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Abstract. We propose a symbolic algorithm for the analysis of the robustness of
timed automata, that is the correctness of the model in presence of small drifts on
the clocks or imprecision in testing guards. This problem is known to be decid-
able with an algorithm based on detecting strongly connected components on the
region graph, which, for complexity reasons, is not effective in practice.

Our symbolic algorithm is based on the standard algorithm for symbolic reach-
ability analysis using zones to represent symbolic states and can then be easily
integrated within tools for the verification of timed automata models. It relies on
the computation of the stable zone of each cycle in a timed automaton. The stable
zone is the largest set of states that can reach and be reached from itself through
the cycle. To compute the robust reachable set, each stable zone that intersects
the set of explored states has to be added to the set of states to be explored.

1 Introduction

Timed automata [2] are an important formal model for the specification and analysis of
real-time systems. They are a simple extension of automata with real-valued variables,
called clocks, whose values increase at the same rate in the control locations, and can
be reset to 0 when a discrete transition is taken. By adding a certain type of constraint
on clocks to the locations and edges of the automaton, one can respectively specify the
time a system is allowed to remain in a control location, and when a discrete transition
can be taken. Many real-time systems have been modeled using timed automata and
analyzed automatically with tools like UPPAAL [10] and KRONOS [6].

A fundamental form of system analysis is the verification of safety properties, which
consists in checking whether any unsafe state is reachable. This kind of analysis is per-
formed efficiently by the tools mentioned above with well known algorithms manip-
ulating timed constraints, called zones, that can be represented as a square matrix of
difference bounds (DBM). The reachability analysis is based on the idealized semantic
assumption that all clocks advance with the same speed. However, in a real implementa-
tion of a system, clocks will be likely to drift and measure time only up to some precision.

Puri first addressed this concern in [12] where he considered drifting clocks and
showed that timed automata models are not robust with respect to safety properties,
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meaning that a model proven to be safe under the standard ideal semantics might not
be safe even if clocks drift by an arbitrarily small amount. De Wulf et al. consider
a semantics, called the almost ASAP semantics [8], capturing certain notion of clock
imprecision that can be translated into a syntactical enlargement of the guards. They
later showed in [7] that the implementability of a model under their semantics can be
decided with Puri’s algorithm for robustness analysis.

Both results rely on an enlarged semantics of timed automata with either drift or
imprecision of clocks. They consider the set of states that are reachable for any drift
or imprecision. If this set contains some unsafe state, then the model is considered not
to be robust or implementable. The robust reachability set can be computed with the
algorithm from [12] in both cases, which are thus equivalent. The algorithm is based
on the structure of the limit cycles of a timed automaton, i.e. the cyclic trajectories in
the underlying timed transition system. The algorithm considers the strongly connected
components of the region graph because they contain the limit cycles of the timed au-
tomaton. It adds every strongly connected component that intersects the reachability
set, and its successors, to the reachability set. However, because the size of the region
graph is exponential in the number of clock variables and the largest constant in the
constraints, the algorithm is not effective in practice.

We propose a symbolic algorithm for computing the enlarged reachability set of a
timed automaton based on the standard algorithm for symbolic reachability analysis
using zones to represent symbolic states. Our algorithm relies on the computation of
a stable zone Wσ of every progress cycle σ in the timed automaton, defined as the
maximal set of clock values that have successors and predecessors through any num-
ber of iterations of σ in the timed automaton. That is, Wσ =

⋂
i≥0 posti

σ(True) ∩
⋂

i≥0 prei
σ(True). The stable zone has the property of reaching and being reached from

any cycle in the region graph, and hence any states in a limit cycle. We modify the stan-
dard reachability algorithm such that whenever the stable zone of a cycle intersects the
standard reachable set, the whole stable zone is added to the set of states to be explored.

Related work. The robustness analysis has been extended to more general type of prop-
erties, like Büchi and LTL in [4]. Other notions of robustness have been considered in
the literature, like [9,11] which impose a restriction to the type of accepted traces, as
opposed to the enlargement we consider here. A different modelling based approach to
implementability can be found in [1].

The remaining of the paper is organized as follows. Section 2 recalls the basic stan-
dard definitions of timed automata. The robustness problem arising from an enlarged
semantics is presented in Section 3. Our contribution is the subject of Section 4, where
we define the stable zone of a cycle and study its main properties, which we then use
in our symbolic algorithm for robustness analysis. Finally, Section 5 concludes our pre-
sentation with a summary of the main results and a discussion on future work.

2 Timed Automata

This section briefly recalls the definitions of timed automata, their semantics, reacha-
bility analysis, and region graph.
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2.1 Definitions

Definition 1 (Closed Zones). A closed zone over the set of clocks C is a conjunction of
simple constraints giving a positive lower and upper bound to the value of each clock,
and a lower and upper bound to the difference between any pair of clocks. Formally,

Z(C) =
∧

x∈C
lx ≤ x ≤ ux ∧

∧

x,y∈C
x − y ≤ dxy

with lx, ux ∈ N ∪ {∞} and dxy ∈ Z ∪ {−∞,∞}.

Zones without bounds for clock differences are called rectangular and denoted ZR(C).
Rectangular zones without lower bounds are called upper zones, and denotedZU (C). A
clock valuation is a function v mapping C to non-negative real numbers. True denotes
the zone

∧
x∈C 0 ≤ x satisfied by any valuation of the clocks. By v |= z we will

understand that if v is a clock valuation and z is a zone, then the clock values denoted
by v satisfy the constraints of z.

Definition 2 (Timed Automaton). A timed automaton is a tuple A = 〈L, C, I, T 〉
where

1. L is a finite set of locations representing the discrete control structure of the system
2. C is a finite set of nonnegative real-valued variables called clocks
3. I : L → ZU (C) are the location invariants
4. T ⊆ L × ZR(C) × 2C × L is a sef of edges. An edge (l, g, R, l′) represents a

transition from l to l′ with a guard g and a set R of clocks to reset.

2.2 Semantics

Definition 3 (Standard semantics). Given a timed automaton A = 〈L, C, I, T 〉 its
semantics is defined as the timed transition system [[A]] = (Q,→t ∪→e) such that:

– Q ⊆ L× R
n
+: (l, v) ∈ Q iff v |= I(l)

– (l, v)→t(l, v + t) if t ∈ R≥0 and v + t |= I(l)
– (l, v)→e(l′, v′) if e = (l, g, R, l′) ∈ T such that:

• v |= g and v′ |= I (l′)
• v′(x) = 0 if x ∈ R, v′(x) = v(x) otherwise.

In the remaining of the paper we will use the following notations. Let e ∈ T be an
edge of A, then x

e=⇒ y if and only if there exists z, z′ ∈ Q such that x→tz→ez
′→ty.

Let π = e1e2 . . . en be a sequence of edges, then x
π=⇒ y, meaning that there is a

trajectory from x to y through π, if and only if there exist z1 . . . zn−1 ∈ Q such that
x

e1=⇒ z1 . . . zn−1
en=⇒ y.

The following lemma states that if we follow the same sequence of edges reaching
two states then any linear combination of the states is also reachable. Lemma 1 follows
from the convexity of the guards.

Lemma 1. Let π = e1e2 . . . en be be a sequence of edges. If x
π=⇒ x′ and y

π=⇒ y′,
then for all λ ∈ [0, 1], λx + (1 − λ)y π=⇒ λx′ + (1 − λ)y′.
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2.3 Reachability Analysis

The most fundamental form of analysis of a timed automaton is the computation of its
reachable state space from an initial state. The reachable state space of A from q0 ∈
Q under semantics[[A]], denoted Reach([[A]], q0), is the set of states q ∈ Q such that
(q0, q) ∈ (→t ∪→e)�. We denote y ∈ Reach([[A]], x) by x =⇒ y.

Safety properties can then be verified by checking if an undesired set of states Bad
is reachable, i.e. if Reach([[A]], q0) ∩ Bad = ∅, which can be decided even when it
is not possible to compute the reachable state space exactly. An interesting question
first tackled by Puri in [12] is how robust a timed automaton model is if we relax the
assumption that all clocks advance at the same speed. He showed that in some cases the
verification results do not hold even for small drifts.

2.4 Region Graph

Given a timed automaton A, let k be a function, called a clock ceiling, mapping each
clock x ∈ C to k(x) - the largest integer c such that (x ≤ c) or (c ≤ x) is a subformula
for some clock constraint appearing in A. We assume that every clock x ∈ C appears
in some constraint. For a real number d, let 〈d〉 denote the fractional part of d, and �d�
denote its integral part. So d = �d� + 〈d〉.

Definition 4 (Clock regions). A clock region is an equivalence class of the relation
∼k. The equivalence relation ∼k is defined over the set of clock valuations. Two clock
valuations are region equivalent denoted v ∼k v′ iff all following conditions hold:

1. for all x ∈ C either �v(x)� = �v′(x)� or v(x) > k(x) and v′(x) > k(x).
2. for all x, y ∈ C if v(x) ≤ k(x) and v(y) ≤ k(y) then 〈v(x)〉 ≤ 〈v(y)〉 iff 〈v′(x)〉 ≤

〈v′(y)〉.
3. for all x ∈ C if v(x) ≤ k(x) then 〈v(x)〉 = 0 iff 〈v′(x)〉 = 0.

We denote [v] the smallest closure of the set of clock assignments region-equivalent to
v. Such set is called a closed region.

Definition 5 (Region graph). Given the timed transition system [[A]] = (Q,→) of a
timed automaton A we define the corresponding (closed) region graph G = (R,→G) of
A:

– R = {(l, [v]) | (l, v) ∈ Q} is a set of closed regions.
– →G⊆ R × R: ((l, [v]), (l′, [v′])) ∈→G if (l, [v]) �= (l′, [v′]) and either (l, v)→t

(l′, v′) or (l, v)→e(l′, v′) .

If q = (l, v) then by [q] we understand closed region containing q, i.e. [q] = (l, [v])

3 Robustness Problem

In this section we consider the robustness or implementability of timed automata as
studied in [12] and [7]. We first define a family of enlarged semantics parameterized by
the drift in clocks ε and the imprecision in guards Δ. Following [12] we require that
every cycle is a progress cycle, i.e. a cycle where each clock is reset at least once.
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3.1 Enlarged Semantics

Given a timed automaton A = 〈L, C, I, T 〉 its enlarged semantics parameterized by
ε, Δ ∈ [0, 1) is defined as the timed transition system [[A]]εΔ = (Q,→t ∪→e) such that:

Definition 6 (Enlarged semantics)

– Q ⊆ L× R
n
+: (l, v) ∈ Q iff v |= I(l)

– (l, v)→t(l, v′) if v′ |= I(l′) and v′(xi)−v(xi) ∈ [(1−ε)t, (1+ε)t] for i = 1, . . . , n
– (l, v)→e(l′, v′) if e = (l, g, R, l′) ∈ T such that:

• v |= gΔ
1 and v′ |= I(l′)

• v′(x) = 0 if x ∈ R, otherwise v(x)

Clearly, the enlarged semantics [[A]]εΔ has more reachable states than the standard se-
mantics [[A]] = [[A]]00. We are not interested in the reachable states for some particular ε
or Δ, but in those states that are reachable for any ε or any Δ but are not reachable in
the standard semantics.

Definition 7 (Robust reachability)
The robust set of states reachable from q0 ∈ Q with some clock drift R∗

ε or guard
imprecision R∗

Δ are given by

R∗
ε (A, q0) =

⋂

ε>0

Reach([[A]]ε0, q0) R∗
Δ(A, q0) =

⋂

Δ>0

Reach([[A]]0Δ, q0).

The question is whether unsafe states Bad can be unreachable under the standard se-
mantics but reachable under the robust semantics, i.e. Reach([[A]], q0) ∩ Bad = ∅ and
R∗

ε (A, q0) ∩ Bad �= ∅. The following example, from [12], shows that this is indeed
possible.

3.2 Example

We consider the timed automaton in Figure 1 and the initial state (L1, a = 1 ∧ b = 0).
The parameter K is an integer taking the value 2 or 3. We want to check if the model is
not safe, i.e. if location Err is reachable, which is only possible if the value of b can be
larger or equal than K when entering location L2.

L1
L2 Err

a <= 2 a := 0

b >= 2b:=0

a == 0 &&
b >= K

Fig. 1. A (robust?) timed automaton

Clearly, this is not possible under the standard semantics, regardless of the value of
K . As can be seen from the reachable state space depicted in dark gray in Figure 2,

1 gΔ is the rectangular guard g extended by Δ, i.e. replacing a ≤ x ≤ b by a−Δ ≤ x ≤ b+Δ.
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upon entering location L2 we must have a = 0 and b ≤ 1. However, lets consider the
case of clock b advancing at speed 1 + ε in location L1, and 1 in location L2, whilst
a advances with speed 1 in both locations. Then there is a trajectory such that upon
entering location L2 for the k-th time, a = 0 and b = (1 + ε)k. Moreover, because
a ≥ 0 in L1, we have that b ≤ 2(1 + ε)/(1 − ε) when entering L2. So for any ε and
sufficiently many iterations, location Err becomes reachable if K = 2, but not if K = 3
and ε < 1/5.

So, although the model for K = 2 is considered safe under the standard ideal-
ized semantics, it is not under the robust semantics because the unsafe location will be
reachable for any drift or imprecision in the measurement of clocks. In other words, the
model is not robust or implementable. On the other hand, the same model is robust or
implementable for K = 3 provided that ε is small enough.

Fig. 2. Reachable state space from (L1, a = 1 ∧ b = 0) with the standard (dark) and enlarged
(light) semantics

3.3 Algorithm

Algorithm 1 is a slightly modified version of the algorithm in [12] to compute iteratively
the set J∗ on the region graph of a timed automaton A. We first compute the reachable
regions from a given initial state [q0]. Then, for every region s in the strongly connected
components of the region graph that intersects the current J∗, the regions reachable
from s are added to J∗.

Theorem 1 (from [12] and [7]). Algorithm 1 computes the robust reachable state
space of A from r0 under the enlarged semantics, with either drifting clocks [12] or
enlarged guards [7].

J∗ = R∗
ε (A, r0) = R∗

Δ(A, r0)

The proof of this theorem (shown in [12] and [7]) relies on the structure of the limit
cycles of the timed automaton.

4 Symbolic Robustness Analysis

The robust semantics of a timed automaton depends on the structure of its limit cycles.
Algorithm 1 computes the robust reachable state space by adding the reachable cycles
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Algorithm 1. Algorithm computing R∗
ε (A, r0)

Input: A timed automaton A and initial region r0

Output: The set J∗ = R∗
ε (A, r0)

ENLARGEDREACH(A,r0)
(1) Construct the region graph G of timed automaton A
(2) S ← STRONGLYCONNECTEDCOMPONENTS(G)
(3) J∗ ← REACH(G,r0)
(4) while there exists s ∈ S such that s �⊆ J∗ and s ∩ J∗ �= ∅
(5) J∗ ← J∗∪ REACH(G,s)
(6) S ← S \ s
(7) return J∗

in the region graph (which contain the limit cycles). But this algorithm is not effective
in practice because of the size of the region graph.

We propose a symbolic algorithm to compute the enlarged reachable state space
using zones to represent symbolic states. For that, we consider in this section a cycle
σ = e1 . . . en of a timed automaton, with ei = (li, gi, ri, l

′
i), as a sequence of edges

such that l′i = li+1 for i = 1 . . . n − 1 and l1 = l′n. We assume that the cycle is a
progress cycle, meaning that each clock is reset at least once.

4.1 Limit Cycles

Limit cycles are cyclic trajectories in the underlying timed transition system of a timed
automaton, without superfluous 0-time self loops. A state in a limit cycle can return to
itself after one or more iterations of a cycle in the timed automaton.

Definition 8 (Return Map). Let σ be a cycle in timed automaton A. The return map of
a state q is the set of states reachable from q after one cycle σ

Rσ(q) = {q′ | q σ=⇒ q′}.

Definition 9 (Limit Cycles). The set of states which can return back to themselves
after i > 0 iterations of the cycle σ is Li

σ = {q | q ∈ Ri
σ(q)}, and the set of states with

limit cycles through σ is Lσ =
⋃

i>0 Li
σ.

Lemma 2 shows that the set of states in limit cycles is convex because the convex

combination of two limit cycles is also a limit cycle. Let
σ+

=⇒ be the transitive closure
of

σ=⇒.

Lemma 2. Let σ be a cycle in A. If x
σ+

=⇒ x and y
σ+

=⇒ y, then for all λ ∈ [0, 1],

λx + (1 − λ)y σ+

=⇒ λx + (1 − λ)y.

Proof. If x
σ+

=⇒ x then there exists m ≥ 1 such that x
σm

=⇒ x. Similarly, there exists

n ≥ 1 such that y
σn

=⇒ y. So x
σmn

=⇒ x and y
σmn

=⇒ y. Therefore, from Lemma 1, for all

λ ∈ [0, 1] λx + (1 − λ)y σmn

=⇒ λx + (1 − λ)y.
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Several properties of limit cycles of timed automata are given in [12]. For instance, the
set of states with limit cycles in a cycle of the region automaton is a non-empty region.
It follows, by convexity of the limit cycles, that Lσ is a zone. An important property of
limit cycles is that for any state in a cycle of the region graph, there is a state in the limit
cycles of its region that can reach it, and a state that can be reached from it.

Lemma 3 (Lemma 11 in [12]). Consider a cycle c = c0c1 . . . cN in the region graph.
Then, for any x ∈ c0, there exist u, v ∈ Lc such that x =⇒ u and v =⇒ x.

4.2 Region Graph Cycles

Definition 10 (Regions with Cycles). Let σ be a cycle in timed automaton A. We de-
fine the set of regions with cycles through σ in the region graph of A as Cσ = {r ∈
R | ∃q, q′. r = [q] = [q′] and q

σ+

=⇒ q′}.

Lemma 4 says that for any two cycles in the region graph following a cycle in the timed
automaton, we can find a sequence of regions touching each other and each of these
regions is in a cycle of the region graph.

Lemma 4. Given a cycle σ in the timed automaton, for any two regions c, c′ ∈ Cσ

there exists a finite sequence of regions c0 . . . cn ∈ Cσ such that for all 0 ≤ i < n,
ci ∩ ci+1 �= ∅, c0 ∩ c �= ∅ and cn ∩ c′ �= ∅.

Proof. We know that each region in a cycle of the region graph contains a state with a
limit cycle. Let x ∈ c and y ∈ c′ have limit cycles. Thus, state λx+(1−λ)y is in a limit
cycle and its region in a cycle in the region graph, for any λ ∈ [0, 1], which implies the
existence of regions with the required property.

Remark 1. The set of states in Cσ is not necessarily convex, as illustrated in the example
in Section 4.5.

4.3 Stable Zone

Let X ⊆ Q be a set of states and σ a cycle of A. We denote preσ(X) = {q | ∃q′ ∈
X.q

σ=⇒ q′} the set of predecessors of X through σ, and postσ(X) = {q | ∃q′ ∈
X.q′ σ=⇒ q}) the set of successors of X through σ.

Definition 11 (Stable Zone). The stable zone of a cycle σ in a timed automaton is the
zone

Wσ = νX. postσ(X) ∩ νX. preσ(X)

The stable zone characterizes those states that have a predecessor and a successor after
any number of σ iterations. In the finite lattice of zones defined using constants smaller
than the largest constant appearing in the timed automaton, the greatest fixed points can
be computed by iteration from True. Hence the σ-stable zone can be computed as

Wσ =
⋂

i≥0

posti
σ(True) ∩

⋂

i≥0

prei
σ(True)
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Example 1. The stable zone of the cycle σ =L1-L2-L1 in the timed automaton in
Figure 1 is:

Wσ = (0 ≤ a ≤ 2 ∧ 0 ≤ b ≤ 3 ∧ −2 ≤ b − a ≤ 3) ∩
(0 ≤ a ≤ 3 ∧ 0 ≤ b ≤ 3 ∧ −3 ≤ b − a ≤ 0)

= (0 ≤ a ≤ 2 ∧ 0 ≤ b ≤ 2 ∧ −2 ≤ b − a ≤ 0)

where the fixpoints are computed in 2 iterations. It can be checked that those are also
the states with a limit cycle through σ. However this is not always the case.

Moreover, for any state in Wσ there exist a successor and a predecessor through any
number of iterations of σ that also belong to Wσ . This property follows from the fol-
lowing lemma that characterizes the stable zone as the maximal set of states that can
reach and be reached from itself.

Lemma 5. Wσ = νX.(postσ(X) ∩ preσ(X))

Proof. Let Y1 = νX. postσ(X), Y2 = νX. preσ(X) and Z = νX.(postσ(X) ∩
preσ(X)). Z ⊆ postσ(Z), therefore Z ⊆ Y1. Similarly, Z ⊆ Y2. Hence Z ⊆ Wσ .
On the other hand, for all y ∈ Y1 ∩ Y2, there exist y1 ∈ Y1 and y2 ∈ Y2 such that
y1

σ=⇒ y
σ=⇒ y2. Since y ∈ Y2, y has suctcessors through any number of σ itera-

tions, and so does y1, hence y1 ∈ Y2 and y ∈ postσ(Y1 ∩ Y2). Similarly, y2 ∈ Y1 and
y ∈ preσ(Y1 ∩ Y2). So Y1 ∩ Y2 ⊆ postσ(Y1 ∩ Y2) ∩ preσ(Y1 ∩ Y2), hence Wσ ⊆ Z .

The following lemma states that the stable zone of a cycle σ of a timed automaton
contains the cycles in the region graph through σ, which we know from [12] contain
the limit cycles in σ. Moreover, the inclusions can be strict. An example where the first
inclusion is strict is given in [13], and an example showing that both inclusions can be
strict can be found in Section 4.5. We will abuse notation and consider Cσ as the set of
states in the regions of Cσ .

Lemma 6. Lσ ⊆ Cσ ⊆ Wσ

Proof. Let c ∈ Cσ be a region.Then, for any q ∈ c there exist q1, q2 ∈ c such that

q1
σ+

=⇒ q
σ+

=⇒ q2 so q has successors and predecessors through any number of σ itera-
tions. Hence, q ∈ Wσ and c ⊆ Wσ .

An important property in Puri’s theory is that even though not every state in a cycle in
the region graph is itself in a limit cycle, it can always reach a state in a limit cycle, and
be reached by a state in a limit cycle. In a similar way, not every state in the stable zone
is in a cycle in the region graph, but it can always reach a state in a cycle in the regiont
graph, and be reached by a state in a cycle in the region graph. Lemma 7 formalizes this
property.

Lemma 7. For all q ∈ Wσ , there exist q1, q2 such that q1
σ+

=⇒ q
σ+

=⇒ q2 and [q1], [q2] ∈
Cσ .
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Proof. Let q ∈ Wσ be a state in the stable zone of σ. From Lemma 5 there exist
x1 . . . xn ∈ Wσ such that xn

σ=⇒ . . . x1
σ=⇒ q for any n ≥ 1. Since q can be reached in

any number of iterations of σ, and the number of regions is finite, then, for n sufficiently
large, there exist xi, xj such that [xi] = [xj ] and then we take q1 = xi. A similar
reasoning shows the existence of q2.

4.4 Symbolic Robustness Algorithm

Algorithm 1 computes the robust reachability set by adding iteratively to the rea-
chable state space all regions reachable from a strongly connected component of
the region graph, when some region in the SCC intersects the current reachable state
space.

We propose an algorithm to compute symbolically the robust set of reachable states
of a timed automaton. Algorithm 2 is based on the standard symbolic algorithm [5,3] to
compute the reachable state space of a timed automaton as implemented in the real-time
model checkers KRONOS and UPPAAL. A symbolic state is a pair 〈l, z〉 of a location l
and a zone z. First the algorithm computes the stable zone of each cycle of the timed
automaton. Each time a new symbolic state representing states not visited yet is chosen,
its successors are added to the waiting list, until the latter is empty. The difference with
the standard algorithm resides in lines 9–11 where we check if the zone of the currently
visited symbolic state intersects any of the stable zones of a cycle starting in its location,
in which case we add the stable zone and its time-successors to the waiting list.

Algorithm 2. Symbolic algorithm computing R∗
ε (A, r0)

Input: A timed automaton A and initial region r0 ∈ RA

Output: The symbolic state set Passed = R∗
ε (A, r0)

SYMBENLARGEDREACH(A)
(1) Compute Wσ for every cycle σ in A
(2) Wait = {r0}
(3) Passed = ∅
(4) while Wait �= ∅
(5) pop 〈l, D〉 from Wait
(6) if D �⊆ D′ for all 〈l′, D′〉 ∈ Passed
(7) Passed ← Passed ∪ {〈l, D〉}
(8) foreach 〈l′, D′〉 ∈ SUCC(〈l, D〉)
(9) Wait ← Wait ∪ {〈l′, D′〉}
(10) foreach Wσ with σ starting in l
(11) if D ∩ Wσ �= ∅
(12) Wait ← Wait ∪ {TIMESUCC(〈l, Wσ〉)}
(13) return Passed

Theorem 2 states that Algorithm 2 computes the set R∗
ε . We prove this result by

showing that this algorithm computes the same set of states J∗ as Algorithm 1 from
Puri.

Theorem 2. Let A be a timed automaton, r0 ∈ RA an initial region, and W ∗ the set of
states returned by Algorithm 2. Then W ∗ = R∗

ε (A, r0).
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Proof. Algorithm 1 adds cycles in the region graph to the reachable state space. From
Lemma 6 we know that all cycles in the region graph are included in the stable zone
and hence will also be added by Algorithm 2, so J∗ ⊆ W ∗.

On the other hand, if some Wσ is added in Algorithm 2, then Wσ ∩ D �= ∅ for
some reachable 〈l, D〉. From Lemma 7 we know that there exists some c ∈ Cσ that
is reachable from Wσ ∩ D. So [c] will be added by Algorithm 1. From Lemma 4, the
whole Cσ must be added. Finally, Wσ is also added because it is reachable from Cσ by
Lemma 7. Hence, W ∗ ⊆ J∗.

4.5 Example with Strict Inclusions

The timed automaton in Figure 3 (left) shows that the inclusions Lσ ⊆ Cσ ⊆ Wσ can
be strict, and that the set Cσ is not necessarily convex (right).

A

B C
c>=2 && c<=4 && a>=2

c:=0

c<=2 && b<=2

a:=0b==2
b:=0

Fig. 3. Timed automaton (left) showing that Lσ � Cσ � Wσ (right)

Strict inclusions and non convexity of Cσ. We only consider set of states when en-
tering location A, that is, with a = 0 (the remaining reachable states can be reached
from these states). The reader can check that the states with limit cycles Lσ, the states
in cycles in the region graph Cσ , and the stable zone Wσ are given by the following
equations, represented in Fig.3 (right):

Lσ = (A, a = 0 ∧ 0 ≤ b ≤ 2 ∧ c = 0)
C1 = (A, a = 0 ∧ 0 ≤ b ≤ 1 ∧ 0 ≤ c ≤ 1 ∧ 0 ≤ b − c ≤ 1)
C2 = (A, a = 0 ∧ 1 ≤ b ≤ 2 ∧ 0 ≤ c ≤ 1 ∧ 1 ≤ b − c ≤ 2)
Cσ = C1 ∪ C2

Wσ = (A, a = 0 ∧ 0 ≤ b ≤ 2 ∧ 0 ≤ c ≤ 2 ∧ 0 ≤ b − c ≤ 2)

The fact that a set of states belongs or not to a cycle in the region graph can be
observed computing the corresponding reachability set. In this case we have:

Reach(Lσ) = Wσ Reach(C1) = Wσ

Reach(Wσ) = Wσ Reach(C2) = C2

Reach(Cσ) = Wσ Reach(Wσ \ Cσ) = C2
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Comparing both algorithms. Theorem 2 shows that both the original algorithm on the
region graph, and our symbolic algorithm using the stable zone are equivalent. It is easy
to see that any region added to the reachability set by Algorithm 1 will be also added
by our algorithm because the stable zone contains all the cycles in the region graph. We
illustrate with this example why the converse is also true.

Let’s assume state (A, (0, 2, 2)) is reachable. Since it belongs to the stable zone, the
whole stable zone will be added by our algorithm. Algorithm 1 will first only add the
states reachable from (A, (0, 2, 2)), that is (A, (0, 2, 0)) ∈ C2. So C2 will be added
next, then also C1 because C1 ∩ C2 �= ∅ (a particular case of Lemma 4). Finally,
Reach(C1) = Wσ , so the whole Wσ will be added.

5 Conclusions

We proposed a symbolic algorithm for computing the robust reachability set of a timed
automaton based on the standard algorithm for symbolic reachability analysis of timed
automata, using zones to represent symbolic states. Although the worst case complexity
of symbolic algorithms is the same as for the region graph, symbolic algorithms are
known to be more efficient in practice. Moreover, our symbolic algorithm is easy to
implement and integrate within existing formal frameworks for the validation of real-
time systems.

Our algorithm relies on the computation of the stable zone of each progress cycle
in the timed automaton. The stable zone of a cycle is the maximal set of clock values
that have a successor and a predecessor through any number of iterations of the cycle.
All cycles in the region graph following the same cycle in the timed automaton are
connected to each other through the limit cycles. Moreover, every point in the stable
zone can reach a cycle in the region graph, and be reached from a cycle in the region
graph. Based on these facts, we modified the standard reachability algorithm such that
whenever the stable zone of a cycle intersects the set of computed reachable states, the
stable zone is added to the set of states to be explored. We showed that our zone based
algorithm is equivalent to the one from Puri operating on the region graph to compute
the robust reachabilty set.

We implemented the computation of the stable zone of a cycle and applied it to the
simple examples in [12] to validate our results. However, we need to implement the
robust reachability algorithm in order to assess its effectiveness in handling complex
timed automata models. The modifications to the standard reachability algorithm are
quite straightforward to implement in tools like UPPAAL or KRONOS.

In the future we are interested in the study of sufficient conditions for a timed au-
tomaton model to be robust which can be checked more efficiently, as well as in devising
meaningful model transformation techniques to make a model robust.
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