
HAL Id: hal-00021834
https://hal.science/hal-00021834

Submitted on 27 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Ptime reducibility for system F terms via
Dual Light Affine Logic.

Vincent Atassi, Patrick Baillot, Kazushige Terui

To cite this version:
Vincent Atassi, Patrick Baillot, Kazushige Terui. Verification of Ptime reducibility for system F terms
via Dual Light Affine Logic.. 2006. �hal-00021834�

https://hal.science/hal-00021834
https://hal.archives-ouvertes.fr

cc
sd

-0
00

21
83

4,
 v

er
si

on
 1

 -
 2

7
M

ar
 2

00
6

Verification of Ptime reducibility for
system F terms via Dual Light Affine Logic

Vincent Atassi∗

LIPN, Univ. Paris-Nord, France
atassi@lipn.univ-paris13.fr

Patrick Baillot∗

LIPN, Univ. Paris-Nord, France
pb@lipn.univ-paris13.fr

Kazushige Terui
NII, Tokyo, Japan

terui@nii.ac.jp

March 27, 2006

Abstract

In a previous work we introduced Dual Light Affine Logic (DLAL) ([BT04])
as a variant of Light Linear Logic suitable for guaranteeingcomplexity properties
on lambda-calculus terms: all typable terms can be evaluated in polynomial time
and all Ptime functions can be represented. In the present work we address the
problem of typing lambda-terms in second-order DLAL. For that we give a pro-
cedure which, starting with a term typed in system F, finds allpossible ways to
decorate it into a DLAL typed term. We show that our procedurecan be run in
time polynomial in the size of the original Church typed system F term.

1 Introduction

Several works have studied programming languages with intrinsic computational com-
plexity properties. This line of research, Implicit computational complexity (ICC), is
motivated both by the perspective of automated complexity analysis, and by founda-
tional goals, in particular to give natural characterizations of complexity classes, like
Ptime or Pspace. Different calculi have been used for this purpose coming from prim-
itive recursion, lambda-calculus, rewriting systems (e.g. [BC92, MM00, LM93]). . . A
convenient way to see these systems is in general to describethem as a subset of pro-
grams of a larger language satisfying certain criteria: forinstance primitive recursive
programs satisfying safe/ramified recursion conditions, rewriting systems admitting a
termination ordering and quasi interpretation, etc. . .

Inference. To use such ICC systems for programming purpose it is naturalto wish
to automatize the verification of the criteria. This way the user could stick to a simple

∗Work partially supported by projects CRISS (ACI), GEOCAL (ACI), NO-CoST (ANR)

programming language and the compiler would check whether the program satisfies
the criteria, in which case a complexity property would be guaranteed.

In general this decision procedure involves finding a certain witness, like a type, a
proof or a termination ordering. Depending on the system this witness might be useful
to provide more precise information, like an actual bound onthe running time, or a
suitable strategy to evaluate the program. It might be used as a certificate guaranteeing
a particular quantitative property of the program.

Light linear logic. In the present work we consider the approach of Light linear
logic (LLL) ([Gir98]), a variant of Linear logic which characterizes polynomial time
computation, within the proofs-as-programs correspondence. It includes higher-order
and polymorphism, and can be extended to a naive set theory ([Ter04]), in which the
provably total functions correspond to the class of polynomial time functions.

The original formulation of LLL by Girard was quite complicated, but a first simpli-
fication was given by Asperti with Light Affine Logic (LAL) ([AR02]). Both systems
have two modalities (one more than Linear logic) to control duplication. There is a
forgetful map to system F terms (polymorphic types) obtained by erasing some infor-
mation (modalities) in types; if an LAL typed termt is mapped to an F-typed termM
we also say thatt is adecorationof M .

So an LAL program can be understood as a system F program, together with a
typing guarantee that it can be evaluated in polynomial time. As system F is a refer-
ence system for the study of polymorphically typed functional languages and has been
extensively studied, this seems to offer a solid basis to LAL.

However LAL itself is still difficult to handle and followingthe previous idea for the
application of ICC methods, we would prefer to use plain lambda-calculus as a front-
end language, without having to worry about the handling of modalities, and instead
to delegate the LAL typing part to a type inference engine. The study of this approach
was started in [Bai02]. For it to be fully manageable howeverseveral conditions should
be fulfilled:

1. a suitable way to execute the lambda-terms with the expected complexity bound,

2. an efficient type inference,

3. a typed language which is expressive enough so that a reasonable range of pro-
grams is accepted.

The language LAL presents some drawback for the first point, because the LAL
typed terms need to be evaluated with a specific graph syntax,proof-nets, in order to
satisfy the polynomial bound, and plain beta reduction can lead to exponential blow-up.
In a previous work ([BT04]) we addressed this issue by defining a subsystem of LAL,
called Dual Light Affine Logic (DLAL). It is defined with both linear and non-linear
function types. It is complete for Ptime just as LAL and its main advantage is that it
is also Ptime sound w.r.t. beta reduction: a DLAL term admitsa bound on the length
of all its beta reduction sequences. Hence DLAL stands as a reasonable substitute for
plain LAL for typing issues.

Concerning point 2, as type inference for system F is undecidable we don’t try to
give a full-fledged type inference algorithm from untyped terms. Instead, to separate

the polymorphic part issue from the proper DLAL part one, we assume the initial pro-
gram is already typed in F. Either the system F typing work is left to the user, or one
could use a partial algorithm for system F typing for this preliminary phase.

So the contribution of the present work is to define an efficient algorithm to decide
if a system F term can be decorated in a DLAL typed term. This was actually one of
the original motivations for defining DLAL. We show here thatdecoration can be per-
formed in polynomial time. This is obtained by taking advantage of intuitions coming
from proof-nets, but it is presented in a standard form with afirst phase consisting in
generating constraints expressing typability and a secondphase for constraints solving.
One difficulty is that the initial presentation of the constraints involves disjunctions of
linear constraints, for which there is no obvious Ptime bound. Hence we provide a
specific resolution strategy.

The complete algorithm is already implemented in ML, in a waythat follows
closely the specification given in the article. It is modularand usable with any linear
constraints solver. The code is commented, and available for public download (Section
6). With this program one might thus write terms in system F and verify if they are
Ptime and obtain a time upper bound. It should in particular be useful to study further
properties of DLAL and to experiment with reasonable size programs.

The point 3 stressed previously about expressivity of the system remains an issue
which should be explored further. Indeed the DLAL typing discipline will in particular
rule out some nested iterations which might in fact be harmless for Ptime complex-
ity. This is related to the line of work on the study of intensional aspects of Implicit
computational complexity ([MM00, Hof03]).

However it might be possible to consider some combination ofDLAL with other
systems which could allow for more flexibility, and we think abetter understanding of
DLAL, and in particular of its type inference, is a necessarystep in that direction.

Related work. Inference problems have been studied for several ICC systems
([Ama05, HJ03]). Elementary linear logic (EAL) in particular is another variant of
Linear logic which characterizes Kalmar elementary time and has applications to op-
timal reduction. Type inference in the propositional fragment of this system has been
studied in [CM01, CRdR03, CDLRdR05] and [BT05] which gives apolynomial time
procedure. Type inference for LAL was also investigated, in[Bai02, Bai04]. To our
knowledge the present algorithm is however the first one for dealing with polymorphic
types in a EAL-related system, and also the first one to infer light types in polynomial
time.

Notations. Given a lambda-termt, FV (t) will be the set of its free variables. The
prefix relation on words will be denoted by≤.

2 From system F toDLAL

The languageLF of system F types is given by:

T, U ::= α | T → U | ∀α.T

We assume that a countable set of term variablesxT , yT , zT , . . . is given for each
typeT . The terms of systemF are built as follows (here we writeMT to indicate that

the termM has typeT):

xT (λxT .MU)T→U ((MT→U)NT)U

(Λα.MU)∀α.U ((M∀α.U)T)U [T/α]

with the proviso that when building a termΛα.MU ,αmay not occur freely in the types
of free term variables ofM (theeigenvariable condition).

It is well known that there is no sensible resource bound (i.e. time/space) on the
execution of system F terms in general. To impose some bounds, a more refined type
system is required.DLAL serves well as such a type system.

The languageLDLAL of DLAL types is given by:

A,B ::= α | A ⊸ B | A⇒ B | §A | ∀α.A

We note§0A = A and§k+1A = §§kA. The erasure map(.)− from LDLAL to LF is
defined by:

(§A)− = A−, (A ⊸ B)− = (A⇒ B)− = A− → B−,

and(.)
− commutes to the other connectives. We sayA ∈ LDLAL is adecorationof

T ∈ LF if A− = T .
A declarationis a pair of the formxT : B with B− = T . It is often written as

x : B for simplicity. A judgementis of the formΓ; ∆ ⊢ M : A, whereM is a system
F term,A ∈ LDLAL andΓ and∆ are disjoint sets of declarations. When∆ consists of
x1 : A1, . . . , xn : An, §∆ denotesx1 : §A1, . . . , xn : §An. The type assignment rules
are given on Figure 1. Here, we assume that the substitutionM [N/x] used in (§ e) is
capture-free. Namely, no free type variableα occurring inN is bound inM [N/x]. We
write Γ; ∆ ⊢DLAL M : A if the judgementΓ; ∆ ⊢M : A is derivable.

Recall that binary words, in{0, 1}∗, can be given the following type in F:

WF = ∀α.(α→ α) → (α→ α) → (α→ α)

A corresponding type in DLAL, containing the same terms, is given by:

WDLAL = ∀α.(α −◦ α) ⇒ (α−◦ α) ⇒ §(α−◦ α)

Thedepthd(A) of aDLAL typeA is defined by:

d(α) = 0, d(∀α.B) = d(B),
d(A ⊸ B) = max(d(A), d(B)), d(§A) = d(A) + 1,
d(A⇒ B) = max(d(A) + 1, d(B)).

A typeA is said to beΠ1 if it does not contain a negative occurrence of∀; like for
instanceWDLAL.

The fundamental properties ofDLAL are the following [BT04]:

;xA−

: A ⊢ xA−

: A
(Id)

Γ;x : A,∆ ⊢M : B

Γ; ∆ ⊢ λxA−

.M : A ⊸ B
(⊸ i) Γ1; ∆1 ⊢M : A ⊸ B Γ2; ∆2 ⊢ N : A

Γ1,Γ2; ∆1,∆2 ⊢ (M)N : B
(⊸ e)

x : A,Γ; ∆ ⊢M : B

Γ; ∆ ⊢ λxA−

.M : A⇒ B
(⇒ i) Γ; ∆ ⊢M : A⇒ B ; z : C ⊢ N : A

Γ, z : C; ∆ ⊢ (M)N : B
(⇒ e) (*)

Γ1; ∆1 ⊢M : A

Γ1,Γ2; ∆1,∆2 ⊢M : A
(Weak)

x1 : A, x2 : A,Γ; ∆ ⊢M : B

x : A,Γ; ∆ ⊢M [x/x1, x/x2] : B
(Cntr)

; Γ,∆ ⊢M : A

Γ; §∆ ⊢M : §A
(§ i)

Γ1; ∆1 ⊢ N : §A Γ2;x : §A,∆2 ⊢M : B

Γ1,Γ2; ∆1,∆2 ⊢M [N/x] : B
(§ e)

Γ; ∆ ⊢M : A

Γ; ∆ ⊢ Λα.M : ∀α.A
(∀ i) (**)

Γ; ∆ ⊢M : ∀α.A

Γ; ∆ ⊢ (M)B− : A[B/α]
(∀ e)

(*) z : C can be absent.
(**) α does not occur freely inΓ.

Figure 1: Typing system F terms inDLAL

Theorem 1

1. LetM be a closed term of system F that has aΠ1 typeA in DLAL. ThenM
can be normalized inO(|M |2

d

) steps byβ-reduction, whered = d(A) and|M |
is the structural size ofM .

2. Every Ptime functionf : {0, 1}∗ −→ {0, 1}∗ can be represented by a closed
termM of typeWDLAL −◦ §dWDLAL for somed ≥ 0.

Notice that the result 1 holds neither for Light linear logicnor Light affine logic. Al-
though they are logics of polynomial time, they require somespecial proof syntax such
as proof nets [Gir98, AR02] or light affine lambda calculus [Ter01] to guarantee poly-
nomial time bounds.

The result 1 implies that if we ignore the embedded types occurring in M , the
normal form ofM can be computed in polynomial time, when the depth is fixed. It
moreover shows that a termM of typeWDLAL ⊸ §dWDLAL is Ptime, because then
for any Church wordw we have that(M) w has type§dWDLAL, and can thus be
evaluated in timeO(|w|2

d+1

).
The result 2 on the other hand guarantees thatDLAL has sufficient expressive

power, at least enough to (extensionally) represent all polynomial time functions.
Now, letMWF →WF be a system F typed term and suppose that we know that it

has aDLAL typeWDLAL −◦ §dWDLAL for somed ≥ 0. Then, by the consequence
of the above theorem, we know that the termM is Ptime. Thus by assigningDLAL
types to a given system F term, one canstatically verifya polynomial time bound for
its execution.

As a first step to elaborate this idea to useDLAL for resource verification of system
F terms, we address the following:

Problem 1 (DLAL typing) Given a closed termMT of system F, determine if there
is a decorationA ofM such that⊢DLAL M : A.

(Here the closedness assumption is only for readability.)
In the sequel, we show that there is a polynomial time algorithm for solving the

DLAL typing problem.
This should be contrasted with the fact that the set of systemF terms representing

Ptime functions is not recursively enumerable (this can be easily proved by reduction
of Hilbert’s 10th problem).

Hence even thoughDLAL does not capture all Ptime terms, the general problem
is undecidable and this type system gives a partial but efficiently realizable verification
method.

3 Characterizing DLAL typability

3.1 Pseudo-terms

To address theDLAL typing problem, it is convenient to introduce an intermediary
syntax which is more informative than system F terms (but notmore informative than
DLAL derivations themselves).

First we decomposeA ⇒ B into !A ⊸ B. The languageLDLAL⋆ of DLAL⋆
types is given by:

A ::= α |D ⊸ A | ∀α.A | §A

D ::= A | !A

There is a natural map(.)⋆ from LDLAL to LDLAL⋆ such that(A ⇒ B)⋆ = !A⋆
⊸

B⋆ and commutes with the other operations. The erasure map(.)− from LDLAL⋆ to
LF can be defined as before. ADLAL⋆ type is called abang typeif it is of the form
!A, and otherwise called alinear type. In the sequel,A,B,C stand for linear types,
andD,E for either bang or linear types.

We assume there is a countable set of term variablesxD, yD, zD, . . . for eachD ∈
DLAL⋆ . Thepseudo-termsare defined by the following grammar:

t, u ::= xD | λxD .t | (t)u | Λα.t | (t)A | §t | §̄t,

whereA is a linear type andD is an arbitrary one. The idea is that§ corresponds to the
main door of a§-box (or a!-box) in proof-nets([Gir87, AR02]) while §̄ corresponds
to auxiliary doors. But note that there is no information in the pseudo-terms to link
occurrences of§ and§̄ corresponding to the same box, nor distinction between§-boxes
and!-boxes.

There is a natural erasure map from pseudo-terms to system F terms, which we will
also denote by(.)−, consisting in removing all occurrences of§, replacingxD with
xD−

and(t)A with (t)A−. Whent− = M , t is called adecorationof M .

For our purpose, it is sufficient to consider the class ofregularpseudo-terms, given
by:

t ::= xD | λxD.t | (t)u | Λα.t | (t)A |§mt,

wherem is an arbitrary value inZ and§mt denotes§ · · · §
︸ ︷︷ ︸

m times

t if if m ≥ 0, and §̄ · · · §̄
︸ ︷︷ ︸

−m times

t

otherwise. In other words, a pseudo-term is regular if and only if it does not contain
any subterm of the form§§̄u or §̄§u.

3.2 Local typing condition

We now try to assign types to pseudo-terms in a locally compatible way. A delicate
point inDLAL is that it is sometimes natural to associatetwo types to one variable
x. For instance, we havex : A;⊢DLAL x : §A in DLAL, and this can be read
asx : !A ⊢ x : §A in terms of DLAL⋆ types. We thus distinguish between the
input types, which are inherent to variables, and theoutput types, which are inductively
assigned to all pseudo-terms. The condition (i) below is concerned with the output
types. In the sequel,D◦ denotes§A if D is of the form!A, and otherwise denotesD
itself.

A pseudo-termt satisfies thelocal typing conditionif the following holds:

(i) one can inductively assign alinear type (calledthe output type) to each subterm
of t in the following way (here the notationtA indicates thatt has the output type
A):

(xD)D◦ (§tA)§A (§̄t§A)A (λxD.tB)D⊸B

((tD⊸B)uD◦)B (Λα.tA)∀α.A ((t∀α.A)B)A[B/α]

(ii) when a variablex occurs more than once int, it is typed asx!A,

(iii) t satisfies the eigenvariable condition.

We also say thatt is locally typed.
Notice that whenD is a bang type, there is a type mismatch betweenD andD◦

in the case of application. For instance,(t!A⊸B)u§A satisfies (i) whenevert andu do.
This mismatch will be settled by the bang condition below. Observe also that the local
typing rules are syntax-directed.

3.3 Boxing conditions

We now recall definitions and results from [BT05] giving somenecessary conditions
for a pseudo-term to be typable (in [BT05] these conditions are used for Elementary
Affine Logic typing). We consider words over the languageL = {§, §̄}⋆. If t is
a pseudo-term andu is an occurrence of subterm int, let doors(t, u) be the word

inductively defined as follows:

if t = u: doors(t, u) = ǫ,
else:
doors(§t, u) = § :: (doors(t, u))
doors(§̄t, u) = §̄ :: (doors(t, u))
doors(λyD.t1, u) = doors(Λα.t1, u)

= doors((t1)A, u) = doors(t1, u)
doors((t1)t2, u) = doors(ti, u) whereti is the

subterm containingu.

That is to say,doors(t, u) collects the modal symbols§, §̄ occurring on the path from
the root to the nodeu in the term tree oft. We define a map:s : L → Z by:

s(ǫ) = 0, s(§ :: l) = 1 + s(l), s(§̄ :: l) = −1 + s(l).

A word l ∈ L is weakly well-bracketedif ∀l′ ≤ l, s(l′) ≥ 0, and iswell-bracketedif
this condition holds and moreovers(l) = 0.

Bracketing condition. Let t be a pseudo-term. We say thatt satisfies thebracket-
ing conditionif:

(i) for any occurrence of free variablex in t, doors(t, x) is well-bracketed;

moreover for any occurrence of an abstraction subtermλx.v of t,

(ii) doors(t, λx.v) is weakly well-bracketed, and

(iii) for any occurrence ofx in v, doors(v, x) is well-bracketed.

This condition is sufficient to rule out the canonical morphisms for dereliction and
digging, which are not valid inDLAL (nor inEAL):

(λx§A.§̄x)§A⊸A (λx§A.§x)§A⊸§§A

Sincedoors(§̄x, x) = §̄ anddoors(§x, x) = §, they do not satisfy the bracketing con-
dition (iii).

Bang condition.A subtermu is called abang subtermof t if it occurs as(t′!A⊸B)u§A
in t. We say that a locally typed pseudo-termt satisfies thebang conditionif for any
bang subtermu of t,

(i) u contains at most one free variablex!C , having a bang type!C.

(ii) for any subtermv of u such thatv 6= u andv 6= x, s(doors(u, v)) ≥ 1.

This condition is sufficient to rule out the canonical morphisms for monoidalness
!A⊗!B−◦!(A ⊗ B) and §A−◦!A which are not valid inLAL (the following terms
and types are slightly more complicated sinceLDLAL⋆ does not explicitly contain a
type of the formA−◦ !B):

λx!(A⊸B).λy!B⊸C .λz!A.(y)§((§̄x)§̄z)

λx§A.λy!A⊸B .(y)§(§̄x)

In the first pseudo-term, the bang subterm§((§̄x)§̄z) contains more than one free vari-
ables. In the second pseudo-term, the bang subterm§(§̄x) contains a free variable typed
by a linear type. Hence they both violate the bang condition (i).

Λ-Scope condition.The previous conditions, bracketing and bang, would be enough
to deal with boxes in the propositional fragment ofDLAL. For handling second-order
quantification though, we need a further condition to take into account the sequential-
ity enforced by the quantifiers. For instance consider the following two formulas (the
second one is known asBarcan’s formula):

§∀α.A ⊸ ∀α.§A (1)

∀α.§A ⊸ §∀α.A (2)

Assumingα occurs freely inA, formula (1) is provable while (2) is not. Observe that
we can build the following pseudo-terms which are locally typed and have respectively
type (1) and (2):

t1 = λx§∀α.A.Λα.§((§̄x)α)

t2 = λx∀α.§A.§Λα.§̄((x)α)

Both pseudo-terms satisfy the previous conditions, butt2 does not correspond to a
DLAL derivation.

Let u be a locally typed pseudo-term. We say thatu depends onα if the type ofu
contains a free variableα. We say that a locally typed pseudo-termt satisfies theΛ-
scope conditionif: for any subtermΛα.u of t and for any subtermv of u that depends
onα, doors(u, v) is weakly well-bracketed.

Coming back to our example:t1 satisfies theΛ-scope condition, butt2 does not,
because(x)α depends onα and neverthelessdoors(§̄((x)α), (x)α) = §̄ is not weakly
well-bracketed.

3.4 Correctness of the conditions

Proposition 2 If M is a system F term such that the following judgement holds in
DLAL:

(∗) x1 : A1, . . . , xm : Am; y1 : B1, . . . , yn : Bn ⊢M : C,

then there is a decorationt ofM with typeC⋆ and with free variablesx!A⋆
1

1 , . . . , x
!A⋆

m
m ,

y
B⋆

1

1 , . . . , y
B⋆

n
n which is regular and satisfies the local typing, bracketing,bang andΛ-

scope conditions.

See the Appendix for the proof.
We want now to examine the converse property. First observe that whenever pseudo-

termsλxD.t, (t)u, Λα.t, (t)A satisfy the local typing, bracketing, bang andΛ-scope
conditions, so do the immediate subtermst andu. The case of§t is handled by the
following key lemma (already used forEAL⋆ in [BT05]):

Lemma 3 (Boxing) If §(tA) is a pseudo-term which satisfies the local typing, brack-
eting, bang andΛ-scope conditions, then there existvA, (u1)§B1

, . . . ,(un)§Bn
, unique

(up to renaming ofv’s free variables) such that:

1. FV (v) = {xB1

1 , . . . , xBn
n } and eachxi occurs exactly once inv,

2. §t = §v[§̄u1/x1, . . . , §̄un/xn] (substitution is assumed to be capture-free),

3. v, u1, . . . , un satisfy the same conditions.

Proof. Similar to the proof of Lemma 5 in [BT05]. See the Appendix.
Thanks to the previous lemma, we can now prove:

Theorem 4 LetM be a system F term. Thenx1 : A1, . . . , xm : Am; y1 : B1, . . . , yn :
Bn ⊢ M : C is derivable inDLAL if and only if there is a decorationt of M with

typeC⋆ and with free variablesx!A⋆
1

1 , . . . , x
!A⋆

m
m , yB⋆

1

1 , . . . , y
B⋆

n
n which is regular and

satisfies the local typing, bracketing, bang andΛ-scope conditions.

See Appendix A for the proof. As a consequence, ourDLAL typing problem boils
down to:

Problem 2 (decoration) Given a system F termM , determine if there exists a dec-
oration t of M which is regular and satisfies the local typing, bracketing,bang and
Λ-scope conditions.

4 Parameterization and constraints

4.1 Parameterized terms and instantiations

To solve the decoration problem (Problem 2), one needs to explore the infinite set of
decorations. This can be effectively done by introducing anabstract kind of types and
terms with symbolic parameters, and expressing the conditions for such abstract terms
to be materialized by boolean and integer constraints over those parameters (like in the
related type inference algorithms for EAL or LAL mentioned in the introduction).

We use two sorts of parameter:integer parametersn,m, . . . meant to range over
Z, andboolean parametersb1,b2, . . . meant to range over{0, 1}. We also uselinear
combinations of integer parametersc = n1 + · · ·+nk, wherek ≥ 0 and eachni is an
integer parameter. In casek = 0, it is written as0.

The set ofparameterized types(p-typesfor short) is defined by:

F ::= α | D ⊸ A | ∀α.A

A ::= §cF

D ::= §b,cF

whereb is a boolean parameter andc is a linear combination of integer parameters. In
the sequel,A,B,C stand forlinear p-typesof the form§cF , andD for bang p-typesof
the form§b,cF , andE for arbitrary p-types. WhenD = §b,cF , D◦ denotes the linear

p-type§cF . We assume that there is a countable set of variablesxD, yD, . . . for each
bang p-typeD. Theparameterized pseudo-terms(p-termsfor short) are defined by the
following grammar:

t ::= xD | λxD.t | (t)u | Λα.t | (t)A | §mt.

We denote byparbool(t) the set of boolean parameters oft, and byparint(t) the
set of integer parameters oft.

An instantiationφ = (φb, φi) for a p-termt is given by two mapsφb : parbool(t) →
{0, 1} andφi : parint(t) → Z. The mapφi can be naturally extended to linear
combinationsc = n1 + · · ·+ nk by φi(c) = φi(n1) + · · ·+ φi(nk). An instantiation
φ is said to beadmissiblefor a p-typeE if for any linear combinationc occurring
in E, we haveφi(c) ≥ 0, and moreover whenever§b,cF occurs inE, φb(b) = 1
impliesφi(c) ≥ 1. Whenφ is admissible forE, a typeφ(E) of DLAL⋆ is obtained
by replacing each§cF and §b,cF with φb(b) = 0 by §φi(c)φ(F), and§b,cF with
φb(b) = 1 by !§φi(c)−1φ(F).

So informally speaking, in§b,cF thec stands for the number of modalities ahead
of the type, while the booleanb serves to determine whether the first modality, if any,
is § or !.

An instantiationφ for a p-termt is said to beadmissiblefor t if it is admissible for
all p-types occurring int. Whenφ is admissible fort, a regular pseudo-termφ(t) can
be obtained by replacing each§mu with §φi(m)u, eachxD with xφ(D), and each(t)A
with (t)φ(A).

As for pseudo-terms there is an erasure map(.)− from p-terms to system F terms
consisting in forgetting modalities and parameters.

A linear free decoration(bang free decoration, resp.) of a system F typeT is a
linear p-type (bang p-type, resp.)E such that (i)E− = T , (ii) each linear combination
c occurring inE consists of a single integer parameterm, and (iii) the parameters
occurring inE are mutually distinct. Two free decorationsT 1 andT 2 are said to be
distinct if the set of parameters occurring inT 1 is disjoint from the set of parameters
in T 2.

The free decorationM of a system F termM (which is unique up to renaming of
parameters) is obtained as follows: first, to each typeT of a variablexT used inM ,
we associate a bang free decorationT , and to each typeU occurring as(N)U in T , we
associate a linear free decorationU with the following proviso:

(i) one and the sameT is associated to all occurrences of the same variablexT ;

(ii) otherwise mutually distinct free decorationsT 1, . . . ,Tn are associated to differ-
ent occurrences ofT .

M is now defined by induction on the construction ofM :

xT = §mxT

λxT .M = §mλxT .M (M)N = §m((M)N)

Λα.M = §mΛα.M (M)T = §m((M)T)

where all newly introduced parametersm are chosen to be fresh. The key property of
free decorations is the following:

Lemma 5 Let M be a system F term andt be a regular pseudo-term. Thent is a
decoration ofM if and only if there is an admissible instantiationφ for M such that
φ(M) = t.

Hence our decoration problem boils down to:

Problem 3 (instantiation) Given a system F termM , determine if there exists an ad-
missible instantiationφ for M such thatφ(M) satisfies the local typing, bracketing,
bang andΛ-scope conditions.

For that we will need to be able to state the conditions of Theorem 4 on p-terms;
they will yield some constraints on parameters. We will speak of linear inequations,
meaning in fact both linear equations and linear inequations.

4.2 Unification constraints

To express the unifiability of two p-typesE1 andE2, we define a setU(E1, E2) of
constraints by

U(α, α) = ∅,

U(D1 ⊸ A1, D2 ⊸ A2) = U(D1, D2) ∪ U(A1, A2),

U(∀α.A1, ∀α.A2) = U(A1, A2),

U(§c1F1, §
c2F2) = {c1 = c2} ∪ U(F1, F2),

U(§b1,c1F1, §
b2,c2F2) = {b1 = b2, c1 = c2} ∪ U(F1, F2),

and undefined otherwise. It is straightforward to observe:

Lemma 6 Let E1, E2 be two p-types such thatU(E1, E2) is defined, andφ be an
admissible instantiation forE1 andE2. Thenφ(E1) = φ(E2) if and only ifφ is a
solution ofU(E1, E2).

4.3 Local typing constraints

For any p-typeE, M(E) denotes the set{c ≥ 0 : c occurs inE} ∪ {b = 1 ⇒ c ≥
1 : §b,cF occurs inE}. Thenφ is admissible forE if and only if φ is a solution of
M(E).

WhenA is a linear p-type§cF , B[A/α] denotes a p-type obtained by replacing
each§c

′

α in B with §c
′+cF and each§b,c′

α with §b,c′+cF .
Now consider the free decorationM of a system F typed termM . We assign to

each subtermt of M a linear p-typeB (indicated astB) and a setM(t) of constraints
as on Figure 2. Notice that any linear p-type is of the form§cF . Moreover, sincet
comes from a system F typed term, we know thatF is an implication whent occurs as
(t§cF)u, andF is a quantification whent occurs as(t§cF)A. The unificationU(D◦, A)
used inM((t)u) is always defined, and finally,M satisfies the eigenvariable condition.

Let Ltype(M) be the setM(M) ∪ {b = 1 : x§
b,cF occurs more than once inM}.

(xD)D◦ M(x) = M(D)
(§mt§cF)§m+cF M(§mt) = {m + c ≥ 0} ∪M(t)

(λxD.tA)§0(D⊸A) M(λxD.t) = M(D) ∪M(t)
((t§c(D⊸B))uA)B M((t)u) = {c = 0} ∪ U(D◦, A) ∪M(t) ∪M(u)

(Λα.tA)§0∀α.A M(Λα.t) = M(t)
((t§c∀α.B)A)B[A/α] M((t)A) = {c = 0} ∪M(A) ∪M(t)

Figure 2:M(t) constraints.

4.4 Boxing constraints

In this section we need to recall some definitions from [BT05]. We consider the words
over integer parametersm, n . . . , whose set we denote byLp.

Let t be a p-term andu an occurrence of subterm oft. We define, as for pseudo-
terms, the worddoors(t, u) in Lp as follows:

if t = u: doors(t, u) = ǫ,
else:
doors(§mt, u) = m :: (doors(t, u))
doors(λyD.t1, u) = doors(Λα.t1, u)

= doors((t1)A, u) = doors(t1, u)
doors((t1)t2, u) = doors(ti, u) whenti is the

subterm containingu.

The sums(l) of an elementl of Lp is a linear combination of integer parameters defined
by:

s(ǫ) = 0, s(m :: l) = m + s(l).

For each listl ∈ Lp, definewbracket(l) = {s(l′) ≥ 0 | l′ ≤ l} andbracket(l) =
wbracket(l) ∪ {s(l) = 0}.

Given a system F termM , we define the following sets of constraints:
Bracketing constraints. Bracket(M) is the union of the following sets:

(i) bracket(doors(M,x)) for each free variablex in M ,

and for each occurrence of an abstraction subtermλx.v of M ,

(ii) wbracket(doors(M,λx.v)),

(iii) bracket(doors(v, x)) for each occurrence ofx in v.

Bang constraints. A subtermuA that occurs as(t§c′ (§b,cF⊸B))uA in M is called a

bang subtermof M with thecritical parameterb. Now Bang(M) is the union of the
following sets: for each bang subtermu of M with a critical parameterb,

(i) {b = 0} if u contains strictly more than one occurrence of free variable, and
{b = 1 ⇒ b

′ = 1} if u contains exactly one occurrence of free variable

x§
b
′,c′F ′

.

(ii) {b = 1 ⇒ s(doors(u, v)) ≥ 1 : v is a subterm ofu such thatv 6= u and
v 6= x}.

Λ-Scope constraints. Scope(M) is the union of the following sets:

• wbracket(doors(u, v)) for each subtermΛα.u ofM and for each subtermv of u
that depends onα.

We denoteConst(M) = Ltype(M) ∪ Bracket(M) ∪ Bang(M) ∪ Scope(M). We
then have:

Theorem 7 LetM be a system F term andφ be an instantiation forM . Then:φ is
admissible forM andφ(M) satisfies the local typing, bracketing, bang andΛ-scope
conditions if and only ifφ is a solution ofConst(M).

Moreover, the number of (in)equations inConst(M) is quadratic in the size ofM .

5 Solving the constraints

From a proof-net point of view, naively one might expect thatfinding a DLAL deco-
ration could be decomposed into first finding a suitable EAL decoration (that is to say
a box structure) and then determining which boxes should be! ones. This however
cannot be turned into a valid algorithm because there can be an infinite number of EAL
decorations in the first place.

Our method will thus proceed in the opposite way: first solve the boolean con-
straints, which corresponds to determine which!-boxes are necessary, and then com-
plete the decoration by finding a suitable box structure.

5.1 Solving boolean constraints

We divideConst(M) into three disjoint setsConstb(M), Consti(M) andConstm(M):

• A boolean constraints ∈ Constb(M) consists of only boolean parameters.s is
of one of the following forms:
b1 = b2 (in Ltype(M))
b = 1 (in Ltype(M))
b = 0 (in Bang(M))
b = 1 ⇒ b

′ = 1 (in Bang(M))

• A linear constraints ∈ Consti(M) deals with integer parameters only. A linear
constraints is of one of the following forms:
c1 = c2 (in Ltype(M))
c ≥ 0 (in Ltype(M), Bracket(M), Scope(M))
c = 0 (in Ltype(M) andBracket(M))

• A mixed constraints ∈ Constm(M) contains a boolean parameter and a linear
combination and is of the following form:
b = 1 ⇒ c ≥ 1 (in Ltype(M) andBang(M))

We consider the set of instantiations on boolean parametersand the extensional
order≤ on these maps:ψb ≤ φb if for any b, ψb(b) ≤ φb(b).

Lemma 8 Constb(M) has a solution if and only if it has a minimal solutionψb. The
latter can be computed in time polynomial in the number of boolean constraints in
Constb(M).

Proof. Assuming thatConstb(M) has a solution, we can compute the minimal one
by a standard resolution procedure. See Appendix A.

5.2 Solving integer constraints

Whenφb is a boolean instantiation,φbConstm(M) denotes the set of linear constraints
defined as follows: for any constraint of the formb = 1 ⇒ c ≥ 1 in Constm(M),
c ≥ 1 belongs toφbConstm(M) if and only if φb(b) = 1. It is then clear that (*)
(φb, φi) is a solution ofConst(M) if and only if φb is a solution ofConstb(M) andφi

is a solution ofφbConstm(M) ∪ Consti(M).

Proposition 9 Const(M) admits a solution if and only if it has a solutionψ = (ψb, ψi)
such thatψb is the minimal solution ofConstb(M).

Proof. Suppose thatConst(M) admits a solution(φb, φi). Then by the previous
lemma, there is a minimal solutionψb of Constb(M). Sinceψb ≤ φb, we have
ψbConstm(M) ⊆ φbConstm(M). Sinceφi is a solution ofφbConstm(M)∪Consti(M)
by (*) above, it is also a solution ofψbConstm(M) ∪ Consti(M). This means that
(ψb, φi) is a solution ofConst(M).

Coming back to the proof-net intuition, Proposition 9 meansthat given a syntactic
tree of term there is a most general (minimal) way to place! boxes (and accordingly!
subtypes in types), that is to say: if there is a DLAL decoration for this tree then there
is one with precisely this minimal distribution of! boxes.

Now notice thatψbConstm(M) ∪ Consti(M) is a linear inequation system, for
which a polynomial time procedure for searching a rational solution is known.

Lemma 10 ψbConstm(M) ∪ Consti(M) has a solution inQ if and only if it has a
solution inZ.

Proof. Clearly the set of solutions is closed under multiplicationby a positive integer.

Theorem 11 LetM be a System F term. Then one can decide in time polynomial in
the number of constraints inConst(M) whetherConst(M) admits a solution.

Proof. First apply the procedure described in the proof of Lemma 8 todecide if
there is a minimal solutionψb of Constb(M). If it exists, apply the polynomial time
procedure to decide ifψbConstm(M) ∪ Consti(M) admits a solution inQ. If it does,
then we also have an integer solution. Otherwise,Const(M) is not solvable.

By combining Theorem 4, Lemma 5, Theorems 7 and 11, we obtain our main
theorem:

Theorem 12 Given a system F termMT , it is decidable in time polynomial in the size
ofM whether there is a decorationA of T such that⊢DLAL M : A.

6 Implementation

6.1 Overview

We designed an implementation of the type inference algorithm. The program is writ-
ten in functional Caml and is quite concise (less than 1500 lines). A running program
not only shows the actual feasibility of our method, but alsois a great facility for build-
ing examples, and thus might allow for a finer study of the algorithm.

Data types as well as functions closely follow the previous description of the algo-
rithm: writing the program in such a way tends to minimise thenumber of bugs, and
speaks up for the robustness of the whole proof development.

The program consists of several successive parts:

1. Parsing phase: turns the input text into a concrete syntaxtree. The input is an F
typing judgement, in a syntax̀a la Church with type annotations at the binders. It
is changed into the de Bruijn notation, and parameterized with fresh parameters.
Finally, the abstract tree is decorated with parameterizedtypes at each node.

2. Constraints generation: performs explorations on the tree and generates the boolean,
linear and mixed constraints.

3. Boolean constraints resolution: gives the minimal solution of the boolean con-
straints, or answers negatively if the set admits no solution.

4. Constraints printing: builds the final set of linear constraints.

We use the simplex algorithm to solve the linear constraints. It runs inO(2n),
which comes in contrast with the previous result of polynomial time solving, but has
proven to be the best in practice (with a careful choice of theobjective function).

6.2 An example of execution

As an example, let us consider the reversing functionrev on binary words, applied to
1010. rev can be defined by a single higher-order iteration, and thus represented by the
following system F term:

λlW .Λβ.λsoβ→β .λsiβ→β .(l (β → β))
λaβ→β .λxβ .(a)(so)x
λaβ→β .λxβ .(a)(si)x (Λα.λzα.z)β

We apply it to :

Λα.λsoα→α.λsiα→α.λxα.(si)(so)(si)(so)x,

representing the word1010. Sincerev involves higher-order functionals and polymor-
phism, it is not so straightforward to tell, just by looking at the term structure, whether
it works in polynomial time or not.

Givenrev(1010)as input (coded by ASCII characters), our program produces 177
(in)equations on 79 variables. After constraint solving, we obtain the result, that can
be read as:

(λlW .Λβ.λso!(β−◦β).λsi!(β−◦β).
§(§̄((l (β −◦ β))
§λaβ−◦β .λxβ .(a)(§̄so)x
§λaβ−◦β .λxβ .(a)(§̄si)x)
(Λα.λzα.z)β)

Λα.λso!α→α.λsiα→α.§λxα.(§̄si)(§̄so)(§̄si)(§̄so)x

It corresponds to the natural depth-1 typing of this term, with conclusion typeWDLAL ⊸

WDLAL. The solution ensures polynomial time termination, and in fact its depth guar-
antees normalization in a quadratic number ofβ-reduction steps.

Further examples, as well as the program itself, will be available at

http://www-lipn.univ-paris13.fr/˜atassi/

References

[Ama05] R. Amadio. Synthesis of max-plus quasi-interpretations. Fundamenta
Informaticae, 65:29–60, 2005.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Trans-
actions on Computational Logic, 3(1):1–39, 2002.

[Bai02] P. Baillot. Checking polynomial time complexity with types. InPro-
ceedings of IFIP TCS’02, Montreal, 2002. Kluwer Academic Press.

[Bai04] P. Baillot. Type inference for light affine logic viaconstraints on words.
Theoretical Computer Science, 328(3):289–323, 2004.

[BC92] S. Bellantoni and S. Cook. New recursion-theoretic characterization of
the polytime functions.Computational Complexity, 2:97–110, 1992.

[BT04] P. Baillot and K. Terui. Light types for polynomial time computation
in lambda-calculus. InProceedings of LICS’04. IEEE Computer Press,
2004.

[BT05] P. Baillot and K. Terui. A feasible algorithm for typing in elementary
affine logic. tlca 2005: 55-70. InProceedings of TLCA’05, volume 3461
of LNCS, pages 55–70. Springer, 2005.

[CDLRdR05] P. Coppola, U. Dal Lago, and S. Ronchi della Rocca. Elementary
affine logic and the call-by-value lambda calculus. InProceedings of
TLCA’05, volume 3461 ofLNCS, pages 131–145. Springer, 2005.

[CM01] P. Coppola and S. Martini. Typing lambda-terms in elementary logic
with linear constraints. InProceedings TLCA’01, volume 2044 of
LNCS, 2001.

[CRdR03] P. Coppola and S. Ronchi della Rocca. Principal typing in Elementary
Affine Logic. In Proceedings TLCA’03, LNCS, 2003.

[Gir87] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102,
1987.

[Gir98] J.-Y. Girard. Light linear logic. Information and Computation,
143:175–204, 1998.

[HJ03] M. Hofmann and S. Jost. Static prediction of heap space usage for first-
order functional programs. InProc. ACM POPL’03, 2003.

[Hof03] M. Hofmann. Linear types and non-size-increasing polynomial time
computation.Information and Computation, 183(1):57–85, 2003.

[LM93] D. Leivant and J.-Y. Marion. Lambda-calculus characterisations of
polytime. Fundamenta Informaticae, 19:167–184, 1993.

[MM00] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program
interpreter with time bound certifications. InProceedings of LPAR
2000, volume 1955 ofLNCS, pages 25–42. Springer, 2000.

[Ter01] K. Terui. Light Affine Lambda-calculus and polytimestrong normal-
ization. InProceedings LICS’01. IEEE Computer Society, 2001. Full
version available at http://research.nii.ac.jp/∼ terui.

[Ter04] K. Terui. Light affine set theory: a naive set theory of polynomial time.
Studia Logica, 77:9–40, 2004.

APPENDIX

A Proofs

Proof of Proposition 2.
Proof. First, one can build a (possibly non-regular) decorationM+ of M satisfying
the four conditions by induction on the derivation. Depending on the last typing rule
used (see Figure 1),M+ takes one of the following forms:

(Id) xA⋆

(§ e) M+[N+/x]

(⊸ i) λxA⋆

.M+ (⊸ e) (M+)N+

(⇒ i) λx!A⋆

.M+ (⇒ e) (M+)§N+[§̄z!C⋆

/z]
(Weak) M+ (Cntr) M+[x/x1, x/x2]
(∀ i) Λα.M+ (∀ e) (M+)B⋆

(§ i) §M+[§̄x
!A⋆

i

i /xi, §̄y
§B⋆

j

j /yj]

whereM+ in (§ i) has free variablesxA1

1 , . . . , xAm
m , yB1

1 , . . . , yBn
n .

It is easily verified thatM+ has a suitable type and satisfies the four conditions; let
us just remark:

• The bang condition for(M+)§N+[§̄z!C⋆

/z] in (⇒ e) follows by the bracketing
condition forN+, which holds by the induction hypothesis, while theΛ-scope
condition follows by the eigenvariable condition forN+. Similarly for the case
of (§ i).

• M+[N+/x] in (§ e) satisfies theΛ-scope condition since substitution is capture-
free, and satisfies the bang condition sincex has a linear type and thus cannot
appear inside a bang subterm ofM+.

Finally, the required regular pseudo-termt is obtained fromM+ by applying inside
t the following rewrite rules as many times as possible:

§̄§u −→ u, §§̄u −→ u.

It is clear that the four conditions are preserved by these reductions.

Proof of Lemma 3.
Proof. Given §t, assign an index to each occurrence of§ and §̄ in §t to distinguish
occurrences (we assume that the outermost§ have index0). One can then find closing
brackets̄§1, . . . , §̄n that match the opening bracket§0 in §0t. Replace each(§̄iui)Bi

with a fresh and distinct free variablexBi

i (1 ≤ j ≤ n), and let§v be the resulting
pseudo-term. This way one can obtainv, u1, . . . ,un, such that condition 2 holds.

As to point 1., we claim thatv does not contain a free variable other thanx1, . . . , xn.
If there is any, sayy, then it is also a free variable oft, thus the bracketing condition
for §0t implies thatdoors(§0t, y) is well-bracketed, and thus there is a closing bracket
that matches§0 in the path from§0t to y. That means thaty belongs to one ofu1, . . . ,
un, not tov. Hence condition 1 holds.

We now need to check point 3. The bracketing condition forv, u1, . . . , un can be
shown as in [BT05]. TheΛ-scope condition is easy to verify.

As to the local typing condition, the only nontrivial point is thatv satisfies the
eigenvariable condition. Suppose that the typeBi of xi contains a bound variable
α of v. Then§0t contains a subterm of the formΛα.v′[§̄iui/xi] andui depends on
α. However,doors(v′′, ui) with v′′ = v′[§̄iui/xi] cannot be weakly well-bracketed
becausē§i should match the outermost opening bracket§0. This contradicts theΛ-
scope condition for§0t.

To show the bang condition forv (it is clear foru1, . . . , un), suppose thatv contains
a bang subtermv′. We claim thatv′ does not contain variablesx1, . . . , xn. If it contains
any, sayxi, then§0t containsv′[§̄iui/xi] and the bang condition for§0t implies that
s(doors(v′′, §̄ui)) ≥ 1 with v′′ = v′[§̄iui/xi]. On the other hand, we clearly have
s(doors(§0t, v

′′)) ≥ 1 becausev′′ contains the closing bracket§̄i that matches§0. As a
consequence, we haves(doors(§0t, §̄iui)) ≥ 2. This means that̄§i does not match§0,
a contradiction. As a consequence,v′ does not containx1, . . . , xn. Sov′ occurs in§0t,
and therefore satisfies the bang condition.

Proof of Theorem 4.The ‘only if’ direction has already been given by Proposition
2. The other direction is proved by induction on the size of pseudo-termt.

Whent is a variable(xD)D◦ , the claim can be established by (Id) and (§ i). Note
thatt cannot be of the form̄§u due to the bracketing condition.

Whent is one ofλxD.u, (u)v (with v not a bang subterm),Λα.u, (u)A, the sub-
termsu andv also satisfy all conditions. Hence we can use the induction hypothesis to
show thatt− is typable inDLAL. Whent is §u, apply Lemma 3 and argue similarly
by using rules (§ e).

Whent is (u!A⊸B)v§A, i.e., withv a bang subterm, we haveΓ; ∆ ⊢ u− : A ⇒ B
with suitableΓ and∆ by the induction hypothesis.

If v is a variable, then it must be of the formx!A by the bang condition (i). Hence
by applying (⇒ e) toΓ; ∆ ⊢ u− : A⇒ B and;x : A ⊢ x : A, we obtainΓ, x : A; ∆ ⊢
(u−)x : B as required.

If v is not a variable, then it must be of the form§v0 due to the bang condition
(ii) and contain at most one free variable. Let us suppose that it containsy!C . Now,
the bracketing condition impliess(doors(§v0, y)) = 0 while the bang condition im-
plies s(doors(§v0, v′)) ≥ 1 for any subtermv′ of v0 other thany. Therefore, com-
bined with Lemma 3, it follows thatv is actually of the form§v1[§̄y/x], wherev1
contains a variablexC and satisfies all the conditions. By induction hypothesis, we
have;x : C ⊢ v−1 : A, and hence; y : C ⊢ v−1 [y/x] : A by renaming. Therefore, we
obtainΓ, y : C; ∆ ⊢ (u−)v− : B by (⇒ e).

Proof of Lemma 8. Let B := Constb(M). Apply repeatedly the following steps until
reaching a fixpoint:

• if b1 = b2 ∈ B andb1 = 0 ∈ B (resp.b1 = 1 ∈ B), then letB := B ∪ {b2 =
0} (resp.B := B ∪ {b2 = 1});

• if (b = 1 ⇒ b
′ = 1) ∈ B andb = 1 ∈ B, then letB := B ∪ {b′ = 1}.

It is obvious that this can be done in a polynomial number of steps and that the resulting
systemB is equivalent toConstb(M).

Now, if B contains a pair of equations:b = 0,b = 1, then it is inconsistent.
Otherwise define the boolean instantiationψb such thatψb(b) := 1 if b = 1 ∈ B and
ψb(b) := 0 otherwise:

It is clear thatψb is a solution ofB. In particular, observe that any constraint of
the form(b = 1 ⇒ b

′ = 1) in B is satisfied byψb. Moreover any solutionφb of B
satisfies:ψb ≤ φb. Therefore ifConstb(M) has a solution then it has a minimal one.

