Skip to main content

Parallel Laplace Method with Assured Accuracy for Solutions of Differential Equations by Symbolic Computations

  • Conference paper
Book cover Computer Algebra in Scientific Computing (CASC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4194))

Included in the following conference series:

Abstract

We produce a parallel algorithm realizing the Laplace transform method for symbolic solution of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions, and the right-hand sides reduced to the sums of exponents with the polynomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akritas, A.G.: Elements of Computer Algebra with Applications. J. Wiley Interscience, New York (1989)

    MATH  Google Scholar 

  2. Burghelea, D., Haller, S.: Laplace transform, dynamics and spectral geometry (January 17, 2005) arXiv:math.DG/0405037v2

    Google Scholar 

  3. Dahiya, R.S., Saberi-Nadjafi, J.: Theorems on n-dimensional Laplace transforms and their applications. In: 15th Annual Conf. of Applied Math., Univ. of Central Oklahoma, Electr. Journ. of Differential Equations, Conf. 02, pp. 61–74 (1999)

    Google Scholar 

  4. Davenport, J., Siret, Y., Tournier, E.: Calcul formel. Systèmes et algorithmes de manipulations algébriques. MASSON, Paris (1987)

    Google Scholar 

  5. Dixon, J.: Exact solution of linear equations using p-adic expansions. Numer. Math. 40, 137–141 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Felber, F.S.: New exact solutions of differential equations derived by fractional calculus (August 9, 2005) arXiv:math/0508157v1

    Google Scholar 

  7. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  8. Goursat, E.: Sur les équations linéaires et la méthode de Laplace. Amer. J. Math. 18, 347–385 (1896)

    Article  MathSciNet  Google Scholar 

  9. Malaschonok, G.I.: Solution of systems of linear equations by the p-adic method. Programming and Computer Software 29(2), 59–71 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Malaschonok, G.I.: Matrix Computational Methods in Commutative Rings. Tambov, TSU (2002)

    Google Scholar 

  11. Malaschonok, G.I.: Effective Matrix Methods in Commutative Domains. In: Formal Power Series and Algebraic Combinatorics, pp. 506–517. Springer, Berlin (2000)

    Google Scholar 

  12. Malaschonok, G.I.: Recursive method for the solution of systems of linear equations. In: Computational Mathematics. 15th IMACS World Congress, vol. I, pp. 475–480. Wissenschaft und Technik Verlag, Berlin (1997)

    Google Scholar 

  13. Malaschonok, G.I.: Algorithms for computing determinants in commutative rings. Discrete Math. Appl. 5(6), 557–566 (1996)

    Article  Google Scholar 

  14. Malaschonok, G.I.: Algorithms for the solution of systems of linear equations in commutative rings. In: Effective Methods in Algebraic Geometry. Progr. Math., vol. 94, pp. 289–298. Birkhauser, Boston (1991)

    Google Scholar 

  15. Malaschonok, G.I.: Solution of a system of linear equations in an integral domain. USSR J. Comput. Math. and Math. Phys. 23(6), 497–1500 (1983)

    Google Scholar 

  16. Malaschonok, G.I.: The solution of a system of linear equations over a commutative ring. Math. Notes 42(3-4), 801–804 (1987)

    Google Scholar 

  17. Malaschonok, N.: An algorithm to settle the necessary exactness in Laplace transform method. In: Computer Science and Information Technologies, Yerevan, pp. 453–456 (2005)

    Google Scholar 

  18. Malaschonok, N.: Estimations in Laplace transform method for solutions of differential equations in symbolic computations. In: Differential Equations and Computer Algebra Systems, Minsk, pp. 195–199 (2005)

    Google Scholar 

  19. Mizutani, N., Yamada, H.: Modified Laplace transformation method and its applications to anharmonic oscillator (February 12, 1997)

    Google Scholar 

  20. Podlubny, I.: The Laplace transform method for linear differential equations of the fractional order (October 30, 1997) arXiv:funct-an/9710005v1

    Google Scholar 

  21. Roux, J.L.: Extensions de la méthodes de Laplace aux équatons linéaires aux deriveées partielles d’ordre supérieur du second. Bull. Soc. Math. de France 27, 237–262 (1899)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malaschonok, N. (2006). Parallel Laplace Method with Assured Accuracy for Solutions of Differential Equations by Symbolic Computations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2006. Lecture Notes in Computer Science, vol 4194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11870814_21

Download citation

  • DOI: https://doi.org/10.1007/11870814_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45182-2

  • Online ISBN: 978-3-540-45195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics