Skip to main content

Bio-inspired Motion-Based Object Segmentation

  • Conference paper
Book cover Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4141))

Included in the following conference series:

Abstract

Although motion extraction requires high computational resources and normally produces very noisy patterns in real sequences, it provides useful cues to achieve an efficient segmentation of independent moving objects. Our goal is to employ basic knowledge about biological vision systems to address this problem. We use the Reichardt motion detectors as first extraction primitive to characterize the motion in scene. The saliency map is noisy, therefore we use a neural structure that takes full advantage of the neural population coding, and extracts the structure of motion by means of local competition. This scheme is used to efficiently segment independent moving objects. In order to evaluate the model, we apply it to a real-life case of an automatic watch-up system for car-overtaking situations seen from the rear-view mirror. We describe how a simple, competitive, neural processing scheme can take full advantage of this motion structure for segmenting overtaking-cars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by central nervous system. In: Rosenblith, W.A. (ed.) Sensory Communication, pp. 303–317 (1961)

    Google Scholar 

  2. Mota, S., Ros, E., Ortigosa, E.M., Pelayo, F.J.: Bio-Inspired motion detection for blind spot overtaking monitor. International Journal of Robotics and Automation 19(4) (2004)

    Google Scholar 

  3. Mota, S., Ros, E., Díaz, J., Ortigosa, E.M., Agís, R., Carrillo, R.: Real-time visual motion detection of overtaking cars for driving assistance using FPGAs. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 1158–1161. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Haag, J., Borst, A.: Encoding of visual motion information and reliability in spiking and graded potential neurons. Journal of Neuroscience 17, 4809–4819 (1997)

    Google Scholar 

  5. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  6. Clifford, C.W.G., Ibbotson, M.R., Langley, K.: An adaptive Reichardt detector model of motion adaptation in insects and mammals. Visual Neuroscience 14, 741–749 (1997)

    Article  Google Scholar 

  7. Ros, E., Pelayo, F.J., Palomar, D., Rojas, I., Bernier, J.L., Prieto, A.: Stimulus correlation and adaptive local motion detection using spiking neurons. International Journal of Neural Systems 9(5), 485–490 (1999)

    Article  Google Scholar 

  8. Barlow, H.B.: The efficiency of detecting changes of intensity in random dot patterns. Vision Research 18(6), 637–650 (1978)

    Article  Google Scholar 

  9. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for local “association field”. Vision Research 33(2), 173–193 (1993)

    Article  Google Scholar 

  10. Saarinen, J., Levi, D.M., Shen, B.: Integration of local pattern elements into a global shape in human vision. Proceeding of the National Academic of Sciences USA 94, 8267–8271 (1997)

    Article  Google Scholar 

  11. Gilbert, C.D., Wiesel, T.N.: Intrinsic connectivity and receptive field properties in visual cortex. Vision Research 25(3), 365–374 (1985)

    Article  Google Scholar 

  12. Ross, M., Wenzel, T.: Losing weight to save lives: a review of the role of automobile weight and size in traffic fatalities. Report from the American Council for an Energy-Efficient Economy, ACEEE-T013 (2001)

    Google Scholar 

  13. Franke, U., et al.: From door to door- Principles and Application on Computer Vision for driver assistant systems. In: Proceeding of Intelligent Vehicle Technologies: Theory and Applications (2000)

    Google Scholar 

  14. Handmann, U., et al.: Computer Vision for Driver Assistance Systems. In: Proceeding of SPIE, vol. 3364, pp. 136–147 (1998)

    Google Scholar 

  15. Schneider, R., Wenger, J.: High resolution radar for automobile applications. Advances in Radio Science 1, 105–111 (2003)

    Article  Google Scholar 

  16. Ewald, A., Willhoeft, V.: Laser Scanners for Obstacle Detection in Automotive Applications. In: Proceedings of the IEEE Intelligent Vehicle Symposium, pp. 682–687 (2000)

    Google Scholar 

  17. Heisele, B., Neef, N., Ritter, W., Schneider, R., Wanielik, G.: Object Detection in Traffic Scenes by a Colour Video and Radar Data Fusion Approach. In: First Australian Data Fusion Symposium, pp. 48–52 (1996)

    Google Scholar 

  18. Fang, Y., Masaki, I., Horn, B.: Depth-Based Target Segmentation for Intelligent Vehicles: Fusion of Radar and Binocular Stereo. IEEE Transactions on Intelligent Transportation Systems 3(3) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mota, S., Ros, E., Díaz, J., Agis, R., de Toro, F. (2006). Bio-inspired Motion-Based Object Segmentation. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_19

Download citation

  • DOI: https://doi.org/10.1007/11867586_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44891-4

  • Online ISBN: 978-3-540-44893-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics