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Abstract. We propose models based on Gabor functions to address two related
aspects in the object recognition problem: interest point selection and classifica-
tion. We formulate the interest point selection problem by a cascade of bottom-
up and top-down stages. We define a novel type of top-down saliency operator
to incorporate low-level object related knowledge very soon in the recognition
process, thus reducing the number of canditates. For the classification process,
we represent each interest point by a vector of Gabor responses whose parame-
ters are automatically selected. Both the selection and classification procedures
are designed to be invariant to rotations and scaling. We apply the approach to
the problem of facial landmark classification and present experimentalresult il-
lustrating the performance of the proposed techniques.

1 Introduction

The object recognition problem has been tackled recently using the concept of low-
level features with several successful results [1–4]. All of these works exploit the idea
of selecting various points in the object and building up a local neighborhood represen-
tation for each one of the selected points. In this work we introduce models built with
Gabor functions to unfold the following issues: (selection) which points are important
to represent the object, and (classification) how to represent and match the information
contained in each point’s neighborhood.

The point selection problem, also called keypoint detection [1, 5], interest point de-
tection[3], bottom-up saliency [6], and salient region detection [7], has been addressed
in a bottom-up fashion. Bottom-up means that points selected are image-dependent, not
task-dependent. Salient points are selected to be distinguishable from its neighbors and
have good properties for matching, repeatability, and/or invariance to common image
deformations. However, there is evidence of interaction between bottom-up and top-
down processes in nearly every visual search model in the human visual system[8]. In
guided visual search problems, where specific objects are searched in the scene, it is
convenient to incorporate object related knowledge(top-down information) as soon as
possible in the recognition process, to reduce the amount ofpossible candidates. The
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objective of the saliency function is to remove points very different from the model
and have very few rejections of “good points”. We propose a novel rotation invariant
saliency function based on the isotropic frequency characteristics of the feature to de-
tect. We also propose a new method to compute each point’s intrinsic scale, to provide
scale invariance for both the saliency and detection processes. We will describe exten-
sively this approach in Section 2.

In the classification stage we employ an image neighborhood representation built
with Gabor filter responses proposed in [9]. The image regions are modeled by a feature
vector formed from Gabor filter responses computed at the interest point, and the model
parameters are automatically selected. In Section 3 we review this procedure, and we
introduce rotation and scale invariance to the feature vector. In Section 4 we present tests
in facial region recognition, followed by the conclusions and future work in Section 5.

Bottom−up
salient points

Top−down
saliency
filtering

Interest point
representation

Interest point
classification

target saliency model
target
classification
model

Fig. 1. In the left side, architecture of our recognition approach. In the right side, examples of
facial landmarks

We observe in the left side of Figure 1 the proposal for our recognition approach.
We remark the top-down filtering and the interest point classification steps as the bulk
of our work.

2 Top-down interest point selection

When searching for a particular target1 on a image, we must search, from a set of
candidates points. Depending on the employed algorithms for searching and matching,
this can be a computationally expensive procedure, and exhaustive search should be
avoided. In this section we propose an intermediate step in the recognition process to
reduce the space of candidates for matching, where a target-specific saliency operator
is designed to encode low-level target information.

2.1 Appearance based saliency operator

We will exploit the good properties of Gabor Filters to represent texture, and introduce
top-down information in interest point detection. The 2D zero mean isotropic Gabor

1 We denote ’target’ as a local feature belonging to the object of interest



function is:

gθ,f,σ(x, y) =
e−

x2+y2

2σ2

2πσ2

(

ej2πf(x cos(θ)+y sin(θ)) − e−2σ2f2π2
)

(1)

By convolving the Gabor function with image patternsI(x, y), we can evaluate their
similarity. The Gabor response at point(x0, y0) is

Gθ,f,σ(x0, y0) =

∫ ∫

I(x, y)gθ,f,σ(x0 − x, y0 − y)dxdy (2)

In Fig. 2 we show the appearance of some Gabor kernels as a function of σ, θ, and
f . These parameters can characterize the dominant texture ofan interest point. One
approach to characterize texture at an image point(xj , yj) would be to compute the
response of several gabor filters, tuned to different orientations, frequencies and scales,
and retain the parameters corresponding to the maximum response:

(σ̂j , f̂j , θ̂j) = arg max
σ,f,θ

|Gθ,f,σ(xj , yj)|. (3)

However none of the parameters is invariant to common image transformation such as
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Fig. 2. Examples of Gabor functions. Each sub-figure shows the real part of Gabor function for
different values off , θ, andσ

scalings and rotations. To obtain scale and rotation invariance we do as follows:

1. Sum the response of the Gabor filters for all orientations and scales:

GFS(xj , yj , f) =

∫ ∞

0

∫ π

−π

Gθ,f,σ(xj , yj)dθdσ (4)

For each point(xj , yj), this is a function of the frequency only, and is denoted by
the f -signature of a point. This function will give us the “energy” of the image
pattern for any frequency of interest.

2. Thef -signature of an interest point is independent of the orientation but still de-
pends on the scale. Therefore, we define a scale invariant parameterγ = 1

σf , where

σ is the intrinsic2 scale of the interest point. This parameter is the ratio between
wavelength (inverse of frequency) and scale, and is proportional to the number of
wave periods within the spatial support of the filter. Thus, it can be interpreted as a
“scale invariant frequency” parameter.

2 the concept of intrinsic scale will be explained later.



3. Finally, to obtain a scale invariant signature, we map thef -signature function to
γ values, and compute theγ-signature function. This function will constitute the
low-level scale and rotation invariant texture representation of an interest point.

In the next subsections we will describe how to compute and matchγ-signatures.

2.2 Computing thef signature

To compute thef -signature of an image point one could use the direct implementation
of Eq.(4). However this would require a significant amount ofcomputation. To over-
come this problem we define an equivalent kernel that filters the image just once for
each frequency. The equivalent kernel is obtained by summing the gabor kernels for all
scales and orientations, and is denoted “Gabor Frequency Saliency” kernel.

GFSk(xj , yj , f) =

∫ ∞

0

∫ π

−π

gσ,θ,f (xj , yj)dθdσ (5)

The closed form expression for the frequency-space kernel is the following:
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Fig. 3. Example of Gabor frequency-space kernel. Top figures, 3D plot and 1D slice of
GFSk(x, y, 0.2).Bottom figures, 3D plot and 1D slice ofGFSk(x, y, 0.1)

GFSk(r, f) =

√

π/2

r

(

−e−2πfr + J0(2πfr)
)

(6)

In Eq.(6),r =
√

x2
j + y2

j , andJ0(z) is the Bessel function of the first kind. In Figure

3 we can see an example ofGFSk, its shape is an exponentially decreasing 2D Bessel
function, and it is rotationally and translation invariant. Therefore, the computation of
thef -signature at point(xj , yj) can be performed by:

GFS(xj , yj , f) = I ∗ GFSk, (7)

Thef -signature at a point is rotationally invariant. However, if we change the scale of
the image, thef -signature will both translate in the frequency axis and itsamplitude
will change linearly with the scale factor. After amplitudenormalization,f -signatures
of the same point at different scales will be related by a single translation.



Amplitude normalization Let us consider two images:I(x, y), and an homogeneously
scaled version ofI(x, y). The new image is scaled by a factora: Is(x, y) = I(ax, ay).
Thef -signature at point(xj , yj) is:

(Is ∗ GFSk)(xj , yj , f) = (I ∗ GFSk)(axj , ayj , f) (8)

Now let x̃ = ax, ỹ = ay, andf̃ = f/a. Thendx = dx̃/a, anddy = dỹ/a. By making
substitutions in Eq. 6,

GFSIs(xj , yj , f) = (I ∗ GFS)(axj , ayj , f/a) =
f̃

f
GFSI(axj , ayj , f/a) (9)

fGFSIs(xj , yj , σ) = f̃GFSI(axj , ayj , f/a) (10)

From Eq. (10) we see that if we multiply the response of the kernel by the frequency,
thef -signature amplitude becomes normalized with respect to scale changes. Thus, the
normalizedf -signature of an image point(xj , yj), is:

GFSnorm(xj , yj , f) = f(I ∗ GFSk) (11)

In Figure 4 we can see an example ofGFSnorm for the case of an eye’s center point.

2.3 Computing theγ-signature

In order to compute theγ-signature of an image point, we perform two steps: (i) Com-
pute the normalizedf -signature, and (ii) map the frequency interval into aγ interval
using the information of the image point intrinsic scale. The rationale is to obtain a
signature that is invariant to image scale transformations.

Intrinsic scale from the f -signature A conventional method to compute the intrinsic
scale of a point is to use the Lindeberg’s method for blobs[10, 11]: the scale where the
convolution with a normalized Laplacian of Gaussian functions is maximum.

Looking at the shape of the equivalent frequency kernels in Figure 3, we notice
similarities between the Laplacian of Gaussian functions with different scales and GFS
kernels of different frequencies (in fact frequency is related to the reciprocal of scale).
Experimentally we noticed that the zero crossings of thef -signature function closest to
the global maxima is very stable under image scale changes and is related reciprocally
to the scale factor. Thus, we compute the intrinsic scaleσ̂ at a point(xi, yi) as:

σ̂ = 1/f̂ ; f̂ = arg min
f,GFSnorm(xi,yi,f)=0

f − f̃ ; f̃ = arg max
f

|GFSnorm| (12)

Mapping f to γ values Let us define a set of frequency valuesF = {f1, . . . , fi, . . . , fn}.
To map the set of frequency valuesF into γ values, we compute the intrinsic scale(σ̂)
from Eq. (12). Mapping thefi ∈ F values toγi ∈ Γ values, the interval ofγ-
signature isΓ = {γ1, . . . , γi, . . . , γn} = {1/f1σ̂, . . . , 1/fiσ̂, . . . , 1/fnσ̂}. Thus, the
γ-signature(top-down saliency model) of an image point(x, y) is:

ΓSx,y(γi) = FSx,y(1/γiσ̂), γi ∈ Γ (13)

As an example, in Figure 4 we show theγ-signature of an eye’s center point.
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Fig. 4. In the left side,GFSnorm and in the right sideΓSx,y, for the eye’s center point

2.4 Top-down Saliency Model and Matching

Let us assume an initial set of bottom-up salient points and assume we are interested in
searching for a particular interest point. First we need a model of the point in terms of its
γ-signature. This can be obtained from a single example of thepoint’s neighbourhood
or can be computed from the meanγ-signature values in a training set:

SMx,y(γi) = ΓSx,y(γi), γi ∈ Γ (14)

After having an appropriate interest point model, in the form of aγ-signature, we
can analize novel images and reject interest points not conforming to the model. The
rejection of bad candidates is performed by matching theγ-signature of the test point
ΓSxt,yt with the saliency modelSMx,y, doing the following steps: (i) Find the intersec-
tion of theγ intervals between the two signatures, (ii) subsample the longest signature,
and (iii) compute the euclidean distance between signatures.

Let us define two intervals:ΓS = [γiS
, γfS

] of signatureΓSxt,yt, andΓSM =
[γiSM

, γfSM
] of the object modelSMx,y, wherei stands for initial value, andf stands

for final value. The segment of the signature for computing the distance is the intersec-
tion of the two intervals,ΓS ∩ ΓSM = [γi∩ , γf∩

].
The number of signature elements within the interval[γi∩ , γf∩

] could be different
in ΓSxt,yt andSMx,y. Therefore, we subsample the signature segment with more ele-
ments in[γi∩ , γf∩

] to have equal sized signature segments. In the last step, we compute
the Euclidean distance between the signatures.

3 Interest point classification

In this section we describe a method to automatically decideabout the presence or ab-
sence of a certain target of interest in the image. A target isconsidered as a single point
and a circular neighborhood of the size of its “intrinsic scale”. An adequate target rep-
resentation must have good matching properties, and invariance to image region trans-
formations. In [9] a representation based on Gabor filter responses with good matching
properties is presented. In this paper we add rotation and scale invariance, and further
automate the recognition process.



3.1 Target Model and Parameter Selection

Each target is modeled as random vector containing the real and imaginary parts of
Gabor responses with different parameters. We assume that the random feature vec-
tor follows a normal distribution with averagēv and covariance matrixΣ, v(x,y) ∼
N (v̄(x,y), Σ(x,y)).

To select the set of dominant textures for a certain image region, we could select
parameters(θ, f, σ) from Eq.(3). However this strategy do not perform well in thedis-
crimination between different targets (the parameter distribution is concentrated in a
narrow range which reduces the capability to discriminate the modeled object from
others). To enforce variability in the parameter space and still be able to adapt the rep-
resentation to the particular object under test, we will sample uniformly one of the
parameters and perform a 2D search in the remaining dimensions. This strategy, used
in [9], is denoted by “Extended Information Diagram”, and isbased in the concept of
Information Diagram [12].

Extended Information Diagram The “Extended Information Diagram” function pre-
sented in [9] is defined as:

EIDx,y(θ, σ, γ) = |Gθ,γ,σ(x, y)|

Then, in slices of EID are computed the local maxima. The coordinates of the local
maxima are chosen as “good” Gabor function’s parameters because they represent the
target’s dominant texture. In this work we prefer to consider the frequencyf instead of
γ, because there are much more and well located local maxima in(θ, σ, f). We redefine
the Extended Information Diagram as:

EIDx,y(θ, σ, f) = |Gθ,f,σ(x, y)| (15)

There are three ways of slicing the EID function(θ slices,σ slices, andf slices), but we
select theθ-ID because is the method with best classification performance in [9]. Then
we denoteθ-ID, as a slice of the EID function, keeping constant the orientation,θ = θ0:

θ-IDθ0

x,y(σ, f) = EIDx,y(θ0, σ, f)

In Fig. 5 we show some examples of theθ-ID computed at an eye’s center point.

Fig. 5.Three examples ofθ-ID, andθ slices in the parameter space from left to right



Searching Multiple Information Diagrams The strategy to find good parameters for
each target is based on uniformly discretizingθ, and search local maxima in the result-
ing set ofθ-ID’s. A set ofθ-IDs for T = {θ1, · · · , θi, · · · , θl}, at point(x, y) is given
by:

Θ-IDT
x,y = {θ-IDθ1

x,y, · · · , θ-IDθi
x,y, · · · , θ-IDθl

x,y} (16)

The severalθi ∈ T are uniformly spaced in the range[0, π). Then we compute the
parameters of the two higher local maxima:

(σ̂max
i,1 , f̂max

i,1 ) = arg max
σ,f

θ-IDθi
x,y, i = 1, · · · , l (17)

(σ̂max
i,2 , f̂max

i,2 ) = arg max
σ,f,σ 6=σ̂i,1,f 6=f̂i,1

θ-IDθi
x,y, i = 1, · · · , l (18)

Using the parameters computed in Eqs.(17) and (18), the feature vector is:

v(x,y) =
(

v1
(x,y), · · · , vk

(x,y), · · · , v4m
(x,y)

)T

; v4k−3
(x,y) = Re(Gθi,f̂max

i,1
,σ̂max

i,1
); (19)

v4k−2
(x,y) = Im(Gθi,f̂max

i,1
,σ̂max

i,1
); v4k−1

(x,y) = Re(Gθi,f̂max
i,2

,σ̂max
i,2

); v4k
(x,y) = Im(Gθi,f̂max

i,2
,σ̂max

i,2
)

3.2 Interest point matching

In the training stage we compute the target model(v̄, Σ). Then, in the matching stage
we compute the Mahalanobis distance between the target model and the interest point
feature vectorv(x,y). Because we assumed the feature vector follows a normal dis-
tribution, the Mahalanobis distance follows the chi-square distribution. By picking a
confidence value from chi-square statistics table, we are also setting the Mahalanobis
distance threshold to accept or reject the hypothesis of a target being located at interest
point (x, y). The retrieved interest points are those below the Mahalanobis threshold.

3.3 Scale invariance

The feature vector in Eq. (19) is composed by Gabor filter responses. We want the
feature vector scale invariant, so we must find the constraints for a Gabor response
being scale invariant. Following the reasoning proposed in[13], consider two images:
I(x, y), and an homogeneously scaled version ofI(x, y). The new image is scaled by
a factora asIs(x, y) = I(ax, ay). The response of the scaled image at point(x0, y0),
GIs

θ,f,σ(x0, y0) is

GIs

θ,f,σ(x0, y0) = (I ∗ gθ,f/a,σa)(ax0, ay0) = GI
θ,f/a,σa(ax0, ay0) (20)

From Eq. (20) we can see that the Gabor response remains constant in the scaled image
if we change the scale parameterσ of the Gabor filter toσa, and also changing the
frequencyf to f/a. If we see these value changings in terms ofγ = 1/σf , it means
the scale invariant parameterγ mantains the same value.



We do not know the scale factora in Eq.(20), so a common approach to solve this
problem is to define an intrinsic scale of the interest point.We define the scale ratio

ρi,j =
σ̂max

i,j

σintrinsic
, j = 1, 2; i = 1, . . . , l (21)

whereσ̂max
i,j is computed in Eqs.(17) and (18), andσintrinsic is computed in Eq.(12).

The ratioρi,j is computed during the training stage, and is an indicator ofthe right
scale parameter of Gabor filter in new images. Ratio valuesρi,j must keep the same
value in scaled images, so

sσ̂
max
i,j = sσintrinsicρi,j , j = 1, 2; i = 1, . . . , l (22)

sσ̂
max
i,j = σ̂max

i,j
sσintrinsic

σintrinsic
(23)

sf̂
max
i,j = f̂max

i,j /

(

sσintrinsic

σintrinsic

)

(24)

where the left subscripts in sσintrinsic, sσ̂i,j andsf̂
max
i,j stands for scaled image. We

see that the scale factora is the ratio between intrinsic scales.

3.4 Rotation invariance

After the computation of the scale and frequency parametersin Eqs.(23) and (24), we
must set theθi ∈ T (i.e. select an appropiate∆θ).

We tackle the rotation invariance by: (i) Selecting a small enough∆θ, and (ii) com-
paring the target model with all the possible orientation shifts δi = i∆θ, i = 0, . . . , l−1
of the orientation parameter of the feature vectorv(x,y), and then picking the closest
redirected vector to the target model. So we compute

δ̂ = arg min
δ

(shft(v(x,y), δ) − v̄)Σ−1(shft(v(x,y), δ) − v̄)′ (25)

where shft(v(x,y), δ) is a function that performs aδ orientation shift of the vectorv(x,y).

The selected feature vector isv(x,y) = shft(v(x,y), δ̂).

4 Results

We present tests in order to: (i) Verify the properties of thetop-down saliency model,
(ii) assess the invariance of the interest point model, and (iii) show the feasibility of the
architecture presented in Section 1. The tests performed inthis work use 82 subjects
from the AR face database[14], where half of them are used forlearning the saliency
model and the target model, and the half remaining for the top-down guiding search and
target classification. Both the saliency model and target model are learnt in a supervised
manner, computing the models in groundtruth points. In Figure 1 we see an example of
the points(regions) we are looking for in the images.



4.1 Saliency model tests

We present two tests, to assess the most important properties of our saliency model: (i)
removal of points very different from the model with very fewrejections, and (ii) scale
invariance of theγ-signature. In both tests we performe an eye, nose, and nostril point
pre-selection. The first step is a “generic” bottom-up procedure to select the initial set
of salient points, computing the local maxima in space of theDifference of Gaussian
operator applied at several scales in the image. In the training step we learn the meanγ-
signature of the target, and the adequate distance threshold. Points with distance to the
model less than the threshold are the candidates for furtherprocessing. To evaluate the
performance of each experiment we count the number of hits (successful detections) in
the test set. Given a saliency model, a distance function andan image point, a hit exists
if there is a distance to the model below threshold inside a circle of radiusr around the
image point. We use the Euclidean distance, andr = 4 pixels.

Facial Point Performance % of bottom-up SP

Eye 100 20.36
Nose 100 19.97

Nostril 100 22.06

scale change(octaves) Performance(%)
-0.5 93.49
-0.25 100

0 100
0.25 100
0.5 100

Table 1. Results of top-down guiding search of facial landmarks(left side) andscale invariance
test(right side)

In the left side of Table 1 we can see that we do not miss points closer to the fa-
cial landmarks we are looking for, and we remove in average 79.21% of the “generic”
bottom-up salient points.

To check the scale invariance of theγ-signature, we compute the success rate in
rescaled images while mantaining theγ-signature model learned in the original scale
images. In the right side of Table 1 we observe that the methodology proposed is tolerant
to scale changes up to±0.5 octaves. Because of the very small size of the nostrils in
the lowest resolution images, we miss some of them.

4.2 Target classification tests

We perform tests in order to verify: (i) the hypothesis confidence when accepting or
rejecting targets, (ii) the rotation invariance of the feature vector, and (iii) the scale
invariance of the feature vector. We compute values in wholeimages(i.e. Mahalanobis
distance is computed for every pixel), and set∆θ = π/24 = 7.5◦.

Hypothesis confidenceWe set the confidence threshold to99.9%, and compute the
Mahalanobis distance in the test set images. We mark a hit if there is a selected point
inside a circle of radiusr = 4 pixels around the target. The points outside the circle are



marked as false positives. In table 2 we show the results whenlooking for eye, nose,
and nostril points. It is important to remark the good recallrates achieved, showing
experimentally the feature vector follows the Gaussian assumption.

Facial Point Recall(%) Precision(%)130◦Rot Recall

Left eye 100 64.36 97.56
Right eye 97.56 50.33 97.56

Nose 92.68 79 92.68
Left nostril 87.8 60.68 87.8

Right nostril 82.92 72.32 82.92

scale change(octaves) Recall(%)
-0.5 83.19
-0.25 92.19

0 92.19
0.25 92.19
0.5 91.14

Table 2. Precision and recall rates of facial landmark matching(left side), andscale invariance
test(right side)

Scale invariance To check the invariance to scale transformations, we compute the
recall rate in rescaled images mantaining the object model learned in the original size
images. In the right side of Table 2 we can see the average recall of all facial landmarks.

The decreasing performance when reducing image size is because of the tiny size
of nostrils in the lowest resolution images. Because of the tiny size, in some cases we
can not compute the intrinsic scale. For the remaining facial landmarks(eyes and nose)
the recall remains constant.

Rotation invariance To verify the invariance to rotation transformations, we compute
the recall rate in the image test set rotated by the angle130◦, keeping the object model
learned in the standard pose images. In the left side of table2, the rigthmost column
shows that the recall remains almost constant for an angle that is not sampled in the
model.

4.3 Whole architecture tests

The integrated test of the architecture performs: (i) localmaxima in space of the Dif-
ference of Gaussians at several scales, (ii) point pre-selection using the saliency model,
and (iii) in the selected points compute the interest point representation, followed by
the hypothesis decision. We see in Table 3 that recall valuesremains almost the same
when comparing vs. Table 2, but precision is substantially improved. The results show
the feasibility of the proposed architecture, sketched in Figure 1.

5 Conclusions

In this paper we propose an architecture for interest point recognition. We show how to
apply the Gabor filters in order to solve two of the most important issues in low-level
recognition approaches: (i) saliency computation, and (ii) local feature classification.
Using the Gabor function as source of information, we define anew saliency func-
tion that is able to introduce some prior(top-down) information during the recognition



Facial Point Recall(%) Precision(%)

Left eye 100 74.63
Right eye 97.56 57.99

Nose 90.24 100
Left nostril 87.8 67.94

Right nostril 82.92 94.47

Table 3.Performance of the whole architecture

process. This top-down information reduces the computational complexity in visual
search tasks and improves recognition results. The appearance based saliency function
presented removes points very different from the model and have very few rejections
of “good” points. The function proposed is invariant to position, orientation and scale
of the object we are searching. We describe a method to compute the intrinsic scale of
an interest point using the saliency function. We propose touse the Gabor function also
for representing and classifying targets. The presented representation is able to match
successfully interest points, and is invariant to image rotations and scalings.
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