requests
with which it combined and then starts a process of propagating responses back
to the blocked processes. Combining trees can be used to implement linearizable
counters and allow high parallelism but are blocking.

Constructing Shared Objects that are Both Robust and High-Throughput 3

Shavit and Zemach introduce diffracting trees [18] to replace the ”static” tree
used in software combining with a collection of randomly created dynamic trees.
Diffracting trees can be used to implement shared counters that are linearizable
and allow parallelism but are blocking. Hoai Ha et al. introduce another version
of (blocking) adaptive combining trees [8].

We introduce a variation on the software combining paradigm, that we call
bounded-wait combining. Unlike in previous software combining algorithms, where
processes may have to wait indefinitely for other processes, in bounded-wait com-
bining, a process only waits for other processes for a bounded period of time and
then ‘takes destiny in its own hands’. As long as process speeds do not differ by
more than some known fixed factor, processes wait for each other, eliminating
contention for memory and achieving high parallelism. When the execution is
asynchronous, however, processes fall back to an asynchronous modus operandi
where high parallelism cannot be guaranteed but progress is. The result is the
first implementation of a linearizable counter that is both nonblocking and prov-
ably achieves high parallelism in semisynchronous executions.

Our algorithm uses Greenwald’s two-handed emulation mechanism [7] to
implement a construct we term pseudo-transactions. Pseudo-transactions are
weaker than ordinary transactions in that they are not atomic but they per-
mit higher parallelism. Though they cannot replace transactions in general, we
believe pseudo-transactions may prove useful also for other algorithms.

Geenwald’s two-handed emulation is known to be sequential. However, We
use it to implement pseudo-transactions by allowing different processes to oper-
ate on different two-handed emulation objects in parallel. The two-handed emu-
lation mechanism uses the double compare-and-swap (DCAS) primitive. DCAS
can be emulated efficiently by single-word compare-and-swap (CAS) by using,
e.g., the algorithm of Harris et al. [9].

Bounded-wait combining can be adapted to work for any combinable opera-
tion [6,15] and can thus be used to implement nonblocking and highly parallel
linearizable stacks and queues. We are not aware of any other stack or queue
algorithm to possess these properties.

Hendler et al. presented the elimination-backoff stack, a nonblocking lin-
earizable stack algorithm [10]. Their empirical results show that their algorithm
achieves high parallelism in practice; nevertheless, it does not provide any deter-
ministic guarantee of parallelism. Moir et al. used ideas similar to these of [10]
to obtain a queue algorithm that possesses the same properties [17].

In order to be able to reason rigorously about the parallelism attainable by
our algorithm, we define a novel metric for the throughput of shared objects that
may be interesting in its own right. By throughput, we mean the ratio between
the number of operations that complete in an execution and the execution’s
duration. The key to this metric is a definition of time that assigns identical times
to events that access different base objects and may be executed concurrently.
To the best of our knowledge, this is the first formal metric for the throughput
of shared objects. We use this metric to prove that our algorithm can achieve
maximal throughput of 2(N/log N) in semisynchronous executions.

4 Danny Hendler, Shay Kutten

Model and Definitions. We consider a standard model of an asynchronous shared
memory system, in which a finite set of asynchronous processes communicate by
applying operations to shared objects [3].

Shared objects are implemented from base objects, such as read/write reg-
isters, provided by the system. A configuration specifies the value of each base
object and the state of each process. An initial configuration is a configuration in
which all the base objects have their initial values and all processes are in their
initial states. To apply their operations, processes perform a sequence of steps.
FEach step consists of some local computation and one shared memory event,
which is an application of a synchronization primitive (such as read, write, or
read-modify-write) to a base object.

An execution is a sequence of events that starts from an initial configuration,
in which processes apply events and change states (based on the responses they
receive from these events) according to their algorithm.

An operation instance is an application of a specific operation with specific
arguments to a specific object made by a specific process. If the last event of an
operation instance ¢ has been applied in an execution, we say that @ completes in
E. We define by completed(E) the number of operation instances that complete
in E. We say that a process p is active after execution F if p is in the middle of
performing some operation instance @, i.e. p has applied at least one event while
performing @ in E, but & does not complete in E. If p is active after F, then it
has exactly one enabled event, which is the next event p will apply.

An execution FE is k-synchronous if the speeds of any two processes that
participate in it vary by a factor of at most k. Formally, we say that F is k-
synchronous if, for any two distinct processes p and ¢ and for any execution
E = EyE1F’, if p has an enabled event after Fy and E; contains k + 1 events
by ¢ then E; contains at least one event by p.

In addition to read and write, our algorithm uses the compare-and-swap
(CAS) and the and double-compare-and-swap (DCAS) primitives. (The algo-
rithm can be implemented on systems that support only read, write and CAS
by using a DCAS emulation from CAS. See, e.g., [9].)

CAS(w, old, new) writes the value new to memory location w only if its
value equals old and, in this case, returns true to indicate success; otherwise it
returns false and does not change the value of w. DCAS operates similarly on
two memory locations.

The rest of the paper is organized as follows. Section 2 provides an overview
of the algorithm. Section 3 describes the synchronous part of the algorithm in
more detail. Section 4 describes the procedures that forward operation requests
and dispatch responses. Section 5 introduces our throughput metric. Concluding
remarks are brought in Section 6

2 An Overview of the BWC Algorithm

In this section, we provide a high-level description of the bounded-wait com-
bining (henceforth, BWC) algorithm. It can be used to provide a linearizable,

Constructing Shared Objects that are Both Robust and High-Throughput 5

constant LEFT=0, RIGHT=1, FREE=__

structure Range {int from, int till}, typedef RRQ queue of Ranges

structure Regs {int dir, int num}, typdef REQQ queue of Regs

structure Node {
Node* parent, Nodex* children[2], int reqgs initially 0,
int reqsTaken[2] initially {0,0}, REQQ pending initially EMPTY, RRQ resp initially EMPTY,
boolean inPhase initially false, boolean collected initially false, int slock initially FREE,
int phaseTop initially null

}
Node* nodes[2N-1]

Fig. 1. The structure of BWC combining-tree nodes.

nonblocking and high-throughput implementation of any combinable operation
[6,15]. For the sake of presentation simplicity, however, we describe it in the
context of implementing a shared counter, supporting the Fetchéincrement op-
eration.

The algorithm uses a binary tree denoted 7. The value of the counter is
stored at 7”’s root. Each leaf of 7 is statically assigned to a single process. Every
node of 7 consists of an instance of the Node structure shown in Figure 1, with
the parent and children fields storing pointers to a node’s parent and children,
respectively. (Other node fields are described in the appropriate context.)

The BWC algorithm is parameterized: it uses an asynchrony tolerance pa-
rameter k that determines the extent to which processes are willing to wait for
other processes. Each node contains a synchronous lock, which we simply call
an slock. Whenever node n’s slock equals the id of some process ¢, we say that
n is owned by ¢; otherwise, we say that n is free. A leaf node is always owned
by the process to which it is assigned. Slocks are respected by processes in k-
synchronous executions, but are disregarded in asynchronous executions (i.e. in
executions that are not k-synchronous).

For simplicity of pseudo-code presentation, we assume that variable scoping
is dynamic, i.e. called procedures are in the scope of the calling procedure’s
local variables. The pseudo-code of the main procedure is shown in Figure 2.
Initially, the algorithm behaves ‘optimistically’, in the sense that it operates
under the assumption that the execution is k-synchronous. Whenever a process
executes this part of the algorithm (implemented by the SynchPhase procedure,
see Section 3), we say that it operates in a synchronous mode. As long as process
speeds do not vary ‘too much’, processes operate in synchronous modes only and
the algorithm guarantees low memory contention and high throughput.

While operating synchronously, computation proceeds in synchronous phases.
In phase i, a subset of the participating processes construct a subtree 7; of 7,
that we call a phase subtree. For every process ¢ that participates in phase i, 7;
contains all the nodes on the path from ¢’s leaf node to the root.

Participating processes then use 7 ; as an ad-hoc combining tree. Each process
q, participating in phase 7, owns a path of nodes in 7 ; starting with ¢’s leaf node
and ending with the highest node along the path from ¢’s leaf to the root whose
slock q succeeded in acquiring. We denote ¢’s path in 7; by PY.

6 Danny Hendler, Shay Kutten

After 7, is constructed, it is used as follows. Each participating process ¢
starts by injecting a single new operation request at its leaf node. Processes then
cooperatively perform the task of forwarding (and combining) these requests up
T ;. Process q is responsible for the task of forwarding requests from the sub-trees
rooted at the nodes along P?. It may have to wait for other processes in order
to complete this task. If the execution remains k-synchronous then, eventually,
all collected requests arrive at the highest node of PY. If that node is not the
root, then ¢ now has to wait, as the task of forwarding these requests farther up
T ; is now the responsibility of another process whose path ends higher in 7 ;.

Finally, the operation requests of all participating processes arrive at the root.
Once this occurs, the single process r whose path P; contains the root increases
the counter value stored at the root by the total number of requests collected.
Process r then initiates the task of dispatching operation responses (which are
natural numbers in the case of the Fetch&Inc operation) down 7 ;. We call r
the phase initiator. If the execution remains k-synchronous then eventually a
response arrives at the leaf of each participating process.

A challenge in the design of the algorithm was that of achieving high through-
put in k-synchronous executions while guaranteeing progress in all executions.
To that end, the BWC algorithm is designed so that processes can identify sit-
uations where processes with which they interact are ‘too slow’ or ‘too fast’. A
detailed description of the SynchPhase procedure appears in Section 3.

After waiting for a while in vain for some event to occur, a process ¢ may
conclude that the execution is not k-synchronous. If and when that occurs, ¢
falls back on an asynchronous mode. Once one or more processes start operating
in asynchronous modes, high contention may result and high throughput can no
longer be guaranteed but progress is.

The asynchronous part of the BWC algorithm is simple and its pseudo-code
is omitted from this extended abstract for lack of space and can be found in
the full paper. We now provide a short description. When process ¢ shifts to an
asynchronous mode, it injects an operation request at its leaf node, if it hadn’t
done so while operating synchronously. Process ¢ then climbs up the tree from
its leaf to the root. For every node n along this path, ¢ forwards the requests
of n’s children to n. After it reaches the root, ¢ descends down the same path
to its leaf node, dispatching responses along the way. Process ¢ does not respect
node slocks while traversing this path in both directions. However, it releases the

Fetch&Inc()

1 boolean injected=false
2 int rc=SynchPhase()
3 if (rc # ASYNCH)

4 return rc

5 else

6 return AsynchFAI()

Fig. 2. The main procedure of the BWC algorithm.

Constructing Shared Objects that are Both Robust and High-Throughput 7

slock of every node it descends from. (This guarantees that if the system reaches
quiescence and then becomes semisynchronous, processes will once more operate
in synchronous modes.)

Process ¢ keeps going up and down this path until it finds a response in its
leaf node. We prove that the BWC algorithm guarantees global progress even in
asynchronous executions, hence it is nonblocking.

Actual operation-requests combining and response-propagation is performed
by the FwdRegs and SendResp combining procedures (see Section 4). The BWC
algorithm allows different processes to apply these procedures to different nodes
of 7 concurrently. In asynchronous executions, it is also possible that multiple
processes concurrently attempt to apply these procedures to the same node. E.g.,
multiple processes may concurrently attempt to apply the FwdReqs procedure
to node n for combining the requests of n’s children into n.

The correctness of the algorithm relies on verifying that each such procedure
application either has no effect, or procedure statements are applied to n in order
without intervening writes resulting from procedures applications to other nodes.
Moreover, the data-sets accessed by procedures that are applied concurrently to
different nodes are, in general, not disjoint: a procedure applied to node n may
have to read fields stored at n’s parent or children. To permit high throughput,
these reads must be allowed even if other processes apply their procedures to
these nodes concurrently. It follows that procedures applied to nodes cannot be
implemented as transactions. The BWC algorithm satisfies these requirements
through an infrastructure mechanism that we call pseudo-transactions. We now
describe the pseudo-transactions mechanism in more detail.

2.1 Pseudo-Transactions

Transactions either have no effect or take effect atomically. In contrast, con-
current reads are allowed while a pseudo-transaction executes but intervening
writes are prohibited. Intuitively, pseudo-transactions suffice for the BWC algo-
rithm because the information stored to node fields ‘accumulates’. Thus reads
that are concurrent with writes may provide partial data but they never provide
inconsistent data. A formal definition of pseudo-transactions follows.

Definition 1. We say that a procedure P is applied to an object n as a pseudo-
transaction if each application of P either has no effect or the statements of P
are applied to n in order and no field written by a statement of P is written by
a concurrently executing procedure.

The following requirements are met to ensure the correctness, liveness, and
high-parallelism of the BWC algorithm:

1. Combining correctness: the combining procedures FwdRegs and SendResp
are applied to nodes as pseudo-transactions.

2. Node progress: progress is guaranteed at every node. In other words, after
some finite number of statements in procedures applied to n are performed,
some procedure applied to n terminates.

8 Danny Hendler, Shay Kutten

The BWC algorithm meets the above requirements by using the following
two mechanisms. First, We treat each node (in conjunction with the FwdRegs
and SendResp combining procedures) as a separate object. We apply Green-
wald’s two-handed emulation to each of these objects separately [7]. A detailed
description of two-handed emulation is beyond the scope of this paper, and the
reader is referred to [7]. We provide a short description of the emulation in the
following.

Greenwald’s two-handed emulation uses the DCAS operation to ensure that
the statements of an applied procedure execute sequentially. To apply a proce-
dure to object n, a process first tries to register a procedure-code and procedure
operands at a designated field of n by using DCAS. Then, the process tries to
perform the read and write operations of the procedure one after the other. Each
write to a field of n uses DCAS to achieve the following goals: (1) verify that
the write has not yet been performed by another process, (2) increment a virtual
“program counter” in case the write can be performed, and (3) perform the write
operation itself.

In addition to using two-handed emulation, we have carefully designed the
node structure so that applications of the FwdReqs or SendResp combining pro-
cedures to different nodes never write to the same field (see Section 4 for more
details).

Two-handed emulation guarantees that a combining procedure applied to
node n either has no effect (if its registration failed) or its statements are per-
formed with no intervention from other procedures applied to n. As procedures
applied to different nodes never write to the same field, combining procedures
are applied as pseudo-transactions and requirement 1. above is satisfied.

Applying two-handed emulation to an object n results in a nonblocking im-
plementation, on condition that procedures applied to other nodes cannot fail
DCAS operations performed by a procedure applied to n. Since procedures ap-
plied to different nodes never write to the same field, none of them can fail the
other. Thus, Requirement 2. is also satisfied.

3 The Synchronous Modus Operandi

This part of the algorithm is implemented by the SynchPhase procedure (see
pseudo-code in Figure 3) which iteratively switches over the mode local variable.
Variable mode stores a code representing the current synchronous mode.

In the following description, ¢ is the process that performs SynchPhase. The
local variable n stores a pointer to the current node, i.e. the node currently
served by ¢. Initially, n points to ¢’s leaf. In some of the modes (UP, FOR-
WARD_REQUESTS and AWAIT_RESP), ¢ may have to wait for other pro-
cesses. Before shifting to any of these modes, the local variable timer is initialized
to the number of iterations ¢ should wait before it falls back to an asynchronous
mode. In the ROOT_WAIT mode, q waits so that other processes can join the
phase it is about to initiate. In all of these cases, timer is initialized to some
appropriately selected function of k£ and log V. In the specification of these wait-

Constructing Shared Objects that are Both Robust and High-Throughput 9

ing times, M denotes the maximum number of events applied by a process in a
single iteration of the SynchPhase procedure which is clearly a constant number.

We prove in the full paper that this selection of waiting periods guarantees
that no process shifts to an asynchronous mode in k-synchronous executions. We
now describe the synchronous modes.

UP: This is ¢’s initial mode. Process ¢ starts from its leaf node and attempts
to climb up the the path to the root in order to join a phase. To climb from a
non-root node to its parent m, ¢ first verifies that m is free (statement 15), in
which case it performs a CAS operation to try and acquire m’s slock (statement
16). If it succeeds, ¢ sets its current node n to m and reiterates. If m is not
free, ¢ checks the m.inPhase flag (statement 18) which indicates whether or not
m is part of the current phase’s subtree. If it is set then g checks whether n
was added to the phase subtree by m’s owner (statement 19). It both conditions
hold, then g managed to join the current phase and all the nodes along the
path from its leaf to n will join that phase’s subtree. In this case, ¢ shifts to
the PHASE_FREFEZFE mode and stores a pointer to its highest node along this
path (statements 20, 21). Otherwise, if ¢ acquired the root node slock, then ¢ is
about to be the initiator of the next phase. It stores a pointer to the root node,
sets the number of iterations to wait at the root to @(log N), and shifts to the
ROOT_WAIT mode (statements 12 - 14). If none of the above conditions hold, ¢
decrements timer and, if it expires, concludes that the execution is asynchronous
and returns the ASYNCH code (statements 23, 24).

ROOT_WAIT: g waits in this mode for the iterations timer to expire in or-
der to allow other processes to join the phase subtree. While waiting, ¢ performs
a predetermined number of steps, in each of which it applies a single shared
memory event. Finally, ¢ shifts to the PHASE_ FREEZE mode (statements 25-
28).

PHASE_FREEZE: in this mode, ¢ freezes the nodes along its path from
phaseTop to its leaf and the children of these nodes. Freezing a node adds it
to the phase’s subtree. To determined which of n’s children is owned by it, ¢
uses the LEAF_DIR macro that, given an internal node n and a process id,
returns LEFT or RIGHT (statement 29). For every node n, if the child of n not
owned by ¢ is not free, ¢ sets that child’s inPhase flag, sets n’s inPhase flag, and
descends to n’s child on the path back to its leaf (statements 31-33, 40). When
q gets to the parent of its leaf, it injects a single request to its leaf, sets the
iterations counter, sets a flag indicating that a request was injected, and shifts
to the FORWARD_REQUESTS mode (statements 35-38).

FORWARD_REQUESTS: in this mode, g forwards and combines requests
along the path starting with the parent of its leaf and ending with g.topPhase.
For each node n along this path, g checks for each child ch of n whether ch is
in the current phase’s subtree and whether requests need be forwarded from it
(statement 42). If so and if ch’s collected flag is set, requests from the subtree
rooted at ch were already forwarded and combined at ch. In this case g calls the
FwdRegs procedure to forward these requests from ch to n and sets the local

10 Danny Hendler, Shay Kutten

SynchPhase()
1 Nodex n=LEAF (myID), int phaseTop, int mode=UP, int timer=Mk(k + 13) log N + 1
2 boolean chCollected[2]={false,false}
3 do forever
4 switch(mode)
5 case UP: UpMode() 6 case ROOT_WAIT: RootWait()
7 case PHASE_FREEZE: PhaseFreeze() 8 case FORWARD_REQUESTS: ForwardRequests()
9 case AWAIT_RESP: AwaitResp() 10 case PROP_RESP: PropResp() od
UpMode() ForwardRequests()
11 if (ROOT(n)) 41 (for i=LEFT; i<RIGHT; i++)
12 phaseTop=n 42 if (n.children[i].inPhase A— chCollected[i])
13 timer=2M (k + 1) log N 43 if (n.children(i].collected)
14 mode=ROOT_WAIT 44 FwdRegs(n, i)
15 else if (n.parent.slock=FREE) 45 chCollected[i]=true
16 if (CAS(n.parent.slock, FREE, myID)) 46 else
17 n=n.parent 47 timer = timer -1
18 else if (n.parent.inPhase) 48 if (timer = 0) return ASYNCH
19 if (n.inPhase) 49 else continue do-forever (statement 3)
20 phaseTop=n 50 mn.collected=true
21 mode=PHASE_FREEZE 51 if (n # phaseTop)
22 else 52 n=n.parent
23 timer=timer-1 53 else if (ROOT(n))
24 if (timer=0) return ASYNCH 54 mode=PROP_RESP

55 else
RootWait() 56 timer=3Mk log N
25 if (timer > 0) 57 mode=AWAIT_RESP
26 read n.slock
27 timer=timer-1 AwaitResp()
28 else mode=PHASE_FREEZE 58 if (- EMPTY (n.resp))

59 mode=PROP_RESP
PhaseFreeze() 60 else
29 int whichChild=LEAF _DIR(n, myID) 61 timer=timer-1
30 Node *ch=n.children[whichChild] 62 if (timer=0) return ASYNCH

31 if (n.children[l-whichChild].slock # FREE)
32 n.children[1-whichChild].inPhase=true =~ PropResp()

33 n.inPhase=true 63 if (n = LEAF(myID))

34 if (ch=LEAF(myID)) 64 Range r=DEQ_R(resp)

35 ch.regs=ch.reqs+1 65 if (RLEN(r) > 0) return r.first

36 injected=true 66 else return ASYNCH

37 timer=M (k 4+ 1) log N 67 SendResp(n)

38 mode=FORWARD_REQUESTS 68 n.inPhase=false, n.collected=false, n.slock=FREE
39 else 69 n=n.children[LEAF_DIR(n,myID)]

40 n=ch

Fig. 3. Pseudo-code for the synchronous part of the algorithm with asynchrony
tolerance k.

flag chCollected corresponding to ch in order to not repeat this work (statements
43-45). If ch’s collected flag is not set, ¢ decrements timer and continues to wait
for that event to occur; if the timer expires, g returns the ASYNCH code (state-
ments 47 - 49). If and when ¢ succeeds in forwarding requests from each of n’s
children that is in the phase, it sets n’s collected flag and climbs up. Eventually,
it shifts to either the PROP_RESP mode or the AWAIT_RESP mode, depending
on whether or not it is the current phase’s initiator (statements 50-57).

AWAIT _RESP: In this mode, ¢, when not the initiator of the current phase,
awaits for the owner of node n’s parent to deliver responses to n. If and when

Constructing Shared Objects that are Both Robust and High-Throughput 11

this event occurs, ¢ shifts to the PROP_RESP mode (statements 58, 59). If timer
expires, ¢ returns the ASYNCH code (statement 62).

PROP_RESP: In this mode, ¢ propagates responses along the path from
g-phaseTop down to its leaf node. For each node n along this path, ¢ propagates
n’s responses to its children and then frees n (statements 67-69). Eventually, g
descends to its leaf. If a response awaits there, it is returned as the response of
SynchPhase. Otherwise, g returns ASYNCH (statements 63-66).

4 The Combining Process

The combining process is implemented by the FwdReqs and SendResp proce-
dures. The pseudo-code of these procedures appears in Figure 4. As discussed in
Section 2.1, the code actually performed is a transformation of the code shown
in Figure 4 according to Greenwald’s two-handed emulation technique, as indi-
cated by the 2he attribute. The FwdReqs procedure forwards requests from a
child node to its parent. The SendResp procedure dispatches responses from a
parent node to its children. The two procedures use the following node fields.

reqgs: For a leaf node n, this is the number of requests injected to n. If n is
an internal node other than the root, this is the number of requests forwarded
to n. If n is the root, this is the current value of the counter.

reqsTaken: this is an array of size 2. For each child m of n, it stores the
number of requests forwarded from m to n.

pending: this is a queue of Regs structures. Each such structure consists
of a pair: a number of requests and the direction from which they came. This
queue allows a process serving node n to send responses in the order in which the
corresponding requests were received. This allows maintaining the linearizability
of the algorithm. In k-synchronous executions, the pending queue contains at
most 2 entries. In asynchronous executions it contains at most n entries, as
there are never more than n simultaneous operations applied to the counter.

resp: this is a producer/consumer queue storing response ranges that were
received at n and not yet sent to its children. The producing process (the one that
serves the parent node) enqueues new response ranges and the consumer process
(the one that serves the child node) dequeues response ranges. The producer and
consumer processes never write to the same field simultaneously. The resp queue
contains at most a single range in k-synchronous executions. In asynchronous
executions it contains at most n ranges. We now describe the pseudo-code of
these two procedures that are performed as pseudo-transactions. Here, ¢ is the
process executing the code.

The FwdRegs procedure receives two parameters. A pointer n to the node to
which requests need to be forwarded, and an integer, dir, storing either LEF'T
or RIGHT, indicating from which of n’s children requests need to be forwarded
to n. Let m denote the child node of n that is designated by the dir parameter.
Process ¢ first initializes a pointer to m (statement 1). Then ¢ computes the
number of requests in m that were not yet forwarded to n and stores the result
in delta (statement 2). If there are such requests, ¢ proceeds to forward them.

12 Danny Hendler, Shay Kutten

2he FwdReqs(NODE#* n, int dir) 2he SendResp(NODE* n)
1 Nodex* child = n.children[dir] 9 do twice
2 int delta=child.reqs - n.reqsTaken[dir] 10 if (= EMPTY(n.resp))
3 if (delta > 0) 11 Range fResp=FIRST_R(n.resp)
4 n.reqs=n.reqs+delta 12 int respsLen=RLEN/(fResp)
5 n.reqsTaken[dir]=n.reqsTaken[dir]+delta 13 RRQ fReqs=FIRST_REQS(n.pending)
6 ENQ-REQS(n.pending, <dir,delta> 14 int reqsLen=REQS_LEN(fReqs)
7 if (ROOT(n)) 15 int send=min(respLen, reqsLen)
8 ENQ-R(n.resp, n.regs-delta+1, delta) 16 int dir=REQS_DIR(fReqs)
17 ENQ-R(n.children[dir|.resp, fResp.start, send)
18 DEQ-R(n.resp, send)
19 DEQ-REQS(n.pending, send)
20 od

Fig. 4. Pseudo-code for the combining procedures

Forwarding the requests is implemented as follows. Process ¢ first increases
n’s regs field by delta (statement 4) to indicate that delta additional requests
were forwarded to m. It then increases n’s regsTaken entry corresponding to
m by delta (statement 5). This indicates that delta additional requests were
forwarded from m to n. Finally, ¢ adds an entry to n’s pending queue specifying
that delta more responses need to be sent from n to m. If n is the root node,
then the operations represented by the forwarded requests are applied to the
central counter at the root when n.regs is increased by statement 4. In that
case, ¢ immediately adds the corresponding range of counter values to n’s queue
of response ranges (statements 7-8).

The SendResp procedure receives a single parameter - n - a pointer to the
node from which responses need be sent. Process ¢ executes the loop of state-
ments 9-20 twice. If the responses queue is not empty, the length of its first
range is computed and stored to the respLen local variable (statements 11, 12).
Then the length of the next requests entry is computed and stored to regsLen
(statements 13, 14). The minimum of these two values is stored to send (state-
ment 15). This number of responses is now sent in the direction specified by the
dir field of the first requests entry (statements 16, 17). Finally, send responses
and requests are removed from the m.resp and n.pending queues, respectively.
The loop of statements 9-20 is executed twice. This is enough to propagate the
responses for all the requests forwarded to a node in a synchronous phase.

For presentation simplicity, the reqs and regsTaken fields used in the pseudo-
code of Figure 4 are unbounded counters. To ensure the correctness of the com-
bining process, however, it is only required that the difference between the values
of these fields be maintained. This difference cannot exceed NN, since this is the
maximum number of concurrent operations on the counter. It follows that the
code can be modified to use bounded fields that count modulo 2V + 1.

5 A Metric for the Throughput of Concurrent Objects

We now present a metric for quantifying the throughput of concurrent objects.
This metric allows us to reason about the throughput of concurrent objects

Constructing Shared Objects that are Both Robust and High-Throughput 13

rigorously. The key to the metric is a definition of time that assigns identical
times to events that may be executed concurrently.

Let E be an execution. Consider a subsequence of events of E applied by some
process p. As processes are sequential threads of execution, the times assigned
to the events applied by p must be strictly increasing. Consider a subsequence
of events in F, all of which access the same base object o. Here it is less obvious
how to assign times to these events. If the value of o is never cached, then the
times assigned to these events must be strictly increasing as accesses of o are
necessarily serialized. However, if o may be cached, then it is possible for o to
be read concurrently by multiple processes accessing their local caches. Thus an
alternative assignment of times, where consecutive reads of the same base object
may be assigned identical times, is also possible.

For the analysis of the BWC algorithm, we chose to apply the stricter def-
inition where time must strictly increase between accesses of the same object.
We define the throughput of an execution as the ratio between the execution’s
duration and the number of operation instances that complete in it. It follows
that the throughput of an algorithm can only increase if the alternative (less
strict) assignment of times were to be used. Formal definitions of execution time
and throughput follow.

The subsequence of events applied by process p in E is denoted by E|p. The
subsequence of events that access a base object o in E is denoted by E|o. We
assign times to execution events. Assigned times constitute a non-decreasing se-
quence of integers starting from 0. Times assigned to the subsequence of events
applied by any specific process p are monotonically increasing. Similarly, times
assigned to the subsequence of events that access any specific object o are mono-
tonically increasing. This is formalized by the following definitions.

Definition 2. Let e be an event applied by process p that accesses base object o
i execution E and let E = FEi1eFEy. The synchronous time assigned to e in E,
denoted by time(E,e), is defined to be the mazimum of the following numbers:

— the synchronous time assigned to the last event of E1 (or 0 if Eq is empty),

— the synchronous time assigned to p’s last event in Ey plus 1 (or 0 if Ey|p is
empty),

— the synchronous time assigned to the last event in Fy that accesses o plus 1
(or 0 if E1|o is empty).

Definition 3. The synchronous duration of an execution E, denoted by time(E),
is 0 if E is the empty execution or time(F,e;) + 1 otherwise, where e; is the last
event of E. The throughput of a (non-empty) execution E is defined to be
completed(E) / time(E).

Based on the above definitions, we prove the following theorem.

Theorem 1. The throughput of the BWC algorithm with asynchrony tolerance
parameter k in k-synchronous executions in which all processes start their oper-
ations concurrently is 2(N/log N).

14 Danny Hendler, Shay Kutten

To prove theorem 2, we first show that the selection of the waiting times
with which the timer variable is set guarantees that processes always operate in
synchronous modes in k-synchronous executions. We then show that as long as
all processes operate in synchronous modes and the execution is k-synchronous,
every operation instance completes in O(log N) time. The proof is omitted from
this extended abstract for lack of space and can be found in the full paper.

We also prove the following theorem in the full paper.

Theorem 2. The BWC algorithm is a nonblocking linearizable counter imple-
mentation.

Intuitively, the linearizability of the BWC algorithm follows from the fact that
the counter value is stored at the root node and that responses are dispatched
from each node n in the order in which the corresponding requests were received
at n. We show that, as long as all processes operate in synchronous modes, the
BWC algorithm is wait-free. If some processes fall back on asynchronous modus
operandi, then we show that the Node progress property (see Section 2.1)
guarantees overall progress.

6 Concluding Remarks

In this paper we present Bounded-Wait Combining (BWC), the first nonblock-
ing linearizable counter algorithm that can provably achieve high parallelism in
semisynchronous executions. Bounded-Wait Combining can be used to obtained
implementations, possessing the same properties, of objects such as stack and
queue. We define a novel metric of the throughput of concurrent algorithms and
use it to analyze our algorithm. We also introduce and use pseudo-transactions
- a concurrent execution technique that, though weaker than ordinary transac-
tions, permits higher parallelism. We believe that both our throughput metric
and the pseudo-transactions construct may prove useful in the design and anal-
ysis of other algorithms.

Our algorithm guarantees the nonblocking property in all executions. How-
ever, to guarantee high throughput, it is required that processes know in advance
an upper bound on the ratio between the fastest and slowest processes. (The re-
quirement for knowledge of timing information is similar to that made in the
known bound model [1,16].) We believe the BWC algorithm can be extended
to adjust adaptively to an unknown system bound on the speed ratio. Also, the
tree used by the BWC algorithm is static and of height ©(log N), regardless of
the number of processes participating in the computation. It follows that the
time it takes to apply an operation is ©(log N) even if a process runs solo. It
would be interesting to see whether the algorithm can be made ‘dynamic’ from
this respect while maintaining its properties. We leave these research problems
for future work.

Acknowledgements. We thank the anonymous reviewers for many useful com-
ments.

Constructing Shared Objects that are Both Robust and High-Throughput 15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R. Alur, H. Attiya, and G. Taubenfeld. Time-adaptive algorithms for synchroniza-
tion. SIAM J. Comput., 26(2):539-556, 1997.

J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. J. ACM, 41(5):1020—
1048, 1994.

H. Attiya and J. L. Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). Wiley, 2004.

F. E. Fich, D. Hendler, and N. Shavit. Linear lower bounds on real-world imple-
mentations of concurrent objects. In FOCS 2005, pages 165-173.

J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficent synchronization primitives
for large-scale cache-coherent multiprocessors. In ASPLOS, pages 64—75, 1989.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir.
The nyu ultracomputer designing a mimd, shared-memory parallel machine. In
ISCA 798: 25 years of the international symposia on Computer architecture (se-
lected papers), pages 239-254, New York, NY, USA, 1998. ACM Press.

M. Greenwald. Two-handed emulation: How to build non-blocking implementa-
tions of complex data-structures using dcas. In PODC 2002, pages 260—-269, 2002.
P. H. Ha, M. Papatriantafilou, and P. Tsigas. Self-tuning reactive distributed trees
for counting and balancing.

T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap
operation. In DISC 2002.

D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In
SPAA 04, pages 206215, New York, NY, USA. ACM Press.

M. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124-149, January
1991.

M. Herlihy, V. Luchango, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS 2003, pages 522-529.

M. Herlihy, N. Shavit, and O. Waarts. Linearizable counting networks. Distributed
Computing, 9(4):193-203, 1996.

M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS, 12(3):463-492, June 1990.

C. P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization on multiproces-
sors with shared memory. ACM TOPLAS, 10(4):579-601, 1988.

N. A. Lynch and N. Shavit. Timing-based mutual exclusion. In IEEE Real-Time
Systems Symposium, pages 2—-11, 1992.

M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to implement
scalable and lock-free fifo queues. In SPAA’05, pages 253-262, New York, NY,
USA.

N. Shavit and A. Zemach. Diffracting trees. ACM Trans. Comput. Syst., 14(4):385—
428, 1996.

P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-spot addressing in
large-scale multiprocessors. IEEE Trans. Comput., 36(4):388-395, 1987.

