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Abstract. We propose models based on Gabor functions to address two related
aspects in the object recognition problem: interest point selection arsifidas
tion. We formulate the interest point selection problem by a cascade ofibotto
up and top-down stages. We define a novel type of top-down salierenatop

to incorporate low-level object related knowledge very soon in the retiog
process, thus reducing the number of canditates. For the classificatioasp,
we represent each interest point by a vector of Gabor responsese\plarame-
ters are automatically selected. Both the selection and classification presedu
are designed to be invariant to rotations and scaling. We apply the appimac
the problem of facial landmark classification and present experimergalt il-
lustrating the performance of the proposed techniques.

1 Introduction

The object recognition problem has been tackled recentlyguthe concept of low-
level features with several successful results [1-4]. Athese works exploit the idea
of selecting various points in the object and building upcalmeighborhood represen-
tation for each one of the selected points. In this work weothice models built with
Gabor functions to unfold the following issues: (selectiamich points are important
to represent the object, and (classification) how to reprtesed match the information
contained in each point’s neighborhood.

The point selection problem, also called keypoint detedtig 5], interest point de-
tection[3], bottom-up saliency [6], and salient regionedtibn [7], has been addressed
in a bottom-up fashion. Bottom-up means that points sedesnte image-dependent, not
task-dependent. Salient points are selected to be distsimgjole from its neighbors and
have good properties for matching, repeatability, andieaiiance to common image
deformations. However, there is evidence of interactionvben bottom-up and top-
down processes in nearly every visual search model in theahwisual system([8]. In
guided visual search problems, where specific objects aetsed in the scene, it is
convenient to incorporate object related knowledge(toprdinformation) as soon as
possible in the recognition process, to reduce the amoupbsdible candidates. The
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objective of the saliency function is to remove points veiffedent from the model

and have very few rejections of “good points”. We propose eehootation invariant

saliency function based on the isotropic frequency chargstics of the feature to de-
tect. We also propose a new method to compute each pointissiatscale, to provide
scale invariance for both the saliency and detection pessedVe will describe exten-
sively this approach in Section 2.

In the classification stage we employ an image neighborhepresentation built
with Gabor filter responses proposed in [9]. The image regasa modeled by a feature
vector formed from Gabor filter responses computed at tieeast point, and the model
parameters are automatically selected. In Section 3 wewethis procedure, and we
introduce rotation and scale invariance to the featureovelet Section 4 we present tests
in facial region recognition, followed by the conclusiomslduture work in Section 5.

Interest point
classification

Bottom-up Top-down Interest point

salient points > s_ahe_ncy > representation
filtering T
T target

target saliency model classification
model

Fig. 1. In the left side, architecture of our recognition approach. In the riglg, £xamples of
facial landmarks

We observe in the left side of Figure 1 the proposal for ouogedion approach.
We remark the top-down filtering and the interest point dfacsgion steps as the bulk
of our work.

2 Top-down interest point selection

When searching for a particular tar§ein a image, we must search, from a set of
candidates points. Depending on the employed algorithmssfarching and matching,
this can be a computationally expensive procedure, andustikia search should be
avoided. In this section we propose an intermediate stepemdcognition process to
reduce the space of candidates for matching, where a tspgetfic saliency operator
is designed to encode low-level target information.

2.1 Appearance based saliency operator

We will exploit the good properties of Gabor Filters to regmet texture, and introduce
top-down information in interest point detection. The 2D@enean isotropic Gabor

1 We denote 'target’ as a local feature belonging to the object of interest



function is:
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By convolving the Gabor function with image patteifis, ), we can evaluate their
similarity. The Gabor response at poinf, yo) is

Go,1.0(0,90) = //I(J;,y)g@f,(,(xo —x,y0 — y)dady (2

In Fig. 2 we show the appearance of some Gabor kernels as tofuré o, 6, and

f. These parameters can characterize the dominant textuae mfterest point. One
approach to characterize texture at an image p@inty;) would be to compute the
response of several gabor filters, tuned to different oatéons, frequencies and scales,
and retain the parameters corresponding to the maximuromesp

(65, fi,0;) = arg max 1Go,,0(z5,5)]- (3)

However none of the parameters is invariant to common imagesformation such as

@ f={33 3} 0 6={0,%% © o = {8,12,16}

Fig. 2. Examples of Gabor functions. Each sub-figure shows the real p&aloor function for
different values off, 6, ando

scalings and rotations. To obtain scale and rotation iemag we do as follows:

1. Sum the response of the Gabor filters for all orientationkszales:

s

GFS(zj,y;, f) = /0 Go,f,0(x;,y;)d0do 4)
For each pointz;, y;), this is a function of the frequency only, and is denoted by
the f-signature of a point. This function will give us the “energy” of the imag
pattern for any frequency of interest.

2. The f-signature of an interest point is independent of the oaigon but still de-
pends on the scale. Therefore, we define a scale invariaentgdery = 0—1f where
o is the intrinsic? scale of the interest point. This parameter is the ratio betw
wavelength (inverse of frequency) and scale, and is prapatto the number of
wave periods within the spatial support of the filter. Thusan be interpreted as a
“scale invariant frequency” parameter.

2 the concept of intrinsic scale will be explained later.



3. Finally, to obtain a scale invariant signature, we map fteégnature function to
~ values, and compute thesignature function. This function will constitute the
low-level scale and rotation invariant texture represtoneof an interest point.

In the next subsections we will describe how to compute andmasignatures.

2.2 Computing the f signature

To compute thef-signature of an image point one could use the direct impidation
of Eq.(4). However this would require a significant amountomputation. To over-
come this problem we define an equivalent kernel that filteesimage just once for
each frequency. The equivalent kernel is obtained by sugpthie gabor kernels for all
scales and orientations, and is denoted “Gabor Frequenien&g# kernel.

GFSk(xjvyj7 f) = / / 90,07]‘(55]‘7 yj)dgda (5)
0 —T

The closed form expression for the frequency-space kesribEifollowing:

s

Fig. 3. Example of Gabor frequency-space kernel. Top figures, 3D plot HD slice of
GFSk(z,y,0.2).Bottom figures, 3D plot and 1D slice 6fF'Sy (z,y,0.1)
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r

GFSy(r, f) = (—e 2T 4 Jo(27 fr)) (6)

In Eq.(6),r = \/23 +y7, andJy(z) is the Bessel function of the first kind. In Figure
3 we can see an example GfF'Sy, its shape is an exponentially decreasing 2D Bessel

function, and it is rotationally and translation invariafherefore, the computation of
the f-signature at poinfz;, ;) can be performed by:

GFS(zj,y;, f) =1« GF S, @)

The f-signature at a point is rotationally invariant. Howevéryve change the scale of
the image, thef-signature will both translate in the frequency axis andaitsplitude
will change linearly with the scale factor. After amplitudermalization,f-signatures
of the same point at different scales will be related by alsitrgnslation.



Amplitude normalization Letus consider two images(z, y), and an homogeneously
scaled version of (z, y). The new image is scaled by a factorls(z,y) = I(az, ay).
The f-signature at poinfz;, y;) is:

(Is * GFSk)(zj,y;, ) = (I x GFSy)(ax;, ay;, f) (8)

Now letZ = ax, j = ay, andf = f/a. Thendz = dz/a, anddy = djj/a. By making
substitutions in Eq. 6,

GFSIS(Ijayj7f) = (I*GFS)(axj7aijf/a) = %GFSI(axj,ayj,f/a) (9)

fGFS" (x},y;,0) = fGFS" (ax;, ay;, f/a) (10)

From Eq. (10) we see that if we multiply the response of theddeby the frequency,
the f-signature amplitude becomes normalized with respectaie ®hanges. Thus, the
normalizedf-signature of an image poift;, y; ), is:

GESnorm(j,yj, f) = f(I * GFSy) (11)

In Figure 4 we can see an example(of'S,, .-, for the case of an eye’s center point.

2.3 Computing the~-signature

In order to compute the-signature of an image point, we perform two steps: (i) Com-
pute the normalized-signature, and (ii) map the frequency interval intg &terval
using the information of the image point intrinsic scaleeTationale is to obtain a
signature that is invariant to image scale transformations

Intrinsic scale from the f-signature A conventional method to compute the intrinsic
scale of a point is to use the Lindeberg’s method for blobs[1D the scale where the
convolution with a normalized Laplacian of Gaussian fumcsiis maximum.

Looking at the shape of the equivalent frequency kernelsignire 3, we notice
similarities between the Laplacian of Gaussian functioitk different scales and GFS
kernels of different frequencies (in fact frequency is texdto the reciprocal of scale).
Experimentally we noticed that the zero crossings offttsggnature function closest to
the global maxima is very stable under image scale changks aalated reciprocally
to the scale factor. Thus, we compute the intrinsic séaéa point(x;, y;) as:

oc=1 A; f = ar min — N; f = argmax |GF Sporm| (12
/f f g f,GFSnorm (xhy'i;f):O f f f g f | | ( )

Mapping f to « values Let us define a set of frequency valués= {f1,..., fi,..., fn}-
To map the set of frequency valuésinto v values, we compute the intrinsic scai(
from Eq. (12). Mapping thef; € F values toy; € I values, the interval ofy-
signature isl” = {v1,..,Yi,---sVn} = {1/f16,...,1/fi6,...,1/f.6}. Thus, the
~-signature(top-down saliency model) of an image péint) is:

As an example, in Figure 4 we show thesignature of an eye’s center point.
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Fig. 4.In the left side GF' Syor» and in the right sidd" S, ,,, for the eye’s center point

2.4 Top-down Saliency Model and Matching

Let us assume an initial set of bottom-up salient points asdme we are interested in
searching for a particular interest point. First we need dehof the pointin terms of its
~-signature. This can be obtained from a single example optiet’s neighbourhood
or can be computed from the meassignature values in a training set:

SMyy(7vi) = FiSw,y(fyi)a’yi er (14)

After having an appropriate interest point model, in therfaf a~-signature, we
can analize novel images and reject interest points notocorifg to the model. The
rejection of bad candidates is performed by matchinghtsggnature of the test point
I'Sy¢ ¢ With the saliency mode§ M., ,,, doing the following steps: (i) Find the intersec-
tion of the~ intervals between the two signatures, (ii) subsample thgdset signature,
and (iii) compute the euclidean distance between signsture

Let us define two intervalsl's = [vyis,Vss) Of signaturel’ Sy, .+, and sy =
[Yisars Vfsar) OF the object modeb M, ,,, wherei stands for initial value, and stands
for final value. The segment of the signature for computirggdistance is the intersec-
tion of the two intervalsI's N I'sy = [Yins V/n -

The number of signature elements within the intefwal , v;.] could be different
in I"Sy: ,+ andSM, ,,. Therefore, we subsample the signature segment with mere el
ments in[y;,,,v¢,] to have equal sized signature segments. In the last stemmweute
the Euclidean distance between the signatures.

3 Interest point classification

In this section we describe a method to automatically degim®it the presence or ab-
sence of a certain target of interest in the image. A targadnisidered as a single point
and a circular neighborhood of the size of its “intrinsiclstaAn adequate target rep-
resentation must have good matching properties, and anegito image region trans-
formations. In [9] a representation based on Gabor filtggarses with good matching
properties is presented. In this paper we add rotation aalé swvariance, and further
automate the recognition process.



3.1 Target Model and Parameter Selection

Each target is modeled as random vector containing the rehimaginary parts of
Gabor responses with different parameters. We assumehhathdom feature vec-
tor follows a normal distribution with averageand covariance matrix’, v, ,y ~
N,y Ziay))-

To select the set of dominant textures for a certain imag®megve could select
parametersd, f, o) from Eq.(3). However this strategy do not perform well in thg-
crimination between different targets (the parameteritigtion is concentrated in a
narrow range which reduces the capability to discriminhte rhodeled object from
others). To enforce variability in the parameter space étide able to adapt the rep-
resentation to the particular object under test, we will gl@nuniformly one of the
parameters and perform a 2D search in the remaining dinensidnis strategy, used
in [9], is denoted by “Extended Information Diagram”, anda&sed in the concept of
Information Diagram [12].

Extended Information Diagram The “Extended Information Diagram” function pre-
sented in [9] is defined as:

EIDx,y (0’ g, 7) = ‘Gé’,’y,a (I, Z—,I)|

Then, in slices of EID are computed the local maxima. The dioates of the local
maxima are chosen as “good” Gabor function’s parameterausecthey represent the
target’s dominant texture. In this work we prefer to consitie frequencyf instead of
~, because there are much more and well located local maxifdadn f ). We redefine
the Extended Information Diagram as:

EID. (0,0, f) = |Go.1.0(,y)

There are three ways of slicing the EID functi@isfices,o slices, andf slices), but we
select théd-ID because is the method with best classification perfooaam[9]. Then
we denot&-ID, as a slice of the EID function, keeping constant thertgéon,d = 6,:

(15)

9-IDz?y(a, f) = EIDiy(GOa g, f)

In Fig. 5 we show some examples of théD computed at an eye’s center point.

Fig. 5. Three examples df-ID, andd slices in the parameter space from left to right



Searching Multiple Information Diagrams The strategy to find good parameters for
each target is based on uniformly discretizth@nd search local maxima in the result-
ing set ofd-ID’s. A set of -IDs for 7 = {61,--- ,0;,---, 6}, at point(z, y) is given
by:

.+, 6-1D%

Y

©-ID7 , = {6-ID¥!

0
T,y o 79-|D:1:l,y} (16)
The severab; € T are uniformly spaced in the rand@ 7). Then we compute the
parameters of the two higher local maxima:
(61, ) = arg ma 0-ID% i=1,--- 1 17)

z,y°

(&Tgf Al-rf‘z""x) = arg max H—IDny,i =1,---,1 (18)
o, f,0£6:1,f#fia

Using the parameters computed in Eqgs.(17) and (18), therkeaéctor is:
1 k 4m T 4k—3
U(ay) = (”(w,yw Uy 7%,@;)) b Ve = Re(Gy, fracomei (19)

4k—2 _ X Lo Ak—1 _ A L4k R
Via) = UGy, praxomedi Vg = Re(Go, fraconadi Viay) = (G, o o)

3.2 Interest point matching

In the training stage we compute the target mddel’). Then, in the matching stage
we compute the Mahalanobis distance between the targetlrmondehe interest point
feature vecton, ,y. Because we assumed the feature vector follows a normal dis-
tribution, the Mahalanobis distance follows the chi-sgudistribution. By picking a
confidence value from chi-square statistics table, we @@ sgtting the Mahalanobis
distance threshold to accept or reject the hypothesis afjattheing located at interest
point (x, y). The retrieved interest points are those below the Mahalaribreshold.

3.3 Scale invariance

The feature vector in Eq. (19) is composed by Gabor filterarsps. We want the
feature vector scale invariant, so we must find the congtrdor a Gabor response
being scale invariant. Following the reasoning proposgd 3}, consider two images:
I(z,y), and an homogeneously scaled versiod @f, y). The new image is scaled by
afactora asls(x,y) = I(ax,ay). The response of the scaled image at pgint yo),

Gé‘jf’d<$0, yo) is

Géfﬁg(l’o,yo) = (I * 9o,f/a,0a) (a0, ayo) = Gé,f/a,,aa(a’xmay()) (20)

From Eq. (20) we can see that the Gabor response remainsobimsthe scaled image
if we change the scale parameteiof the Gabor filter tooa, and also changing the
frequencyf to f/a. If we see these value changings in termsyof 1/0f, it means
the scale invariant parametgmantains the same value.



We do not know the scale factarin Eq.(20), so a common approach to solve this
problem is to define an intrinsic scale of the interest pde.define the scale ratio

~max
o e

pt,j:#L]:laQaZ:laal (21)
Ointrinsic
wheres"® is computed in Eqgs.(17) and (18), anhrinsic IS computed in Eq.(12).
The ratiop; ; is computed during the training stage, and is an indicatahefright
scale parameter of Gabor filter in new images. Ratio valygsmust keep the same
value in scaled images, so

Amax __ . e
Sai,j = sOintrinsicPi,j,J] = 172,2 = 17...7l (22)
O L
~max __ ~maxsintrinsic
sO0i5 =055 ———— (23)
Ointrinsic
fmax __ pmax sTintrinsic 24
fres = sy ((<intrinsic (24)
Ointrinsic

where the left subscript in sointrinsic, s0i,; ands f{“fx stands for scaled image. We
see that the scale factoiis the ratio between intrinsic scales.

3.4 Rotation invariance

After the computation of the scale and frequency paraméatdes)s.(23) and (24), we
must set th@, € 7 (i.e. select an appropiat#d).

We tackle the rotation invariance by: (i) Selecting a smatlegh A6, and (ii) com-
paring the target model with all the possible orientatiaftsh; = iA0,¢ =0,...,1—1
of the orientation parameter of the feature veatgr,), and then picking the closest
redirected vector to the target model. So we compute

6 = argmin(shft(v(z.),6) — 1) X} (shft(v(s,y), 6) — 0)' (25)

where shftv, .y, §) is a function that performs&orientation shift of the vectar,, ).
The selected feature vectoris, ) = Shft(v(, ), 9).

4 Results

We present tests in order to: (i) Verify the properties of ting-down saliency model,
(ii) assess the invariance of the interest point model, apdijow the feasibility of the
architecture presented in Section 1. The tests performéisnwvork use 82 subjects
from the AR face database[14], where half of them are usetkfoning the saliency
model and the target model, and the half remaining for thedtmpn guiding search and
target classification. Both the saliency model and targetehare learnt in a supervised
manner, computing the models in groundtruth points. In FEduwe see an example of
the points(regions) we are looking for in the images.



4.1 Saliency model tests

We present two tests, to assess the most important prapeftair saliency model: (i)
removal of points very different from the model with very fegjections, and (ii) scale
invariance of they-signature. In both tests we performe an eye, nose, and|rpstrt
pre-selection. The first step is a “generic” bottom-up pdare to select the initial set
of salient points, computing the local maxima in space ofdifeerence of Gaussian
operator applied at several scales in the image. In thanggiep we learn the mean
signature of the target, and the adequate distance thceshaihts with distance to the
model less than the threshold are the candidates for fuptioeessing. To evaluate the
performance of each experiment we count the number of hitséssful detections) in
the test set. Given a saliency model, a distance functioraanhage point, a hit exists
if there is a distance to the model below threshold insidececof radius- around the
image point. We use the Euclidean distance,ard4 pixels.

scale change(octaves) Performance(%)

Facial Point Performance % of bottom-up SP 05 93.49
Eye 100 20.36 -0.25 100
Nose 100 19.97 0 100
Nostril 100 22.06 0.25 100
0.5 100

Table 1. Results of top-down guiding search of facial landmarks(left side)smade invariance
test(right side)

In the left side of Table 1 we can see that we do not miss poiotecto the fa-
cial landmarks we are looking for, and we remove in averag21?9 of the “generic”
bottom-up salient points.

To check the scale invariance of thesignature, we compute the success rate in
rescaled images while mantaining thesignature model learned in the original scale
images. In the right side of Table 1 we observe that the mellogg proposed is tolerant
to scale changes up t80.5 octaves. Because of the very small size of the nostrils in
the lowest resolution images, we miss some of them.

4.2 Target classification tests

We perform tests in order to verify: (i) the hypothesis coerfide when accepting or
rejecting targets, (ii) the rotation invariance of the teatvector, and (iii) the scale
invariance of the feature vector. We compute values in whodges(i.e. Mahalanobis
distance is computed for every pixel), and ggt = 7 /24 = 7.5°.

Hypothesis confidenceWe set the confidence thresholdd®.9%, and compute the
Mahalanobis distance in the test set images. We mark a lerktis a selected point
inside a circle of radiug = 4 pixels around the target. The points outside the circle are



marked as false positives. In table 2 we show the results Wiaking for eye, nose,
and nostril points. It is important to remark the good recates achieved, showing
experimentally the feature vector follows the Gaussianmagsion.

Facial Point Recall(%) Precision(%30°Rot Recall scale change(octaves) Recall(%)
Left eye 100 64.36 97.56 -0.5 83.19
Righteye  97.56 50.33 97.56 -0.25 92.19
Nose 92.68 79 92.68 0 92.19
Left nostrii  87.8 60.68 87.8 0.25 92.19
Right nostril  82.92 72.32 82.92 0.5 91.14

Table 2. Precision and recall rates of facial landmark matching(left side),saatk invariance
test(right side)

Scale invariance To check the invariance to scale transformations, we coenthe
recall rate in rescaled images mantaining the object medehed in the original size
images. In the right side of Table 2 we can see the averagk oéal facial landmarks.

The decreasing performance when reducing image size isibead the tiny size
of nostrils in the lowest resolution images. Because of ithedize, in some cases we
can not compute the intrinsic scale. For the remaining féammarks(eyes and nose)
the recall remains constant.

Rotation invariance To verify the invariance to rotation transformations, wengaite
the recall rate in the image test set rotated by the argfle, keeping the object model
learned in the standard pose images. In the left side of &hiee rigthmost column
shows that the recall remains almost constant for an angleigmot sampled in the
model.

4.3 Whole architecture tests

The integrated test of the architecture performs: (i) lenakima in space of the Dif-

ference of Gaussians at several scales, (ii) point prestiateusing the saliency model,
and (iii) in the selected points compute the interest paépresentation, followed by
the hypothesis decision. We see in Table 3 that recall vakmsins almost the same
when comparing vs. Table 2, but precision is substantiailgroved. The results show
the feasibility of the proposed architecture, sketchedguie 1.

5 Conclusions

In this paper we propose an architecture for interest pecagnition. We show how to
apply the Gabor filters in order to solve two of the most imanottissues in low-level
recognition approaches: (i) saliency computation, ajddaal feature classification.
Using the Gabor function as source of information, we defimeew saliency func-
tion that is able to introduce some prior(top-down) infotima during the recognition



Facial Point Recall(%) Precision(%)

Left eye 100 74.63

Right eye 97.56 57.99
Nose 90.24 100
Left nostril  87.8 67.94

Right nostril  82.92 94.47

Table 3. Performance of the whole architecture

process. This top-down information reduces the computaticomplexity in visual
search tasks and improves recognition results. The appEabased saliency function
presented removes points very different from the model aw lvery few rejections
of “good” points. The function proposed is invariant to gimsi, orientation and scale
of the object we are searching. We describe a method to centipatintrinsic scale of
an interest point using the saliency function. We proposes&the Gabor function also
for representing and classifying targets. The presentasentation is able to match
successfully interest points, and is invariant to imagatiohs and scalings.
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