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Abstract. The goal of this note is to provide a background and references for
the invited lecture presented at Computer Science Logic 2006. We brisflyss
motivations that led to the emergence of nonmonotonic logics and intrddace
major nonmonotonic formalisms, default and autoepistemic logics. Wepthiah

out to algebraic principles behind the two logics and present an abdtyabtaic
theory that unifies them and provides an effective framework to stumyepties

of nonmonotonic reasoning. We conclude with comments on other majeeaureh
directions in nonmonotonic logics.

1 Why nonmonotonic logics

In the late 1970s, research on languages for knowledgesemtaion, and considera-
tions of basic patterns of commonsense reasoning broughtian to rules of inference
that admitexception@nd are used only under the assumption of normality of thédwor
in which one functions or to put it differently, when thinggas expected.

For instance, a knowledge base concerning a universityldlsopport an inference
that, given no information that might indicate otherwideDi. Jones is a professor at
that university, then Dr. Jones teaches. Such conclusightrbe sanctioned by an infer-
ence rule stating thatormally university professors teach. In commonsense reasoning
rules with exceptions are ubiquitous. Planning our day amaMing we are to have
lunch with a friend, we might use the following ruleormally, lunches end by 1:00pm.
If nothing we know indicates that the situation we are in ismmrmal, we use this rule
and conclude that our lunch will be over by 1:00pm.

The problem with such rules is that they do not lend themselveny direct way
to formalizations in terms of first-order logic, unleal exceptions are known and ex-
plicitly represented — an unrealistic expectation in pzctThe reason is that standard
logical inference isnonotonewhenever a senteneeis a consequence of a sgtof
sentences them is also a consequence of any set of sentefitesich thafl’ C 7”. On
the other hand, it is clear that reasoning with normalitgsulvhen complete informa-
tion is unavailable, is not monotone. In our lunch scenaxi®,may conclude that the
lunch will be over by 1:00pm. However, if we learn that ouefrd will be delayed, the
normality assumption is no longer valid our earlier inferers unsupported; we have
to withdraw it.

Such reasoning, where additional information may invaéidaonclusions, is called
nonmonotonicAs we briefly noted above, itis common. It has been a focugtefsive



studies by the knowledge representation community sineedhly eighties of the last
century. This research developed along two major direstion

The first direction is concerned with the design of nonmoniatdéogics — for-
malisms with direct ways to model rules with exceptions ariith ways to use them.
Arguably, two most studied nonmonotonic formalisms areadkflogic [1] and au-
toepistemic logic [2,3]. These two logics are the focus g tiote. Our main goal in
this paper is to introduce default and autoepistemic logiestify algebraic principles
that underlie them, and show that both logics can be viewexithh a single abstract
unifying framework of operators on complete lattices.

The second direction focused on studies of nonmonotoneeinée relations either
in terms of classes of models or abstract postulates, thepesgpectives being quite
closely intertwined. Circumscription [4] and, more genigrgreference logics [5] fall
in this general research direction, as do studies of aligiraperties of nonmonotonic
inference relations [6,7,8,9]. Although outside our fqdos the sake of completeness,
we will provide a few comments on preference logics and namtanic inference
relations in the last section of the paper.

2 Default Logic — an introduction

In his ground-breaking paper [1] Ray Reiter wroberagine a first order formaliza-
tion of what we know about any reasonably complex world. &Sime cannot know
everything [...] — there will be gaps in our knowledge — thistforder theory will be
incomplete. [...] The role of a default is to help fill in sonfetee gaps in the knowledge
base [...]. Defaults therefore function somewhat like melas: they are instructions
about how to create aaxtensiorof this incomplete theory. Those formulas sanctioned
by the defaults and which extend the theory can be viewedlegsbabout the world.
Now in general there are many different ways of extendingnaomplete theory, which
suggests that the default rules may be nondeterministife®nt applications of the
defaults yield different extensions and hence differetstafebeliefs about the world.

According to Reiter defaults are meta-rules of the form He &bsence of any infor-
mation to the contrary, assume ...” (hence, they admit diaeg), and default reasoning
consists of applying them. Reiter’s far-reaching contiiouis that he provided a formal
method to do so.

We will now present basic notions of default logic. We coesitthe languagé ( At)
(or simply, £) of propositional logic determined by a sét of propositional variables.
A defaultis an expression
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whereq, 3;,1 < i < k, andy are formulas fronC. We say thaty is theprerequisite 5;,
1 <4 < k, arejustifications and~ is theconsequendf defaultd. If « is a tautology,
we omit it from the notation. For a default we write p(d), ¢(d) and j(d) for its
prerequisite, consequent, and the set of justificatiospeetively.

An informal reading of a default (1) isoncludey if « holds and if all justifications
3; are possibleln other words, to apply a default and assert its conseguenmust
derive the prerequisite and establish that all justificetiare possible. We will soon
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formalize this intuition. For now, we note that we can enctuerule arising in the
university example by the following default:

profy: teachesy
teaches s

saying that ifprof; holds and it is possible thataches; holds (no information con-
tradictsteaches ), thenteaches y does hold.

A default theoryis a pair(D, W), whereD is a set of defaults antl” is a theory
in the languageC. The role of W is to represent our knowledge (which is, in general,
incomplete) while the role of defaults b is to serve as “meta-rules” we might use to
fill in gaps in what we know.

Let A = (D, W) be a default theory and It be a propositional theory closed
under consequence. If we start withas our beliefsA could be used to revise them.
The revised belief set should contdn. Further, it should be closed under propositional
consequence (to be a belief set) and under those defaultsewhstifications are not
contradicted by the current belief sgt(are possible with respect t8). This revision
process can be formalized by an operdfarsuch that for a any set of formulas (not
necessarily closed under propositional consequeftg)$) is defined as the inclusion-
least setV of propositional formulas satisfying the following coridits:

1. U is closed under propositional provability

2. WCU

3. for every defaulid € D, if p(d) € U and for everys € j(d), S ¥ —(, then
c(d) e U.

Fixpoints of the operataF', represent belief sets (by (1) they are indeed closed under
propositional consequence) that are in a weaplewith respect taA — they cannot be
revised away. Reiter [1] proposed them as belief sets agtsoavithA and called them
extensions

Definition 1. Let A be a default theory. A propositional theasyis anextensiorof A
if S =TIA(S).

Let us look again at the university scenario, which we expslightly. We know
that Dr. Jones is a professor. We also know that if Dr. Jonekag of the department
then Dr. Jones does not teach. Finally we have the defaelsaying that normally Dr.
Jones teaches. This knowledge can be captured by a defanity{(tD, W), where

W= {pTOfJa Chairj D ﬁteachesJ}

D profy: teachesy
N { teaches } '
One can check that this default theory has only one extersidiit containgeaches ;.
However, if we appendl’ by additional information that Dr. Jones is chair of the de-
partment ¢hair y), then the resulting default theory has also one extengibit does
not containteaches y, anymore (it containsiteaches ;). Thus, default theories with the
semantics of extension can model nonmonotonic inferences.

Much of the theory of default logic is concerned with propertof extensions. A
detailed studies of extensions can be found in [10,11].

and



3 Autoepistemic logic

Autoepistemic logic is a logic in enodalpropositional languag€ x (At) (or simply,
L), where At is the a of propositional variables arid stands for the modal opera-
tor. It was proposed to formalize how a rational agent witHeu introspection might
construct belief sets [2,3].

The first modal nonmonotonic logic was introduced by McDetrand Doyle [12].
They proposed to use modal-free formulas to represent &gt an application do-
main, and “proper” modal formulas to encode nonmonoton&soeing patterns. An
informal reading of a modal formul& « is “« is believed” or ‘& is known.” It suggests
that a formula- K-« D 3 could be read “if-« is not believed (or, to put it differently,
if «is possible) thew. Given this intuition, McDermott and Doyle [12] proposedise
the formula—~K -« D [ to represent a reasoning patteim the absence of information
contradictinga, infer 5” and gave a method to reason with such formulas supporting
nonmonotonic inferences.

The logic of McDermott and Doyle was found to have counteitive properties
[13,2,3]. Moore proposed autoepistemic logic [2,3] as a teagddress this problem.
As in the case of default logic, the goal was to describe a am@sh to assign to a
theory belief sets that can be justified on its basis. Unlikeefault logic, a specific
objective for autoepistemic logic was to formalize beliefssa rational agent reasoning
with perfect introspection might form.

Given a theoryl' C Lk, Moore [3] defined arexpansionof 7" to be a theory
E C Lk such that

E=Cn(TU{Ka|a€e E}U{-Ka|a¢E})

(Cn stands for the operator of propositional consequence wingais formulagi o
as propositional variables). Moore justified this fixpoiquation by arguing that ex-
pansions should consist precisely of formulas that can fegred from7" and from
formulas obtained by positive and negative introspectiothe agent’s beliefs.

Moore’s expansions df indeed have properties that make them adequate for mod-
eling belief sets a rational agent reasoning with perfettb@pection may built out of
a theoryT'. In particular, expansions satisfy postulates put fortfSbsinaker [14] for
belief sets in a modal language:

B1l: Cn(E) C F (rationality postulate)
B2: if a € F, thenK«a € E (closure under positive introspection)
B3: if a ¢ F, then—-Ka € E (closure under negative introspection).

Although motivated differently, autoepistemic logic caapture similar reasoning
patterns as default logic does. For instance, the uniyezgample can be described in
the modal language by a single theory

T = {prof;,chair; D —teachesy, Kprof; N ~K—teachesy D teaches}.

This theory has exactly one expansion and it cont&inshes ;. When extended with
chair j, the new theory also has just one expansion but it contaiesches ;.



Examples like this one raised the question of the relatipnisetween default and
autoepistemic logics. Konolige suggested to encode a ldefau

a: ﬂla"'.aﬂk
0

d =

with a modal formula
k(d)=KaA-K-fiAN...AN=-K=0; Dy
and to represent a default theaty= (D, W) by a modal theory
k(A) =W U{k(d): d € D}.

The translation seemed intuitive enough. In particulawatked in the university ex-
ample in the sense that extension of the default logic reptaton correspond to ex-
pansions of the modal logic representation obtained bglta#ing the default logic one.
However, it turned not to align extensions with expansiongdneral (a default theory
({%52},0) has one extension but its modal counterpart has two expzs)sio

4 Default and autoepistemic logics — algebraically

Explaining the relationship between the two logics becammagor research challenge.
We will present here a recent algebraic account of thisioglahip [15]. As the first
step, we will describe expansions and extensions withirirmeework of operators on
the lattice of possible-world structures.

A possible-world structurés a set (possibly empty) of truth assignments to atoms
in At. Possible-world structures can be ordered byéherse set inclusiarior Q, Q" €
W, Q C Q' if Q' C Q. The ordering= can be thought of as an ordering of increasing
knowledge. As we move from one possible-world structurenimtizer, greater with re-
spect ta_, some interpretations are excluded and our knowledge efdinkel improves.
We denote the set of all possible-world structures withOne can check thgtV, C)
is a complete lattice.

A possible-world structur€) and an interpretatiofi, determine the truth function
Ho,r inductively as follows:

1. Ho,1(p) = I(p), if pis an atom.

2. HQ,I((pl A\ (pg) =tif HQJ((pl) =1 andHQ,I(wg) =1. Otherwise,HQ,I(wl A\
992) = f

3. HQJ((plv(pQ) =tif HQ,[(QOl) = tOFHQ,I(gag) =1. OtherwiseHQJ(wl\/cpg) =
f

4. Ho.1(—p) =tif Hg 1(p) = f. OtherwiseHq 1 (¢) = f.
5. Ho.1(Ky) = t, if for every interpretation € Q, Hg,s(p) = t. Otherwise,
HQ,[(KQD) =f.

It is clear that for every formulgp € Lk, the truth valueHq ;(K¢) does not
depend orY. Thus, and we will denote it bf{q (K ¢), droppingI from the notation.



Themodal theoryof a possible-world structur@, denoted byl'h (@), is the set of alll
modal formulas that are believeddh Formally,

Thi(Q) = {¢: Ho(Ky) =t}.
The(modal-free) theorpf @, denotedl'h (@), is defined by
Th(Q) =Thg(@Q)NL.

(As an aside, we note here a close relation between possdld-structures and Kripke
models with universal accessibility relations.)

Default and autoepistemic logics can both be defined in tefrfigpoints of oper-
ators on the latticé\V, C). A characterization of expansions in terms of fixpoints of
an operator oV has been known since Moore [2]. Given a the@ryC Lx and a
possible-world structur€), Moore defined a possible-world structube-(Q) as fol-
lows:

Dr(Q)=A{I:Hgi(p) =t, foreveryp € T}.

The intuition behind this definition is as follows (perhaj noincidentally, as in
the case of default logic, we again refer to belief-set iemigntuitions). The possible-
world structureD(Q) is a revision of a possible-world structue This revision con-
sists of the worlds that are acceptable given the conssramtgent’s beliefs captured
by T'. That is, the revision consists precisely of these worlds$ thake all formulas in
T true (in the context of) — the current belief state). Fixpoints of the operafoy
represent “stable” belief sets — they cannot be revised antlgdr and so take a special
role in the space of belief sets. It turns out [3] that theyespond to expansions!

Theorem 1. LetT C Lk. AtheoryE C Lg is anexpansionof T if and only if
E =Thk(Q), for some possible-world structué@ such that) = D (Q).

A default theory defines a similar operator. With the Konelginterpretation of
defaults in mind, we first define a truth function on the setligbmpositional formulas
and defaults. Namely, for a propositional formylawe define

HE () = 1(p),

and for a defaultl = 0‘5177‘3’“ we set

ngl,f(@ =t
if at least one of the following conditions holds:

1. thereisJ € @ such that/(«) = f.
2. thereisi, 1 < < k, such that for every € Q, J(8;) = f.
3. I(y) =t

(we setH@ ;(d) = f, otherwise).
Given a default theonA = (D, W), for a possible-world structur@, we define a
possible-world structur® A (Q) as follows:

Da(Q)=A{I:Hg,i(p) =t, foreveryp € WU D}.



Do fixpoints of D 5, correspond to extensions? The answer is no. Fixpoints otorre-
spond toveak extensiorid 6], another class of belief sets one can associate witiuttef
theories.

To characterize extensions a different operator is neddwezifollowing definition is
due (essentially) to Guerreiro and Casanova [17].Aet (D, W) be a default theory
and let() be a possible-world structure. We defifig(Q) to be the least possible-world
structure)’ (with respect td-) satisfying the conditions:

1. W C Th(Q')
2. for every defaultl € D, if p(d) € Th(Q') and for every§ € j(d), -8 ¢ Th(Q),
thenc(d) € Th(Q').

One can show thdt), (@) is well defined. Moreover, for every possible-world struc-
ture @,
Th(I'A(Q)) = T'a(Th(Q))

Consequently, we have the following result connecting fixfgoof "/, (@) and exten-
sions of A [17].

Theorem 2. Let A be a default theory. A theoy C £ is an extension ot if and only
if S = Th(Q) for some possible-world structu@ such that) = I'/, (Q).

Several questions arise. Is there a connection betweerptiratorsD o and I, ?
Is there a counterpart to the operafdf in autoepistemic logic? Can these operators,
their fixpoints and their interrelations be considered in@erabstract setting? What
are abstract algebraic principles behind autoepistendcdafiault logics? We provide
some answers in the next section.

5 Approximation theory

Possible-world structures form a complete lattice. As vggiad, default and autoepis-
temic theories determine “revision” operators on thiddattThese operators formalize
a view of a theory (default or modal) as a devicer®yrisingpossible-world structures.
Possible-world structures that are stable under the mevimi, more formally, which are
fixpoints of the revision operator give a semantics to thepnéof course, with respect
to the revision operator used).

Operators on a complete lattice of propositional truthgrssients and their fix-
points were used in a similar way to study the semantics o€ lpgbgrams with nega-
tion. Fitting [18,19,20] characterized all major 2-, 3- ahdalued semantics of logic
programs, specifically, supported-model semantics [2&hls-model semantics [22],
Kripke-Kleene semantics [18,23] and well-founded senearj@4], in terms of fixpoints
of the van Emden-Kowalski operator [25,26] and its geneadilbns and variants.

These results suggested the existence of more general atrdalprinciples un-
derlying these characterizations. [27,28] identified tlzemd proposed a comprehensive
unifying abstractframework ofapproximatingoperators as an algebraic foundation for
nonmonotonic reasoning. We will now outline the theory oprximating operators
and use it to relate default and autoepistemic logics. F@ildewe refer to [27,28].



Let (L, <) be a poset. An elemente L is apre-fixpointof an operatoO: L — L
if O(z) < z;  is afixpointof O if O(z) = x. We denote a least fixpoint @ (if it
exists) byifp(O).

An operatorO : L — L is monotonef for everyz,y € L such thatr < y, O(z) <
O(y). Monotone operators play a key role in the algebraic approamonmonotonic
reasoning. Tarski and Knaster’s theorem asserts that moeatperators on complete
lattices (from now onl will always stand for a complete lattice) have least fixpint
[29].

Theorem 3. Let L be a complete lattice and |€ be a monotone operator ab. Then
O has a least fixpoint and a least pre-fixpoint, and these twmeitds of_. coincide.
That is, we havéfp(O) = A{z € L: O(z) < z}.

The product bilattice[30] of a complete latticel is the setL? = L x L with the
following two orderings<, and<:

1 (z,y) <, (&/,y) if z<z’andy <y
2. (z,y) < (2',y) if x <z’ andy <y’

Both orderings are complete lattice orderingslih For the theory of approximating
operators, the ordering, is of primary importance.

If (x,9) € L? andz < z < y, then(z,y) € L? approximates:. The “higher” a
pair (z,y) in L? with respect to<,,, the morepreciseestimate it provides to elements
it approximates. Therefore, we call this ordering grecisionordering. Most precise
approximations are provided by paits, y) € L? for whichz = y. We call such pairs
exact

For a pair(z,y) € L?, we define itgrojectionsas:

(ryh=z and (2,y)2=y.
Similarly, for an operatod : L? — L2, if A(x,y) = (2',%'), we define
A(z,y)1=2" and  A(z,y)2=1y".

Definition 2. An operatorA: L? — L2 issymmetridf for every(z,y) € L?, A(z,y); =
Ay, z)2; A isapproximatingf A is symmetric and<,,-monotone.

Every approximating operatod on L? maps exact pairs to exact pairs. Indeed,
A(z,x) = (A(z,x)1, A(z, x)2) and, by the symmetry ofl, A(z,z); = A(z, z)s.

Definition 3. If A is an approximating operator an@ is an operator on such that
foreveryz € L A(z,z) = (O(x),O(x)), thenA is anapproximating operator fap.

Let A: L? — L? be an approximating operator. Then for evgrg L, the operator
A(-,y)1 (on the latticel) is <-monotone. Thus, by Theorem 3, it has a least fixpoint.
This observation brings us to the following definition.

Definition 4. Let A: L? — L? be an approximating operator. Trstable operatofor
A, C4, is defined by
Ca(z,y) = (Caly),Ca()),

whereC4(y) = Ifp(A(-,y)1) (or equivalently, asd is symmetricC' 4 (y) = Ifp(A(y, -)2))-



The following result states two key properties of stableratms.
Theorem 4. Let A: L? — L2 be an approximating operator. Then

1. C4 is <,-monotone, and
2. ifCa(z,y) = (z,y), thenA(z,y) = (z,y).

Operators4d andC 4 are<,-monotone. By Theorem 3, they have least fixpoints. We
call them theKripke-Kleeneand thewell-foundedixpoints of A, respectively (the latter
term is justified by Theorem 4).

Let A be an approximating operator for an operairAn A-stable fixpoinof O is
any element: such that(x, ) is a fixpoint ofC 4. By Theorem 4, if{(x, ) is a fixpoint
of C 4 then itis a fixpoint ofA and so;x is a fixpoint ofO. Thus, our terminology is jus-
tified. The following result gathers some basic propertigsxpoints of approximating
operators.

Theorem 5. Let O be an operator on a complete lattide and A its approximating
operator. Then,

1. fixpoints of the operataf, are minimal fixpoints ofd (with respect to the ordering
< of L?); in particular, A-stable fixpoints of) are minimal fixpoints o

2. the Kripke-Kleene fixpoint of approximates all fixpoints ab

3. the well-founded fixpoint of approximates alld-stable fixpoints 0P

How does it all relate to default and autoepistemic logicBdth logics operators
D and Dt have natural generalization®, and Dr, respectively, defined on the
lattice VW2 — the product lattice of the lattiod’ of possible-world structures [15]. One
can show thaD o, andDr are approximating operators for the operatbrs and Dr.
Fixpoints of operator® , andD; and their stable counterparts define several classes
of belief sets one can associate with default and autoepistheories.

Exact fixpoints of the operator®, and Dt (or, more precisely, the correspond-
ing fixpoints of operator® , and Dr) define the semantics ekpansiongin the case
of autoepistemic logic, proposed originally by Moore; ie ttase of default logic, ex-
pansions were known as weak extensions [16]). The stableifitpof the operators
D 4 and Dt define the semantics ektensiongin the case of default logic, proposed
originally by Reiter, in the case of autoepistemic logic tdeacept was not identified
until algebraic considerations in [15] revealed it). Fipnalhe Kripke-Kleene and the
well-founded fixpoints provide three-valued belief setatthpproximate expansions
and extensions (except for [31], these concepts receivahtally no attention in the
literature, despite their useful computational propertibs]).

Moreover, these semantics are aligned when we cross froeulldéd autoepis-
temic logic by means of the Konolige’'s translation. One chaok that the operators
D andDy,4) coincide. The Konolige’s translation preserves exparssiertensions,
the Kripke-Kleene and the well-founded semantics. Howeslearly, it does not align
default extensions with autoepistemic expansions. ffeprinciples underlie these
two concepts. Expansions are fixpoints of the basic revisgmratorD 5 or D, while
extensions are fixpoints of the stable operatordfaror D, respectively.



Properties of fixpoints of approximating operators we stateTheorems 4 and
5 specialize to properties of expansions and extensionfaiult and autoepistemic
theories. One can prove several other properties of appaikig operators that im-
ply known or new results for default and autoepistemic Isgla particular, one can
generalize the notion of stratification of a default (autskgmic) theory to the case of
operators and obtain results on the existence and propeftiextensions and expan-
sions of stratified theories as corollaries of more genesallts on fixpoints of stratified
operators [32,33].

Similarly, one can extend to the case of operators concdmisang and uniform
equivalence of nonmonotonic theories and prove charaetéyn results purely in the
algebraic setting [34].

6 Additional comments

In this note, we focused on nonmonotonic logics which useficonditions to define
belief sets and we discussed abstract algebraic prindigkmd these logics. We will
now briefly mention some other research directions in norotemic reasoning.

Default extensions are in some sense minimal (cf. Theord})) &Hd minimality
was identified early as one of the fundamental principlesoinnmonotonic reasoning.
McCarthy [4] used it to defineircumscription a nonmonotonic logic in the language
of first-order logic in which entailment is defined with respt® minimal models only.
Circumscription was extensively studied [35,36]. Compatel aspects were studied
in [37,38,39]; connections to fixpoint-based logics weredssed in [40,41,42].

Preferential models [5,8] generalize circumscription pravide a method to define
nonmonotonic inference relations. Inference relatiorierdeined by preferential mod-
els were shown in [8] to be precisely inference relationsBang properties ol eft
Logical EquivalenceRight WeakeningReflexivity And, Or and Cautious Monotony
Inference relations determined bgnkedpreferential models were shown in [9] to be
precisely those preferential inference relations thasfyaRational Monotony

Default conditionalghat capture statements 4fthen normallys” were studied in
[43,9,44]. [9,44] introduce the notion of rational closwfesets of conditionals as as a
method of inference ([44] uses the tesystem X

Default extensions and autoepistemic expansions alsoedefinmonotonic infer-
ence relations. For instance, given a set of defdd|tae might say that a formula can
be inferred from a formula: given D if 3 is in every extension of the default theory
(D, {a}). A precise relationship (if any) between this and similderance relations
based on the concept of extension or expansion to prefatentirational inference
relations is not know at this time. Discovering it is a majesearch problem.

We conclude this paper by pointing to several research ntapbg on nhonmono-
tonic reasoning [45,46,10,47,11,48,49,50].
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