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Abstract

In a previous work we introduced Dual Light Affine Logic (DLAI([])
as a variant of Light Linear Logic suitable for guaranteedognplexity properties
on lambda-calculus terms: all typable terms can be evaluatpolynomial time
and all Ptime functions can be represented. In the preserit we address the
problem of typing lambda-terms in second-order DLAL. Faatttve give a pro-
cedure which, starting with a term typed in system F, findpa#isible ways to
decorate it into a DLAL typed term. We show that our procedtae be run in
time polynomial in the size of the original Church typed systF term.

Introduction

Several works have studied programming languages witimgitrcomputational com-

pl
m

exity properties. This line of research, Implicit comatibnal complexity (ICC), is
otivated both by the perspective of automated complexighesis, and by founda-

tional goals, in particular to give natural characterizasi of complexity classes, like
Ptime or Pspace. Different calculi have been used for thipgae coming from prim-
itive recursion, lambda-calculus, rewriting systeragy([BC94,[MMO0d, [LM93))... A
convenient way to see these systems is in general to desbgbeas a subset of pro-
grams of a larger language satisfying certain criteria:idstance primitive recursive
programs satisfying safe/ramified recursion conditioagriting systems admitting a
termination ordering and quasi interpretation, etc. . .

Inference. To use such ICC systems for programming purpose it is natnikaish

to automatize the verification of the criteria. This way tisecould stick to a simple

*Work partially supported by projects CRISS (ACI), GEOCALQH, NO-CoST (ANR)



programming language and the compiler would check whetteptogram satisfies
the criteria, in which case a complexity property would bargumteed.

In general this decision procedure involves finding a cemainess like a type, a
proof or a termination ordering. Depending on the systeslitness might be useful
to provide more precise information, like an actual boundterunning time, or a
suitable strategy to evaluate the program. It might be usedcartificate guaranteeing
a particular quantitative property of the program.

Light linear logic. In the present work we consider the approach of Light linear
logic (LLL) ([), a variant of Linear logic which chacterizes polynomial time
computation, within the proofs-as-programs correspooéett includes higher-order
and polymorphism, and can be extended to a naive set thgtesodf]), in which the
provably total functions correspond to the class of polyiatime functions.

The original formulation of LLL by Girard was quite complieal, but a first simpli-
fication was given by Asperti with Light Affine Logic (LAL) IRO}]). Both systems
have two modalities (one more than Linear logic) to contugblitation. There is a
forgetful map to system F terms (polymorphic types) obtaibg erasing some infor-
mation (modalities) in types; if an LAL typed tertris mapped to an F-typed terid
we also say thatis adecorationof M.

So an LAL program can be understood as a system F prograntheygsith a
typing guarantee that it can be evaluated in polynomial tidse system F is a refer-
ence system for the study of polymorphically typed funciidanguages and has been
extensively studied, this seems to offer a solid basis to LAL

However LAL itself is still difficult to handle and followinthe previous idea for the
application of ICC methods, we would prefer to use plain ldayoalculus as a front-
end language, without having to worry about the handling oflaiities, and instead
to delegate the LAL typing part to a type inference enginee 3tudy of this approach
was started i[Bai()2]. For it to be fully manageable howeeseral conditions should
be fulfilled:

1. asuitable way to execute the lambda-terms with the egdextmplexity bound,
2. an efficient type inference,

3. atyped language which is expressive enough so that anm@aleorange of pro-
grams is accepted.

The language LAL presents some drawback for the first poetabse the LAL
typed terms need to be evaluated with a specific graph syptagf-netsin order to
satisfy the polynomial bound, and plain beta reduction ead to exponential blow-up.
In a previous work {[BT04]) we addressed this issue by deimisubsystem of LAL,
called Dual Light Affine Logic (DLAL). It is defined with bothnear and non-linear
function types. It is complete for Ptime just as LAL and itsimadvantage is that it
is also Ptime sound w.r.t. beta reduction: a DLAL term admit®und on the length
of all its beta reduction sequences. Hence DLAL stands aasorable substitute for
plain LAL for typing issues.

Concerning point 2, as type inference for system F is unéedwe don't try to
give a full-fledged type inference algorithm from untypedts. Instead, to separate



the polymorphic part issue from the proper DLAL part one, weueme the initial pro-
gram is already typed in F. Either the system F typing worlefstb the user, or one
could use a partial algorithm for system F typing for thislipnenary phase.

So the contribution of the present work is to define an efficadgorithm to decide
if a system F term can be decorated in a DLAL typed term. This agtually one of
the original motivations for defining DLAL. We show here tlkgicoration can be per-
formed in polynomial time. This is obtained by taking adway# of intuitions coming
from proof-nets, but it is presented in a standard form withist phase consisting in
generating constraints expressing typability and a sepbade for constraints solving.
One difficulty is that the initial presentation of the comastis involves disjunctions of
linear constraints, for which there is no obvious Ptime lwbukhlence we provide a
specific resolution strategy.

The complete algorithm is already implemented in ML, in a whagt follows
closely the specification given in the article. It is modwad usable with any linear
constraints solver. The code is commented, and availabfaialic download (Section
E). With this program one might thus write terms in system H werify if they are
Ptime and obtain a time upper bound. It should in particuangeful to study further
properties of DLAL and to experiment with reasonable sizegpams.

The point 3 stressed previously about expressivity of ttetesy remains an issue
which should be explored further. Indeed the DLAL typingoilidine will in particular
rule out some nested iterations which might in fact be hasmfer Ptime complex-
ity. This is related to the line of work on the study of inteorshl aspects of Implicit
computational complexity [[MMQd, Hof3]).

However it might be possible to consider some combinatioDloAL with other
systems which could allow for more flexibility, and we thinketter understanding of
DLAL, and in particular of its type inference, is a necessagp in that direction.

Related work. Inference problems have been studied for several ICC sgstem
((Ama03§,[HJOB]). Elementary linear logic (EAL) in partieulis another variant of
Linear logic which characterizes Kalmar elementary timd has applications to op-
timal reduction. Type inference in the propositional fragof this system has been
studied in [CMO[L] CRJR(3, CDLRdR05] and [BT05] which givepalynomial time
procedure. Type inference for LAL was also investigateo[,]. To our
knowledge the present algorithm is however the first one éatidg with polymorphic
types in a EAL-related system, and also the first one to indét types in polynomial
time.

Notations. Given a lambda-terrty F'V (¢) will be the set of its free variables. The
prefix relation on words will be denoted k.

2 Fromsystem FtoDLAL

The languag€  of system F types is given by:
T,U:=a|T—-U|VaT

We assume that a countable set of term variablfeg/”, 27, . .. is given for each
typeT'. The terms of syster® are built as follows (here we writ®/” to indicate that



the termM has typel):
xT ()\.CCTMU)THU ((MT‘}U)NT)U
(Aa.MU)VO"U ((MVa.U)T)U[T/a]

with the proviso that when building a terfie. MY, o may not occur freely in the types
of free term variables a¥/ (theeigenvariable condition

It is well known that there is no sensible resource bound irae/space) on the
execution of system F terms in general. To impose some boarmsre refined type
system is requiredD L AL serves well as such a type system.

The language& pr 41, of DLAL types is given by:

A,B:=a|A—-B|A= B|§A|Va.A

We note§’A = A and§*+1 A = §§* A. The erasure map)™ from Lpraz to Ly is
defined by:

(64" =A~, (A—B) =(A=B)" =A~ — B",

and(.)” commutes to the other connectives. We sa¥ Lp1 4z is adecorationof
TelpifA-=T.

A declarationis a pair of the formz” : B with B~ = T. It is often written as
x : B for simplicity. A judgements of the formI"; A - M : A, whereM is a system
Fterm,A € Lppar andl’ andA are disjoint sets of declarations. Wharconsists of
x1: Ay, .., 0 Ay, §A denotesey - §A1, ..., 2, : §A,. The type assignment rules
are given on Figurf] 1. Here, we assume that the substitdifNi/z] used in § €) is
capture-free Namely, no free type variableoccurring inV is bound inM [N /z]. We
write ;s A Fprap M : Aifthe judgement’; A+ M : Ais derivable.

Recall that binary words, ifi0, 1}*, can be given the following type in F:

Wp =Va.(a - a) = (0 — a) = (o — «a)
A corresponding type in DLAL, containing the same terms g by:
Wprar =Va.(a o a) = (@« -oa) = §(a—oa)

Thedepthd(A) ofa DLAL type A is defined by:

dlo) = 0, d(Va.B) = d(B),
d(A— B) = maz(d(A),d(B)), d(§4)=4d(A)+1,
d(A= B) = max(d(A)+1,d(B)).

A type A is said to bell; if it does not contain a negative occurrencevofiike for
instancéVprar.
The fundamental properties &fL AL are the following [BTOR:
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I';AiEM:A 1Az AT ARM: B
Cnt
I, To; A1, A -M: A (Weak) x: AT AR Mlx/x,x/xs] : B (Cntr)
D,AEM: A . T'y;AtFN:§A Tojx:84A,AcFM: B s e)
TgA 54 G T1,0o; Ay, As - M[N/z] : B
IARM:A Vi) AR M :Va. A ve)
FAF AadlVad D) [;AF (M)B~ : A[B/al
(*) z : C can be absent.
**) « does not occur freely if'.
y

Figure 1: Typing system F terms inLAL

Theorem 1

1. Let M be a closed term of system F that hallatype A in DLAL. ThenM
can be normalized iﬁ)(|M|2d) steps bys-reduction, wherel = d(A) and|M |
is the structural size of/.

2. Every Ptime functiorf : {0,1}* — {0,1}* can be represented by a closed
term M of typeWprar, —o §*Wpraz, for somed > 0.

Notice that the result 1 holds neither for Light linear logiar Light affine logic. Al-
though they are logics of polynomial time, they require s@mecial proof syntax such
as proof nets[[Girdq, AR(2] or light affine lambda calculuerfd}] to guarantee poly-
nomial time bounds.

The result 1 implies that if we ignore the embedded types miteuin M, the
normal form of M can be computed in polynomial time, when the depth is fixed. It
moreover shows that a tertd of type Wpr a1, —o §%Wpr a1 is Ptime, because then
for any Church wordw we have tha{ M) w has type§?Wprar, and can thus be
evaluated in time@ (Jw|>""").

The result 2 on the other hand guarantees fhatAL has sufficient expressive
power, at least enough to (extensionally) represent afimoohial time functions.

Now, let M"Wr—=Wr pe a system F typed term and suppose that we know that it
has aDLAL typeWprar —o §%Wprar for somed > 0. Then, by the consequence
of the above theorem, we know that the tekbis Ptime. Thus by assignin@ L AL
types to a given system F term, one catically verifya polynomial time bound for
its execution.



As afirst step to elaborate this idea to Us& A L for resource verification of system
F terms, we address the following:

Problem 1 (DLAL typing) Given a closed termi/” of system F, determine if there
is a decorationd of M such that-prar, M : A.

(Here the closedness assumption is only for readability.)

In the sequel, we show that there is a polynomial time algorifor solving the
DLAL typing problem.

This should be contrasted with the fact that the set of sy§teenms representing
Ptime functions is not recursively enumerable (this candsglyeproved by reduction
of Hilbert’s 10th problem).

Hence even though L AL does not capture all Ptime terms, the general problem
is undecidable and this type system gives a partial but effthji realizable verification
method.

3 Characterizing DL AL typability

3.1 Pseudo-terms

To address théd L AL typing problem, it is convenient to introduce an intermeglia
syntax which is more informative than system F terms (butnote informative than
DLAL derivations themselves).

First we decomposd = B into!A — B. The languag&€ prar« of DLALx
types is given by:

A = a|D—oA|Va.A|§A
D == AllA

There is a natural map)* from Lprar, t0 Lprars such thatf A = B)* = 14* —
B* and commutes with the other operations. The erasure(mMagrom Lpr A+ tO
L can be defined as before. RLAL* type is called &ang typsf it is of the form
1A, and otherwise called linear type In the sequelA, B, C stand for linear types,
andD, E for either bang or linear types.

We assume there is a countable set of term variatffeg”, =7, ... for eachD ¢
DLALx. Thepseudo-termare defined by the following grammar:

tous=aP | XeP .t | ()u | Aot | (1)A | §t | §t,

whereA is a linear type and is an arbitrary one. The idea is tHatorresponds to the
main door of a§-box (or al-box) in proof-nets([Gir87, [AR02]) while § corresponds
to auxiliary doors. But note that there is no information lie fpseudo-terms to link
occurrences df and§ corresponding to the same box, nor distinction betwiebaxes
and!-boxes.

There is a natural erasure map from pseudo-terms to systerms,twhich we will
also denote by.)~, consisting in removing all occurrences $freplacingz” with
P and(t)A with (t)A~. Whent~ = M, t is called adecorationof M.



For our purpose, it is sufficient to consider the clasgegtilar pseudo-terms, given
by:
tu=al | MNPt | (Hu | Aot | (H)A |§™,

wherem is an arbitrary value i. and§”*¢ denotes§ - - - § ¢ifif m > 0,and §---§ ¢
——" ——

m times —m times

otherwise. In other words, a pseudo-term is regular if arlgl ibrit does not contain
any subterm of the forrf§u or §§u.

3.2 Local typing condition

We now try to assign types to pseudo-terms in a locally coibjgatvay. A delicate
point in DL AL is that it is sometimes natural to associtt® types to one variable
x. For instance, we have : A;Fprar x : §Ain DLAL, and this can be read
asz : A F x : §Ainterms of DLALx types. We thus distinguish between the
input typeswhich are inherent to variables, and the&put typeswhich are inductively
assigned to all pseudo-terms. The condition (i) below isceomed with the output
types. In the sequel)° denotes A if D is of the form! A, and otherwise denotd3
itself.

A pseudo-ternt satisfies théocal typing conditionf the following holds:

(i) one can inductively assignlaear type (calledthe output typeto each subterm
of ¢ in the following way (here the notatian, indicates that has the output type
A):

(@)pe  (§ta)ga  (§tsa)a  (".itp)pop

(tp—p)upe)p  (Aata)va.a  ((tva.a)B)a[B/al
(i) when a variabler occurs more than once init is typed asr'4,
(iii) t satisfies the eigenvariable condition.

We also say thatis locally typed

Notice that whenD is a bang type, there is a type mismatch betwBeand D°
in the case of application. For instan€g. .5 )us4 satisfies (i) wheneverandu do.
This mismatch will be settled by the bang condition belows@fe also that the local
typing rules are syntax-directed.

3.3 Boxing conditions

We now recall definitions and results fro 05] giving somexessary conditions
for a pseudo-term to be typable (i05] these conditiomesised for Elementary
Affine Logic typing). We consider words over the langua@e= {§,§}*. If ¢ is
a pseudo-term and is an occurrence of subterm in let doors(t, u) be the word



inductively defined as follows:

if t =w: doors(t, u) = e,
else:

doors(§t, u)
doors(§t, u)

§ :: (doors(t, u))

§ :: (doors(t, u))

doors(A\yP.t;,u) = doors(Aa.ty,u)
= doors((t1)A, u) = doors(t1,u)
doors((t1)t2,u) = doors(t;, u) wheret; is the

subterm containing.

That is to saydoors(t, ) collects the modal symbols § occurring on the path from
the root to the node in the term tree of. We define a maps : £ — Z by:

s(e) =0, s(§:: 1) =14 s(l), s(§ 1) = —14 s(1).

Aword! € L is weakly well-bracketed VI’ < [,s(I') > 0, and iswell-bracketedf
this condition holds and moreovefl) = 0.

Bracketing condition. Let ¢ be a pseudo-term. We say thiatatisfies théracket-
ing conditionif:

(i) for any occurrence of free variablein ¢, doors(t, ) is well-bracketed;
moreover for any occurrence of an abstraction subterm of ¢,
(i) doors(t, \x.v) is weakly well-bracketed, and
(iii) for any occurrence of in v, doors(v, x) is well-bracketed.

This condition is sufficient to rule out the canonical mogphs for dereliction and
digging, which are not valid itD LAL (norin EAL):

()\:13§A.§1’)§A_OA ()\:13§A.§x)§,4_o§§,4
Sincedoors(§z, ) = § anddoors(§x, 2) = §, they do not satisfy the bracketing con-
dition (iii).
Bang condition. A subtermu is called ebang subternof ¢ if it occurs ag(t] , __ 5)usa

in t. We say that a locally typed pseudo-tetrsatisfies thdang conditionf for any
bang subterm of ¢,

(i) u contains at most one free variahlé’, having a bang typ&C.
(i) for any subtermv of u such that # w andv # z, s(doors(u,v)) > 1.

This condition is sufficient to rule out the canonical mogshs for monoidalness
l1A®!B—ol(A ® B) and§A—!A which are not valid inLAL (the following terms
and types are slightly more complicated sintgy, 4. does not explicitly contain a
type of the formA —o | B):

Az (A= B) 2y B=C 2\ (1)8((§x)§2)



Az Ny 4B ()8 (B)

In the first pseudo-term, the bang subtéj(tt=)§z) contains more than one free vari-
ables. In the second pseudo-term, the bang suljgfm contains a free variable typed
by a linear type. Hence they both violate the bang conditipn (

A-Scope condition.The previous conditions, bracketing and bang, would be ginou
to deal with boxes in the propositional fragment/of. AL. For handling second-order
quantification though, we need a further condition to take account the sequential-
ity enforced by the quantifiers. For instance consider tileviing two formulas (the
second one is known &arcan’s formuld:

§Va. A — Va.§A 1)
Va.§A —o §Va. A ()

Assuminga occurs freely ind, formula (1) is provable while (2) is not. Observe that
we can build the following pseudo-terms which are locallygst and have respectively
type (1) and (2):

t1 = M4 A ((5x)a)
ty = A" gAa§((x)a)

Both pseudo-terms satisfy the previous conditions, tbuoes not correspond to a
DLAL derivation.

Letu be a locally typed pseudo-term. We say thatepends o if the type ofu
contains a free variable. We say that a locally typed pseudo-tetreatisfies the\-
scope conditiorif: for any subtermA«.u of ¢t and for any subterm of « that depends
ona, doors(u, v) is weakly well-bracketed.

Coming back to our example; satisfies the\-scope condition, but, does not,
becausér)a depends o and neverthelessoors(§((x)a), (r)a) = § is not weakly
well-bracketed.

3.4 Correctness of the conditions

Proposition 2 If M is a system F term such that the following judgement holds in
DLAL:
(%) @1 : A1, . Ty Amiyr i Bl .., yn : Bp E M C|

then there is a decoratiohof M with typeC* and with free variabIeSz!lAI, cee :z:!nf*m,
yfl b ,yf“ which is regular and satisfies the local typing, bracketibgng andA-

scope conditions.

See the Appendix for the proof.

We want now to examine the converse property. First obsbateithenever pseudo-
termsAz? ¢, (t)u, Aa.t, (t)A satisfy the local typing, bracketing, bang afescope
conditions, so do the immediate subtertrend«. The case oft is handled by the
following key lemma (already used f@AL* in [BT0H]):



Lemma 3 (Boxing) If §(t4) is a pseudo-term which satisfies the local typing, brack-
eting, bang and\-scope conditions, then there exist, (u1)ss,, - .., (un)§a, , Unique
(up to renaming of’s free variables) such that:

1. FV(v) = {zP*,... B} and eachr; occurs exactly once in,
2. §t = Sv[§uy /z1, - .., §u,/z,] (Substitution is assumed to be capture-free),
3. v,uy,...,u, satisfy the same conditions.

Proof.  Similar to the proof of Lemma 5 i [BT(5]. See the Appendix.
Thanks to the previous lemma, we can now prove:

Theorem 4 Let M be asystem Fterm. Then : Ay,..., 2z : Apsyr : B1y oo yn
B, b M : Cis derivable inDLAL if and only if there is a decoratiohof M with
type C* and with free variables:!lAI, e ,:z:if:", yfl*, e ,yf’t which is regular and
satisfies the local typing, bracketing, bang akdcope conditions.

See Appendik A for the proof. As a consequence,BIlrA L typing problem boils
down to:

Problem 2 (decoration) Given a system F term/, determine if there exists a dec-
oration ¢t of M which is regular and satisfies the local typing, bracketibgng and
A-scope conditions.

4 Parameterization and constraints

4.1 Parameterized terms and instantiations

To solve the decoration problem (Probltﬂn 2), one needs tmexthe infinite set of
decorations. This can be effectively done by introducingastract kind of types and
terms with symbolic parameters, and expressing the camdifior such abstract terms
to be materialized by boolean and integer constraints tneset parameters (like in the
related type inference algorithms for EAL or LAL mentionedfe introduction).

We use two sorts of parametenteger parametera, m, ... meant to range over
Z, andboolean parameterby, bs, ... meantto range ovel0, 1}. We also usdinear
combinations of integer parametats= n; + - - - + ny, wherek > 0 and each; is an
integer parameter. In cage= 0, it is written as0.

The set ofparameterized typgp-typedor short) is defined by:

F = a|D—oA|Va.A
A = §°F
D = §P°F

whereb is a boolean parameter ands a linear combination of integer parameters. In
the sequeld, B, C stand fodinear p-typeof the formg®F', andD for bang p-typesf
the form§P-< I, andE for arbitrary p-types. Whel = §*-<F7, D° denotes the linear



p-type§cF. We assume that there is a countable set of variabfeg”, . .. for each
bang p-typeD. Theparameterized pseudo-terrfistermsfor short) are defined by the
following grammar:

t o= 2P | APt | (Hu| Aot | (H)A | §™t.

We denote byar®°!(t) the set of boolean parameterstofand bypari™t(t) the
set of integer parameters of

An instantiationg = (¢°, ¢*) for a p-termt is given by two mapg”® : par®°°!(t) —
{0,1} and ¢* : pari™*(t) — Z. The map¢® can be naturally extended to linear
combinationg = ny + - - - + ny by ¢'(c) = ¢*(ny) + - - - + ¢'(ny). An instantiation
¢ is said to beadmissiblefor a p-typeF if for any linear combinatiore occurring
in E, we have¢’(c) > 0, and moreover whenevéP:°F occurs inE, ¢°(b) = 1
implies¢(c) > 1. When¢ is admissible folZ, a types(E) of DLAL~ is obtained
by replacing eacli°F and §?°F with ¢°(b) = 0 by §?' () $(F), and§>°F with
¢"(b) = 1 by 187" ()~ 1o (F).

So informally speaking, i§®:°F the ¢ stands for the number of modalities ahead
of the type, while the booledn serves to determine whether the first modality, if any,
isgor!.

An instantiationy for a p-termt is said to beadmissiblefor ¢ if it is admissible for
all p-types occurring in. Wheng is admissible fot, a regular pseudo-terg(¢) can
be obtained by replacing eagfu with §*' ™)y, eachz” with z#(P), and each{t) A
with (¢)o(A).

As for pseudo-terms there is an erasure ragp from p-terms to system F terms
consisting in forgetting modalities and parameters.

A linear free decoratior(bang free decorationresp.) of a system F typE is a
linear p-type (bang p-type, respz) such that (i)~ = T, (ii) each linear combination
c occurring in E consists of a single integer parametar and (iii) the parameters
occurring inE are mutually distinct. Two free decoratiofis and7’, are said to be
distinctif the set of parameters occurring T is disjoint from the set of parameters
in Ts.

Thefree decorationV/ of a system F ternd/ (which is unique up to renaming of
parameters) is obtained as follows: first, to each typef a variablex” used inM,
we associate a bang free decorafigrand to each typ& occurringag N)U in T', we
associate a linear free decorati@rwith the following proviso:

(i) one and the sani€ is associated to all occurrences of the same variabje

(ii) otherwise mutually distinct free decoratiofs, ..., T, are associated to differ-
ent occurrences df.

M is now defined by induction on the construction\at

P A— §m$T
T M = §2xeT M (M)N = §=((M)N)
AaM = §™AaM (MOT = §=((NT)

where all newly introduced parametersare chosen to be fresh. The key property of
free decorations is the following:



Lemma5 Let M be a system F term andbe a regular pseudo-term. Theris a
decoration ofM if and only if there is an admissible instantiatignfor A/ such that

o(M) =t.
Hence our decoration problem boils down to:

Problem 3 (instantiation) Given a system F term/, determine if there exists an ad-
missible instantiation for M such thaty(M) satisfies the local typing, bracketing,
bang andA-scope conditions.

For that we will need to be able to state the conditions of Téed} on p-terms;
they will yield some constraints on parameters. We will $peflinear inequations
meaning in fact both linear equations and linear inequation

4.2 Unification constraints

To express the unifiability of two p-types; and E,, we define a se{(E, F2) of
constraints by

) = 0,
) = U(D1,Dy) UU(AL, Ay),
UV Ay, Ya.Ay) = U(AL, Ay),
UEDF,82F) = {c1=ca2} UU(FL, F),
UEPLF,8P2°2F)) = {by =bg,cq = co} UU(F, F),

and undefined otherwise. It is straightforward to observe:

Lemma 6 Let E;, E; be two p-types such thét(E,, E») is defined, and be an
admissible instantiation foE; and E>. Theng(E1) = ¢(FE») if and only if¢ is a
solution of/ (E1, E»).

4.3 Local typing constraints

For any p-typeF, M(E) denotes the s€ic > 0: coccursinE} U{b=1=c¢ >
1: §P°F occursinE}. Theng is admissible for if and only if ¢ is a solution of
M(E).

When A is a linear p-typ&s°F', B[A/a] denotes a p-type obtained by replacing
eachs® a in B with §¢+¢F and eacl§®< o with §P-<'+cF',

Now consider the free decoratiar of a system F typed term/. We assign to
each subtermof M alinear p-type B (indicated ag z) and a setM (t) of constraints
as on FigureﬂZ. Notice that any linear p-type is of the f@fh'. Moreover, since
comes from a system F typed term, we know thias an implication when occurs as
(tse r)u, andF is a quantification whethoccurs agtse ») A. The unificatiori{(D°, A)
used inM((t)u) is always defined, and finally/ satisfies the eigenvariable condition.

Let Ltype(37) be the setM (M) U {b = 1 : 28”°F occurs more than once il }.



(P)pe M(z) = M(D)
(8™ tgep)gmiep M(@E™) = {m+c>0}UM()
(AP ta)go(pony MAzPt) = M(D)UMI()
((tse(p—B))ua)B M(t)u) = {ec=0}UU(D°, A)UM(t)UM(u)
(Aa-tA)E;'OVa.A M(Aat) = M(ﬁ)
(tgeva.p)A)piaja) M((DA) = {c=0} UM(A)UM()

Figure 2: M(¢) constraints.

4.4 Boxing constraints

In this section we need to recall some definitions frm [BT@8& consider the words
over integer parametera, n ..., whose set we denote iy,

Let ¢ be a p-term and an occurrence of subterm af We define, as for pseudo-
terms, the wordloors(t, ) in £, as follows:

if t =w: doors(t, u) = e,
else:
doors(§™¢, u) = m :: (doors(t,u))
doors(A\yP.t;,u) = doors(Aa.ty,u)

= doors((t1)A, u) = doors(t1,u)
doors((t1)te,u) = doors(t;, u) whent; is the

subterm containing.

The sums(!) of an element of £,, is alinear combination of integer parameters defined
by:
s(e)=0, s(m:1)=m+ s(l).
For each list € £,, definewbracket(l) = {s(I’) > 0 | I’ < [} andbracket(l) =
wbracket(l) U {s(I) = 0}.
Given a system F termd, we define the following sets of constraints:

Bracketing constraints. Bracket(M) is the union of the following sets:
(i) bracket(doors(M, z)) for each free variable in M,
and for each occurrence of an abstraction subterm of M,
(ii) whbracket(doors(M, \z.v)),
(iii) bracket(doors(v, )) for each occurrence afin v.

Bang constraints A subtermuy that occurs astge (gb.ep_op))ta in M is called a

bang subternof A/ with the critical parameterb. Now Bang(M) is the union of the
following sets: for each bang subterrof M with a critical parameteb,

(i) {b = 0} if u contains strictly more than one occurrence of free varjadnhel
{b =1 = b’ = 1} if v contains exactly one occurrence of free variable
§b’,c’ F/
x .



(i) {b =1 = s(doors(u,v)) > 1 : v is a subterm ofs such thatv # u and

v #£ x}.
A-Scope constraints Scope(M) is the union of the following sets:

e wbracket(doors(u, v)) for each subterm.o.u of M and for each subtermof «
that depends oa.

We denoteConst(M) = Ltype(M) U Bracket(M) U Bang(M) U Scope(M). We
then have:

Theorem 7 Let M be a system F term angl be an instantiation fol\/. Then: ¢ is
admissible forM and ¢(M) satisfies the local typing, bracketing, bang akecope
conditions if and only if is a solution ofConst(M).

Moreover, the number of (in)equations@onst(M) is quadratic in the size af/.

5 Solving the constraints

From a proof-net point of view, naively one might expect tfiading a DLAL deco-
ration could be decomposed into first finding a suitable EAtaodation (that is to say
a box structure) and then determining which boxes shoult drees. This however
cannot be turned into a valid algorithm because there can bdiaite number of EAL
decorations in the first place.

Our method will thus proceed in the opposite way: first solwe Iboolean con-
straints, which corresponds to determine whidioxes are necessary, and then com-
plete the decoration by finding a suitable box structure.

5.1 Solving boolean constraints
We divideConst (1) into three disjoint set€onst” (M), Const’ (M) andConst™ (M):

e A boolean constraing € Const’ (M) consists of only boolean parametesss
of one of the following forms:

b1 = b2 (in Ltype(]M))
b=1 (in Ltype(DM))
b=0 (in Bang(M))
b=1=Db = (in Bang(M))

e A linear constraints € Const’ (1) deals with integer parameters only. A linear
constraing is of one of the following forms:

c1 =cz (in Ltype(M))
c>0 (in Ltype(M), Bracket(M ), Scope(M))
c=0 (in Ltype(M) andBracket(M))
e A mixed constrains € Const™ (M) contains a boolean parameter and a linear
combination and is of the following form:

b=1=c>1 (inLtype(M)andBang(M))



We consider the set of instantiations on boolean paramatetghe extensional
order< on these mapsy® < ¢’ if for any b, ¥*(b) < ¢°(b).

Lemma 8 Const”(]) has a solution if and only if it has a minimal solutigif. The
latter can be computed in time polynomial in the number oflé@o constraints in
Const®(M).

Proof. Assuming thatConst’(31) has a solution, we can compute the minimal one
by a standard resolution procedure. See Appeﬁbix A. ]

5.2 Solving integer constraints

Wheng? is a boolean instantiatiop? Const™ (M) denotes the set of linear constraints
defined as follows: for any constraint of the foln= 1 = ¢ > 1 in Const™ (M),

¢ > 1 belongs top”Const™ (M) if and only if ¢*(b) = 1. Itis then clear that (*)
(4%, ¢") is a solution ofConst( ) if and only if ¢ is a solution ofConst® (M) and ¢’

is a solution ofp?Const™ (M) U Const* (D).

Proposition 9 Const(M )adm|tsasolut|0n if and only if it has a solutign= (1*, ¥*)
such that)? is the minimal solution o€onst’ (7).

Proof.  Suppose tha€onst(M) admits a solutlor(qbb ¢'). Then by the previous
lemma, there is a minimal solution® of Const’(M). Sincey? < ¢°, we have
¥*Const™ (M) C ¢*Const™ (M). Sinceg’ is a solution ofs* Const™ (M )UConst' (M)
by (*) above, it is also a solution af®Const™ (M) U Const’(M). This means that
(y*, ¢') is a solution ofConst(M). |

Coming back to the proof-net intuition, Proposit@n 9 metnad given a syntactic
tree of term there is a most general (minimal) way to placexes (and accordingly
subtypes in types), that is to say: if there is a DLAL decaorafor this tree then there
is one with precisely this minimal distribution bboxes.

Now notice that)*Const™ (M) U Const’(M) is a linear inequation system, for
which a polynomial time procedure for searching a ratiopaltson is known.

Lemma 10 1*Const™ (M) U Const’ (M) has a solution inQ if and only if it has a
solution inZ.

Proof. Clearly the set of solutions is closed under multiplicatigra positive integem

Theorem 11 Let M be a System F term. Then one can decide in time polynomial in
the number of constraints iGonst(M ) whetherConst(M ) admits a solution.

Proof.  First apply the procedure described in the proof of Lerr[||na 8eaoide if
there is a minimal solution® of Const’ (M). If it exists, apply the polynomial time
procedure to decide if*Const™ (M) U Const’ (M) admits a solution iff. If it does,
then we also have an integer solution. Otherw@st()M ) is not solvable. |

By combining Theorenf]4, Lemmfg 5, Theorefs 7 and 11, we obtainmain
theorem:

Theorem 12 Given a system F teri/ 7, it is decidable in time polynomial in the size
of M whether there is a decoratias of T such that-p; 45, M : A.



6 Implementation

6.1 Overview

We designed an implementation of the type inference algoritThe program is writ-
ten in functional Caml and is quite concise (less than 158s). A running program
not only shows the actual feasibility of our method, but adsa great facility for build-
ing examples, and thus might allow for a finer study of the atgm.

Data types as well as functions closely follow the previoasadiption of the algo-
rithm: writing the program in such a way tends to minimise tibenber of bugs, and
speaks up for the robustness of the whole proof development.

The program consists of several successive parts:

1. Parsing phase: turns the input text into a concrete syregax The inputis an F
typing judgement, in a syntaxla Church with type annotations at the binders. It
is changed into the de Bruijn notation, and parameterizéid fneésh parameters.
Finally, the abstract tree is decorated with parametetigeels at each node.

2. Constraints generation: performs explorations on #reednd generates the boolean,
linear and mixed constraints.

3. Boolean constraints resolution: gives the minimal sofubf the boolean con-
straints, or answers negatively if the set admits no salutio

4. Constraints printing: builds the final set of linear coaistts.

We use the simplex algorithm to solve the linear constraiftsuns in O(2"),
which comes in contrast with the previous result of polyrartime solving, but has
proven to be the best in practice (with a careful choice ofthjective function).

6.2 An example of execution

As an example, let us consider the reversing functénon binary words, applied to
1010 rev can be defined by a single higher-order iteration, and thugsented by the
following system F term:

MW . ABNs0P =B N\siP=P (1 (B — B))
NaP? =B NP (a)(s0)x
Xa? B \2P (a)(si)x (A Az®.2)3
We apply itto :

A Aso® Y Asi® T x® . (s1)(s0)(s1)(s0)x,

representing the wortl01Q Sincerev involves higher-order functionals and polymor-
phism, it is not so straightforward to tell, just by lookingtlae term structure, whether
it works in polynomial time or not.



Givenrev(1010)as input (coded by ASCII characters), our program produéés 1
(in)equations on 79 variables. After constraint solving, @btain the result, that can

be read as:
(AW . AB.As0'(B—08) \gi'(B—0B)

§8(1L(B—p))
§)\aﬁwﬁ.)\mﬁ.(a)(§so):r
g a’ P NP .(a)(§si)x)
(Aa.rz*.2)0) S
A As0' @ \si® ™ § Az, (§s7) (§s0) (§s1) (§s0)x

It corresponds to the natural depth-1 typing of this ternthwonclusion typ&Vpr 4, —o
Wprar. The solution ensures polynomial time termination, andhot fts depth guar-
antees normalization in a quadratic numbegetduction steps.

Further examples, as well as the program itself, will belatse at

http://www-lipn.univ-paris13.fr/"atassi/
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APPENDIX

A Proofs

Proof of Propositior] .

Proof. First, one can build a (possibly non-regular) decorafién of M satisfying
the four conditions by induction on the derivation. Dep&gddn the last typing rule
used (see Figurﬂ 1)/ T takes one of the following forms:

(Id) z (§e) MT[N*/z]

(—i)  AA Mt (—e) (MT)N*

(=i) MY Mt (=e) (MTENT[EC /2
(Weak) MT (Cntr) MT[z/z1,x/z2]
(Vi) Aa.Mt  (Ve) (M*)B*

*

) Mt Sy fyi]

whereM ™ in (§ i) has free variables{‘l, ey T lel, ey yBn,
It is easily verified thafl\/ * has a suitable type and satisfies the four conditions; let
us just remark:

e The bang condition fofM T)§N*[§2'C" /2] in (= e) follows by the bracketing
condition for N, which holds by the induction hypothesis, while thescope
condition follows by the eigenvariable condition fat". Similarly for the case

of (§ i).

e MT[NT/z]in (§ e) satisfies th-scope condition since substitution is capture-
free, and satisfies the bang condition sinckas a linear type and thus cannot
appear inside a bang subtermiaft.

Finally, the required regular pseudo-tetis obtained from\/* by applying inside
t the following rewrite rules as many times as possible:

§u — u,  §fu —u.

It is clear that the four conditions are preserved by thedeatons. ]

Proof of Lemm4]3.
Proof. Given§t, assign an index to each occurrence @nd§ in §¢ to distinguish
occurrences (we assume that the outerfitstve index)). One can then find closing
bracketss;, . . ., §, that match the opening brackgt in §ot. Replace eackt;u;) g,
with a fresh and distinct free variab&qBi (1 < j < n), and let§v be the resulting
pseudo-term. This way one can obtain, ...,u,, such that condition 2 holds.
Asto point 1., we claim that does not contain a free variable other than. . . , z,,.
If there is any, say, then it is also a free variable of thus the bracketing condition
for §ot implies thatdoors(§ot, y) is well-bracketed, and thus there is a closing bracket
that matche§, in the path from§gt to y. That means that belongs to one ofi4, ...,
un, NOt tov. Hence condition 1 holds.



We now need to check point 3. The bracketing conditiorvfaty, . . ., u, can be
shown as in5]. Thé\-scope condition is easy to verify.

As to the local typing condition, the only nontrivial poird thatv satisfies the
eigenvariable condition. Suppose that the typeof x; contains a bound variable
a of v. Then§yt contains a subterm of the forta.v'[§;u; /] andu; depends on
a. However,doors(v”, u;) with v = v'[§;u;/x;] cannot be weakly well-bracketed
becausé; should match the outermost opening bradket This contradicts the\-
scope condition fo§g¢.

To show the bang condition fer(it is clear forus, . . . , u,), Suppose that contains
a bang subterm’. We claim that’ does not contain variables, . . ., z,,. Ifit contains
any, sayzr;, then§ot containsv’[§;u;/z;] and the bang condition fdjy¢ implies that
s(doors(v”, §u;)) > 1 with v = v'[§;u;/x;]. On the other hand, we clearly have
s(doors(§ot,v”)) > 1 because” contains the closing brackgtthat matche§,. As a
consequence, we hagédoors(§ot, §;u;)) > 2. This means tha}; does not matcKo,

a contradiction. As a consequengédoes not contaim, . . ., z,,. Sov’ occurs ingyt,
and therefore satisfies the bang condition. ]

Proof of Theorenﬂ4The ‘only if’ direction has already been given by Propositio
E. The other direction is proved by induction on the size efyo®-term.

Whent is a variable(z”) ., the claim can be established by (1d) afid)( Note
thatt cannot be of the forrfu due to the bracketing condition.

Whent is one ofAz”.u, (u)v (with v not a bang subtermja.u, (u)A, the sub-
termsu andv also satisfy all conditions. Hence we can use the inductygothesis to
show thatt~ is typable inDL AL. Whent is §u, apply Lemma[|3 and argue similarly
by using rules{ e).

Whent is (u1a—p)vs4, i.e., withv a bang subterm, we ha¥e A - v~ : A = B
with suitablel’ andA by the induction hypothesis.

If v is a variable, then it must be of the forst* by the bang condition (i). Hence
by applying& e)tol'; A u™ : A= Band;z: AF x: A, weobtainl,z : A;A+
(v )z : B as required.

If vis not a variable, then it must be of the fofiny due to the bang condition
(i) and contain at most one free variable. Let us supposkiticantainsy'c. Now,
the bracketing condition implieg(doors(§vy,y)) = 0 while the bang condition im-
plies s(doors(§vg, v’)) > 1 for any subtermv’ of vy other thany. Therefore, com-
bined with Lemmdﬁ& it follows that is actually of the form§v, [§y/x], wherev,
contains a variable® and satisfies all the conditions. By induction hypothesis, w
have;z : C' vy : A, and hencey : C' F vy [y/z] : A by renaming. Therefore, we
obtainl,y : C; A+ (u™)v™ : Bby (= e). ]

Proof of Lemm{|8 LetB := Constb(ﬁ). Apply repeatedly the following steps until
reaching a fixpoint:

e if by =bs € Bandby; = 0 € B (resp.by = 1 € B), thenlet3 := BU {b =
0} (resp.B := BU {by = 1});

eif(b=1=Db'=1)cBandb=1 € B, thenlet3:=BU{b' =1}.



Itis obvious that this can be done in a polynomial numberegstnd that the resulting
systems is equivalent tcConst” (7).

Now, if B contains a pair of equationd = 0,b = 1, then it is inconsistent.
Otherwise define the boolean instantiatighsuch that/*(b) := 1if b=1 € Band
¥*(b) := 0 otherwise:

It is clear thaty’ is a solution ofB3. In particular, observe that any constraint of
the form(b = 1 = b’ = 1) in B is satisfied by)®. Moreover any solutior® of B
satisfiesz)? < ¢*. Therefore ifConst’(31) has a solution then it has a minimal ome.



