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Abstract. The use of active contours for texture segmentation seems rather at-
tractive in the recent research, indicating that such methodologies may provide 
more accurate results. In this paper, a novel model for texture segmentation is 
presented, combining advantages of the active contour approach with texture in-
formation acquired by the Local Binary Pattern (LBP) distribution. The pro-
posed LBP scheme has been formulated in order to capture regional information 
extracted from distributions of LBP values, characterizing a neighborhood 
around each pixel, instead of using a single LBP value to characterize each 
pixel. The log-likelihood statistic is employed as a similarity measure between 
the LBP distributions, resulting to more detailed and accurate segmentation of 
texture images.  

1   Introduction 

The automatic segregation of textures within images is generally viewed as an essen-
tial first step in various vision applications, such as medical image analysis, industrial 
monitoring of product quality, content-based image retrieval and remote sensing.  

Because of its wide applicability, texture segmentation has been the subject of in-
tensive research in many recent studies [1-5]. However, no known approach is able to 
consistently and accurately segment textured images [6]. A commonly used strategy 
for texture segmentation is to extract texture features on a pixel-by-pixel basis and then 
use some technique to segment the image based on the extracted features and poten-
tially, on some additional spatial constraints. Overall quality of texture segmentation is 
determined by the quality of both texture features and the segmentation technique.  

Early image segmentation approaches have been utilizing boundary-based local  
filtering techniques such as edge detection operators, which require additional edge-
linking operations in order to establish the connectivity of edge segments. This prob-
lem has been resolved by employing active contour models [7], which directly result in 
continuous curves. These models involve the deformation of initial contours towards 
the boundaries of the image regions to be segmented. A recent active contour model, 
named Active Contour Without Edges (ACWE) [8] has been gaining increasing 
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interest due to its advantages: 1) it is region-based, enabling the delineation of regions 
defined by smooth intensity changes, 2) its level set formulation provides adaptability 
to topological changes, and 3) it does not impose any significant initialization con-
straint [8]. However, in the scalar ACWE model the contour evolution depends on the 
image intensities rather than on the textural content of the image to be segmented. 
Consequently, the scalar ACWE model cannot discriminate regions of different tex-
tures that have equal average intensities. 

Latest advances in active contour research focus on using feature vectors to guide 
contour evolution, as in the case of the extended ACWE model for vector-valued 
images, proposed by Chan et al [9]. Within a texture segmentation framework, such 
active contour models use feature vectors that encode the textural content of an image 
by means of features deriving from Gabor and wavelet transforms [5], [10-11]. 

The Local Binary Pattern (LBP) distribution, introduced by Ojala et al. [12], offers 
an alternative approach to spatial texture representation. Unlike the Gabor features, 
which are calculated from the weighted mean of pixel values over a small neighbor-
hood, the LBP operator considers each pixel in the neighborhood separately, provid-
ing even more fine-grained information. In addition, the LBP texture features are 
invariant to any monotonic change in gray level intensities, resulting in a more robust 
representation of textures under varying illumination conditions. Comparative studies 
have demonstrated that the use of LBP distributions may result in higher classification 
accuracy than Gabor and wavelet features with a smaller computational overhead  
[12-14].  

In this paper we introduce a novel active contour model for texture segmentation 
guided by LBP distributions. Based on the fact that texture is a local neighborhood 
property, we have considered using regional information extracted from distributions 
of LBP values characterizing a neighborhood around each pixel, instead of using a 
single LBP value to characterize each pixel. In accordance with [15], the similarity 
between the LBP distributions is estimated by means of the log-likelihood statistic. 
Moreover, time performance considerations led us to reduce the length of the LBP 
distributions by limiting the number of pixels participating in the estimation of the 
LBP values, provided that the resulting LBP operator maintains adequate discrimina-
tive capability. 

The rest of this paper is organized in five sections. Section 2 briefly reviews the 
formulation of the LBP operator. The proposed active contour model is presented in 
Section 3. The results from its application on two-textured images are apposed in 
Section 4. Finally, in Section 5 the conclusions of this study are summarized. 

2   The Local Binary Pattern Operator 

We adopt the formulation of the LBP operator defined in [15]. Let T be a texture 
pattern defined in a local neighborhood of a grey-level texture image as the joint dis-
tribution of the gray levels of P (P > 1) image pixels:  

),...,( 10, −= Pc gggtT  (1) 
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where gc is the grey-level of the central pixel of the local neighborhood and gp (p = 
0,…, P-1) represents the gray-level of P equally spaced pixels arranged on a circle of 
radius R (R > 0) that form a circularly symmetric neighbor set. 

Much of the information in the original joint gray level distribution (1) about the 
textural characteristics is conveyed by the joint difference distribution: 

),...,( 10 cPc ggggtT −−≈ −  (2) 

This is a highly discriminative texture operator. It records the occurrences of vari-
ous patterns in the neighborhood of each pixel in a P-dimensional vector. 

The signed differences gp-gc are not affected by changes in mean luminance; result-
ing in a joint difference distribution that is invariant against gray-scale shifts. More-
over, invariance with respect to the scaling of the gray-levels is achieved by consider-
ing just the signs of the differences instead of their exact values: 

))(),...,(( 10 cPc ggsggstT −−≈ −  (3) 

where 
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For each sign s(gp-gc) a binomial factor 2p is assigned. Finally, a unique LBPP,R 
value that characterizes the spatial structure of the local image texture is estimated by: 
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The distribution of the LBPP,R values estimated over an image region comprises a 
highly discriminative feature vector for texture segmentation [14-17].  

3   Active Contour Model Guided by LBP Distributions 

The proposed active contour model is inspired by the ACWE model for vector-valued 
images [9], which uses single point information to guide contour evolution. In what 
follows, we firstly review this original model and secondly we appose the formulation 
of the proposed model that uses regional information to guide contour evolution.  

3.1   The Original Model 

The ACWE model for vector-valued images is based on Mumford-Shah functional 
[18] and the level set formulation [19]. This model was originally proposed for the 
segmentation of color images using vectors formed by the RGB values of the pixel 
intensities [9]. It was later adapted for texture segmentation using Gabor transform 
coefficients [11]. The model is formulated as follows: 

Let u0 be the original image, defined on a planar domain Ω with real values. Let iu0 , for i=1,…,b, be the components that describe the original image u0. Let C be the 
evolving contour. The two averages of 

iu0  inside and outside the curve C are denoted 
as ic+  and ic−  for i=1,2,…,b. Following [9], an energy functional E is introduced 
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which, when minimized with respect to ),...,(),,...,( 11 bb cccccc −−−+++ == , and C, per-
forms binary segmentation:  
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where each value ),(0 yxui
, i=1,…,b, is defined over a single point (x, y). For example 

in [9], ),(0 yxui  represents the RGB intensities at the point (x, y), for i = 1, 2, and 3 
respectively. The positive scalars µ, +

iλ  and 
−
iλ  for i=1,…, b, are weight parameters 

for each image component. Minimizing the above energy, one tries to segment possi-
ble regions in the image with contours given by C and denoted as “inside C”, from a 
uniform background denoted as “outside C”. 

In [9] the implementation has been done using the level set method of Osher and 
Sethian [19], which gives an efficient method for moving curves and surfaces, on a 
fixed regular grid, allowing for automatic topology changes, such as merging, break-
ing of curves etc.  

The curve C is represented implicitly, via a level set function ),( yxφ  such that 
}0),(:),{( == yxyxC φ , and 0),( >yxφ  inside C, 0),( <yxφ  outside C. The en-

ergy E is expressed in level set formulation using the Heaviside function H, which is 
defined as: 
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and the Dirac Delta function δ(x)=dH(x)/dx. 
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Minimizing ),,( −+ ccCE  with respect to the unknown constant vectors +c , −c  the 
following relations are obtained, embedded in a time-dependent scheme: 
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i.e. the averages of component iu0  inside and outside the curve C respectively, for 
i=1, 2, …,b where b is the number of components. 
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Minimizing ),,( −+ ccCE  with respect to φ , and parameterizing the descent direc-
tion by an artificial time, the following Euler-Langrange equation for φ  is obtained:  
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where a smooth approximation of the Heaviside function H is used, as in [9]. 
Starting with an initial contour, given by 0φ , at each time step the vector averages 

+c , −c are updated and the partial differential equation in φ  is evolved. More details 
for the numerical aspects of the level set evolution can be found in [20]. 

3.2   The Proposed Model 

The notion of texture is undefined at single pixel level and it is always associated with 
some set of pixels [21]. Moreover, as it is stated in Section 2, the single LBP values 
are texture pattern “signatures” and only their distribution over an image region pro-
vides a discriminative feature vector for texture segmentation. This motivated us to 
formulate the equations of the proposed model using the normalized histogram N i(x, 
y), i=1,…,b, calculated considering regional LBP information, instead of using the 
single LBP values characterizing each pixel. This regional LBP information is cap-
tured by the distribution of the LBPP,R values of all pixels that belong to a k×k 
neighborhood centered at the pixel (x, y). The i-th component, or “bin” of the normal-
ized histogram N i(x, y) , i=1,…,b describes the probability of occurrence of a specific 
texture pattern on each k×k neighborhood centered at a pixel (x, y) of the considered 
image region. The total number b of the histogram bins corresponds to the total num-
ber of the LBPP,R values and is determined from the number of neighborhood pixels P. 
It should be noted that in previous vector active contour approaches, the value of each 

component ),(0 yxui of the vector ),(0 yxu is determined from a feature of the single 
point (x, y) and not from a region feature, as it is the case in the proposed model. For 

example, in [9] ),(0 yxui
 represents the RGB intensities at the point (x, y), for i = 1, 2, 

and 3 respectively.  
For the sake of efficiency, we choose LBP4,1 (Fig. 1) because it involves less com-

plex computations than the standard LBP8,1 or other LBPP,R (P > 8, R ≥ 1) operators 
and results in a shorter histogram of 16 bins. The LBP4,1 operator maintains adequate 
discriminative capability within the current segmentation framework, as demonstrated 
by our segmentation results. The use of vector quantization alternatives that have been 
commonly used instead [16], would introduce a significant computational overhead to 
the estimation of the feature vectors. 

g0g2

g1

gc

g3

g0g2

g1

gc

g3  

Fig. 1. Local neighborhood of pixels for LBP4,1 
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A rule of thumb suggests that the number of entries for each bin of a histogram 
should be at least 10. Considering that the LBP4,1 produces a 16-bin histogram, the 
number of entries required for the whole histogram is at least 16x10=160. Therefore 
k=13 corresponds to the minimum neighborhood that satisfies this requirement 
(132=169>160). 

In [15], it is suggested that the similarity between the LBP histograms can be esti-
mated by means of the log-likelihood statistic L. Within our context, the log-
likelihood statistic L can be employed as a similarity measure between the LBP nor-
malized histogram N(x, y) and the average LBP histograms +c  and −c of the region 
inside and outside the contour respectively: 
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where N i(x, y) is the i-th bin of the local LBP normalized histogram N(x, y), ci
+ (ci

-) is 
the i-th bin of the average LBP histogram +c  ( −c ), and b is the total number of histo-
gram bins of the considered LBP probability distributions (equal to 16 for the operator 
LBP4,1). As L is an increasing function of similarity of the histograms N i(x, y) and ci

+ 

(ci
-),  we use (1-L) as a distance measure between the considered histograms, instead 

of their squared differences, suggested by equation (6) of the original model. Thus, 
(6) is replaced by: 

∫ ∑

∫ ∑

=
−

−

=
+

+

−+

−

+−

+⋅=

)( 1

)( 1

))log(),(1(
1

))log(),(1(
1

)(),,(

Coutside

b

i

ii
i

Cinside

b

i

ii
i

dxdycyxN
b

dxdycyxN
b

ClengthccCE

λ

λ

µ
 

(12) 

Minimizing ),,( −+ ccCE , results in a segmentation of regions characterized by a dif-
ferent average LBP probability distribution than the rest of the image. The positive 

scalars +
iλ  and −

iλ  for i=1,…, b, are weight parameters for the i-th bin of the LBP 

histograms N(x, y), +c  and −c . Similarly to (6), the regions to be segmented are de-
fined by contours given by C and denoted as “inside C”, whereas the background 
region is denoted as “outside C”. 

The Euler-Langrange formulation of (12), which corresponds to equation (10) of 
the original model becomes: 
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where φ  is the level set function, implicitly representing curve C.  
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4   Results 

The proposed active contour model is implemented and applied for the segmentation 
of two-texture images, composed of Brodatz textures [22], as well as of natural scenes 
obtained from VisTex database [23]. In order to evaluate the contribution of the log-
likelihood statistic to segmentation accuracy, we perform experiments with: 1) the 
proposed model employing the log-likelihood statistic, as stated in equation (12), 2) 
the proposed model employing the squared differences of N i(x, y) and ci

+ (c
i
-), as 

suggested by equation (6) of the original model. Both variations of the proposed 
model are implemented in Microsoft Visual C++ and executed on a 3.2 GHz Intel 
Pentium IV workstation. The model constants are generally chosen as follows: 

750000== −+
ii λλ , µ = 6500 for the first variation, and 750== −+

ii λλ , µ = 6500 for 
the second variation. These two sets of values where empirically determined to 
achieve higher segmentation accuracy in the majority of the two-texture images used. 
The LBP operator used is LBP4,1 and each local LBP histogram is extracted from k×k 
neighborhoods with k=13, as described in the previous section. 

Figures 1-4 illustrate four example results of the application of both variations of 
the proposed model on two-texture images. The results of the application of the first 
model variation, employing the log-likelihood statistic, are depicted on Fig. 1(a), 2(a), 
3(a), 4(a) whereas the results of the second model variation, employing the squared 
differences of N i(x, y) and ci

+ (c
i
-), are depicted on Fig. 1(b), 2(b), 3(b), 4(b). The 

,, 

 
(a) 

 
(b) 

Fig. 1. Segmentation results of the application of the two model variations on the two-texture 
image D4D84, composed of Brodatz textures [22]: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation 
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segmentation results obtained by the first model variation, employing the log-likelihood 
statistic, are very promising. The frames composed of different texture patterns are very 
well segmented. Moreover, the segmentation quality obtained by the application of the 
first model variation is generally improved when compared to that obtained by the sec-
ond model variation, in the cases of Fig. 1,3,4 (in the case of Fig. 2, both variations 
achieved a practically perfect segmentation result). This improvement indicates that the 
log-likelihood statistic is more descriptive within the current segmentation framework. 
The computational cost of our approach varies between 40 and 60 seconds.  

 
(a) 

 
(b) 

Fig. 2. Segmentation results of the application of the two model variations on the two-texture 
image D8D84, composed of Brodatz textures [22]: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation  

  
(a) (b) 

Fig. 3. Segmentation results of the application of the two model variations on the two-texture 
image D9D77, composed of Brodatz textures [22]. It should be noted that the “ground-truth” 
shape of the region to be segmented is a rectangular: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation.  
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(a) (b) 

Fig. 4. Segmentation results of the application of the two model variations on the two-texture 
image D17D55, composed of Brodatz textures [22]: (a) segmentation result of the first model 
variation, (b) segmentation result of the second model variation 

The results illustrated in Fig. 5 show that the proposed active contour model is able 
to achieve high quality segmentation of natural scenes. 

  
(a) (b) 

Fig. 5. Segmentation results of the application of the two model variations on natural scenes 
obtained from VisTex database [23]: (a) GrassPlantsSky.0005, (b) GroundWaterCity.0001 

5   Conclusion 

In this paper, we presented a novel model for texture segmentation, featuring an ac-
tive contour approach. The proposed active contour model is guided by the texture 
information, which is encoded with the use of a local binary pattern scheme. The 
texture information is extracted from distributions of LBP values, characterizing  
a neighborhood around each pixel, instead of using a single LBP value to characterize 
each pixel. As a similarity measure between the LBP distributions, we have used  
the log-likelihood statistic. We demonstrated that the proposed model achieves high 
quality segmentation results by applying the model on composite texture images taken 
from the Brodatz album. Possible future extensions of this work include : 1) an exten-
sive testing on medical images instead of the artificial ones used in this work, 2) the 
adoption of a quantitative measure for a more accurate evaluation of the segmentation 

results, 3) test the model performance when adopting the 2
,

riu
RPLBP operator introduced 
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in [15], and 4) extension of the proposed model for the segmentation of multiple-
texture images by incorporating the multi-phase ACWE [24]. 
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