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Abstract. Leave-one-out Cross Validation (LOO-CV) gives an almost
unbiased estimate of the expected generalization error. But the LOO-CV
classical procedure with Support Vector Machines (SVM) is very expen-
sive and cannot be applied when training set has more that few hun-
dred examples. We propose a new LOO-CV method which uses modified
initialization of Sequential Minimal Optimization (SMO) algorithm for
SVM to speed-up LOO-CV. Moreover, when SMO’s stopping criterion
is changed with our adaptive method, experimental results show that
speed-up of LOO-CV is greatly increased while LOO error estimation is
very close to exact LOO error estimation.

1 Introduction

LOO-CV is an useful measure to estimate the generalization of an inducer [1].
Model selection is the main aim of LOO measure [2], especially when dataset
size is considered as too small to split it into training and test sets. SVM is an
efficient inducer, but training time increases quickly with training set size [3] and
it would be a bad candidate for model selection with direct LOO-CV. But others
properties of SVM made it a good candidate for smart LOO-CV [4,5]. Decoste
et al [4] and others [2,5] have proposed new methods to speed-up exact (or very
close) evaluation of LOO error with SVM. All these methods are based either
on changing initialization, stopping criterion, or both of SMO algorithm. Next
sections present an overview of speed-up LOO-CV methods and explain in what
way our method improves them. Many experimental results are also described
to highlight the efficiency of our method and to compare it with previous ones.

2 SVM and SMO Overview

Consider a data set S (S = {z1, ..., zm} = {(x1, y1), ..., (xm, ym)}) with m in-
stances (or examples) where each data information zi is a couple (xi, yi) with
yi ∈ {+1, −1} and xi ∈ R

n. The main task for training SVM is to solve the
following dual quadratic optimization problem [6]:

min
α

W (α) = 1
2

∑
αiαjQij −

∑
αi (1a)

subject to 0 ≤ αi ≤ C and
∑

αiyi = 0 (1b)
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with Qij = yiyjK(xi, xj) and K(xi, xj) is a kernel function. Let us define (see
[7] for more details on those formulations):

Gi =
∑

αjQij − 1 (2a)

Iup(α) ≡ {t|αt < C, yt = +1 or αt > 0, yt = −1} (2b)
Ilow(α) ≡ {t|αt < C, yt = −1 or αt > 0, yt = +1} (2c)

m(α)= −yi1Gi1 |i1 =argmax
i∈Iup

−yiGi, M(α)= −yi2Gi2 |i2 =argmin
i∈Ilow

−yiGi (2d)

A solution α is optimal for problem (1) if and only if [7]

m(α) < M(α) (3)

Let α∗ be an optimal solution and {I0, Im, Ibound} a partition of examples indexes
I = {1, . . . , m} in function of α values with I0(α) ≡ {t|αt = 0}, Im(α) ≡ {t|0 <
αt < C}, Ibound(α) ≡ {t|αt = C}. A decision function h produced by SVM has
the following expression:

h(x) = sign (f(x)) , f(x) =
∑

α∗
i yiK(xi, x) + b∗ (4)

with b∗ = −yiG
∗
i , ∀i ∈ Im(α∗) and f the output of SVM [6].

An efficient iterative algorithm named SMO was proposed by Platt [3] to
find optimal solution of (1) by using test condition (3). The main idea of this
algorithm is that at each iteration only two variables αi1 and αi2 are modified to
decrease (1a) value. The synopsis of SMO is given by algorithm 1. ε = 10−3 and
∀i : αi = 0, Gi = −1 are classical default initialization values for SMO. As SMO
is only asymptotically convergent, the previous ε value is an efficient admissible
choice for checking optimality [7]. Without any kind of information on optimal
solution localization, α = 0 (W (α) = 0) is a efficient starting solution [3]. Mainly,
because for other α values, Gi values must be computed using (2a), which is time
expensive. But also because objective initial value could be worst (i.e. W (α) > 0)
and increase the number of iterations for convergence. In order to have the lowest
number of iterations for SMO, the procedure BestCouple must select i1 and
i2 which produce the maximum decrease of (1a) [3]. Variation of (1a) when only
two variables are modified is equal to:

ΔW (i1, i2) = Δαi1Gi1 + Δαi2Gi2 + Δαi1Δαi2Qi1,i2

+ 1
2

(
Δα2

i1Qi1,i1 + Δα2
i2Qi2,i2

) (5)

Algorithm 1. SMO(α,G,ε)
while m(α) − M(α) > ε do

(i1,i2)=BestCouple()

(Δαi1 ,Δαi2 )=OptimalVariation(i1,i2)
(α,G)=Update(α,G,(i1,Δαi1 ),(i2,Δαi2))

end while
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Search of optimal couple with equation (5) is time expensive (O(m2)), and
heuristics were proposed (see [7] and references in). The most common one is to
select the couple which maximum violates the stopping criterion of SMO (i.e. re-
spectively i1 and i2 in equations (2d)). A recent alternative is to select the first
αi using previous heuristic (i1 for example) and to use equation (5) to select
the second [7]. After selecting good candidates, the OptimalVariation pro-
cedure computes Δαi1 and Δαi2 values in order to have the maximal decrease
of W (see [3,7] for more details). The Update procedure uses (6) to compute
variations of G values in function of Δαi1 and Δαi2 .

∀j : ΔGj = Δαi1Qj,i1 + Δαi2Qj,i2 (6)

3 Speed-Up LOO-CV

LOO-CV definition: Let hS
θ be the decision function produced by a learning

algorithm with training set S. θ is the set of parameters (also named model) used
by the training algorithm. The error eLOO measured by LOO-CV procedure is
defined by:

eLOO(θ) =
1
m

∑m

i=1
l
(
hSi

θ (xi), yi

)
(7)

with Si = S\{zi} training sets and l(x, y) =
{

0 if x = y
1 else the loss function.

LOO error and SVM relation: For many training algorithms, the estimation
of eLOO is realized by m trainings on Si datasets. A better way to do this with
SVMs is to first realize a training with all the m examples. This first optimal
solution α∗ provides several useful informations [5]. Those informations allow to
determine values of l(hSi

θ (xi), yi) without any training with several datasets Si.
For example: hSi

θ (xi) = yi, if αi = 0 in α∗ (see [5] for more details). Let ILOO
denote set of examples for which SVM trainings with datasets Si are necessary.
Experimental results in [5] illustrate how the size of those set changes in func-
tion of θ. Those results show that the rate |ILOO|/m is not negligible for many
models θ. Then, model selection using LOO-CV is always time expensive when
m increases, even if only |ILOO| SVM trainings must be realized. To speed-up
those SVM trainings, two possibilities exist: (1) the solution of first training with
S could help to determine a better α̃ starting solution for SMO (and associated
G̃ values), (2) ε stopping value of SMO could be increased. For the next sections,
let αS , GS denote the final results of SMO training with S.

Alpha Seeding methods: DeCoste and Wagstaff named Alpha Seeding (AS-
SMO) a method which determines α̃ next SVM initial solution in function of
previous SVM trainings [4]. For LOO-CV with SVM, a starting solution α̃ with
α̃i = 0 is deduced from αS to realize SVM training with Si datasets. α̃i=0 re-
flects the fact that example zi is removed from training set S. Moreover, the
modification of αS must respect contraints (1b) to produce a α̃ feasible solution.
To have speed-up effect, starting solution α̃ must be near optimal solution α̃∗.
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Initially proposed method [4] consists in uniformly adding an equal portion of
αi to each in-bound αj within the same class (i.e. j ∈ Im, yj = yi and j �= i). αi

is then decreased in the same proportion. Due to constraint (1b), α̃i = 0 could
fail, then this action is repeated with remaining in-bound α̃j until α̃i = 0. The
main problem with this method is that many αi variables are modified. The
computation cost for updating G̃ values from GS is then too high. Lee et al no-
ticed this problem and proposed a method which changes only few variables [5].
The main idea is to redistribute an amount δ from αi to αk (i.e. Δαi = −δ and
Δαk = yiykδ) and to select k ∈ Im(αS) in order to reduce magnitude variation of
G. This corresponds to solve: k = argmin

k∈Im,k �=i
(max

j
|ΔGj |) with k ≡ i1 and i ≡ i2 in

(6). This problem has however a too high complexity. Lee proposes as a heuristic
to look only at variations of Gk (see [5] for more details). This corresponds to
solve the simplified problem : k = argmin

k∈Im,k �=i
(|ΔGk|) and to make the hypothesis

that all other ΔGi have same or less magnitude variations than |ΔGk| when αk

is modified. This procedure is repeated until α̃i = 0.

New AS-SMO method: Previous studies highlight that an efficient AS-SVM
method must modify the lesser possible variables in αS for a reduce of G update
cost. It must also produce a starting solution α̃ for which SMO algorithm has a
minimum of iterations to reach the stopping condition. DeCoste et al method [4]
focuses only on second key point by making the hypothesis that building a close
and valid solution α̃ from αS produces a solution near the optimal, but neglecks
completely the first point. Lee et al method [5] advantages the first point and
manages the second point by taking into account heuristic informations. Our
proposed method tries to deal with those two key points at the same time.
The main idea is to search which αk variable allows by its modification, to
decrease αi to zero in respect to contraints (1b) and has the lowest W (α̃) (i.e.,
nearest to optimal solution α̃∗). The synopsis of this new method is resumed
in algorithm 2 with I1(α, i) = {k|0 ≤ αk + ykyiαi ≤ C, k �= i} the set of αk

variables which allow to have αi = 0 under contraint (1b) by modifying only
one of them, Iδ(α, i) = {k|∃δ > 0 : 0 ≤ αk + ykyiδ ≤ C, k �= i} the set of αk

variables which allow to decrease αi and δmax(k, i) the maximal decrease of αi

when only αk is modified. (α̃,G̃)=AS-SMO(αS ,GS ,i) are initialization values of

Algorithm 2. AS-SMO(α,G,i)
while αi > 0 do

if I1(α, i) �= ∅ then
Δαi = −αi, Δαk = ykyiαi with k = argmax

k∈I1(α,i)
−ΔW (k, i)

else
k = argmax

k∈Iδ(α,i)
[ΔWmax − ΔW (k, i)] · δmax(k, i) with ΔWmax = argmax

k∈Iδ(α,i)
ΔW (k, i)

Δαk = ykyiδmax(k, i) , Δαi = −δmax(k, i)
end if
(α̃,G̃)=Update(α,G,(i,Δαi),(k,Δαk))

end while
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SMO when training set Si is used. In general case, when I1 is not empty, it
is possible to have αi = 0 by modifying only another αk variable. As regards
the first key point, this action has the lowest cost. When I1 has more than one
element, which is generally true, the modified αk variable must be the one which
produces an α̃ starting SMO solution which has the lower W (α̃) value to deal
with the second key point. Δαi = −αi and Δαk = ykyiαi by using contraint
(1b). ΔW (i, k) is determined directly by using (5) and the optimal choice of k
has a time complexity of O(m). Paying attention to this method highlights a
strong similarity with one step of SMO algorithm, especially by comparing it
with second order SMO step in [7]. Computing cost for determination of α̃ from
αS is close to one SMO iteration for general case. In the rare case for which
|I1| = ∅, more than one α variable must be modified. The approach is a greedy
one and is guided by a criterion which makes a trade-off between bringing α̃ close
to optimal and decreasing greatly αi in order to have few α modified variables.

Stopping ε value change: SMO implementations [8] use low values of ε to
ensure efficient solution as regards theoretical convergence criterion. This has
for effect that the reponse of decision function does not change for many itera-
tions [9]. It is then natural to want to increase ε value in order to stop earlier
SMO algorithm. But the problem is to select an efficient ε. Too high ε leads too
early stopping and the solution does not correspond to the SVM problem. Too
low ε does not sufficiently decrease the number of iterations of SMO. Lee [2]
compares eLOO variations between ε = 10−1 and classical ε = 10−3 with sev-
eral datasets and hyperparameters values. Conclusion is that eLOO estimations
are very similar for both ε values, but training time is greatly reduced using
ε = 10−1. In [5] an adaptive ε method is proposed. The main idea is to stop
SMO algorithm, step by step, for ε ∈ [10−1, 10−2, 10−3] and to use a heuristic
criterion to test if SMO must continue (see [5] for more details). The advantage is
that eLOO estimation is more accurate than with the previous method. The dis-
advantage is that speed-up is reduced mainly because more than one evaluation
of the SVM output (4) must be realized [5].

New adaptive method: Taking into account that an efficient stopping ε value
for SMO training with dataset S must be also efficient for training with datasets
Si, due to the closeness of S and Si datasets, our new proposed method uses
the first training not only to produce an αS helpful guidline for SMO, but
also to deduce an efficient εLOO for LOO-CV with AS-SVM. Let Wt ≡ W (αt),
Qt = |(Wt − W∞)/W∞| and ΔMt ≡ m(αt) − M(αt) respectively denote values
of the objective function, a proximity measure of optimal solution and max-
imum violation of KKT criterion at SMO iteration t. As W∞ could not be
evaluated, SMO classic ending is used: W∞ = Wtmax with tmax the number
of SMO iterations when training set is S and ε = 10−3. Let tε be the first
SMO iteration for which ∀t ≥ tε : ΔMt < ε. An ε choice is efficient if Qtε is
close to zero. Let Qtε ≤ 10−3 be a transcription of ”Qtε is close to zero” and
tS = max

1≤t≤tmax
{t|Qt > 10−3} be the last SMO iteration with training set S for

which this condition is not true. The εLOO corresponding choice is determined
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by using Wt and ΔMt recorded values with this one SMO’s training:

εLOO = min
1≤t≤tS

ΔMt (8)

4 Experimental Results

Table 1. Datasets information

Data sets (S) n |S|
Australian (Au) 14 390

Heart (He) 13 180
German (Ge) 24 400
Adult (Ad) 123 1605

For experiments, four datasets are used.
Three are from Statlog collection: Aus-
tralian (Au), Heart (He) and German
(Ge). Fourth one is from UCI collection:
Adult (Ad). General information about
used datasets are provided in table 1 where
n and |S| are respectively the number of fea-
tures of examples and the training set sizes.
Let T LOO

M and nniter
M be respectively total training time and total number of it-

erations to evaluate LOO error by using a SMO initialization method M . For all
this section, gain GT

LOO = T LOO
M2

/T LOO
M1

(Giter
LOO = nniter

M2
/nniter

M1
) corresponds to

the gain in time (resp. total number of iterations) realized by using a given SMO
initialization method M1 in comparison of classical SMO initialization method
M2 (i.e α = 0,ε = 10−3) for eLOO computation. To illustrate the robustness of
our method, experiments are conducted for a great number of θ hyperparameters
values. Used procedure corresponds to the well known grid search method [8].
Tested values for C SVM hyperparameter are in: {2x|x ∈ [−2, ..., 12]}. For
Gaussian kernel: k(xi, xj) = exp(−γ||xi − xj ||2), tested values for γ are in:
{2x|x ∈ [−10, ..., 2]}. For Polynomial kernel: k(xi, xj) = (1+ < xi, xj >)γ , tested
values for γ are in: [2, ..., 6]. Statistical measures within minimal, maximal, aver-
age and standard deviation for all tested models (C,γ) are respectively denoted
by min, max, STD and AVG acronyms in tables 2. Experimental results with
use of Gaussian or Polynomial kernel are mentioned in tables 2 and 3 by us-
ing respectively G or P letters between parenthesis after dataset’s abreviation
name.

Proposed method: First experimentation highlights the speed-up effect of us-
ing SMO α̃ initialization produced by our method (εLOO = 10−3 for M1 also).
Table 2 (up-left) gives statistical measures of gain GT

LOO with different data
sets. Results here, show that α̃ deduced from αS is an efficient starting solution
for SMO in average and in the worst case it is not as bad as α = 0. However,
the global speed-up for model selection is not sufficient for LOO error evalua-
tion when training size grows (too expensive with Adult dataset for exemple).
Second experimentation focuses on the effect of combining α̃ and εLOO SMO ini-
tialization of our method. Table 2 (up-right) gives statistical measures of εLOO
variation. In a similar way to first experimentation, table 2 (bottom-left) gives
statistical information of gain variations in function of θ model. To estimate
gain with Adult dataset, we made the hypothesis that training time (num-
ber of iterations) with m − 1 and m exemples are identical with SMO classical
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Table 2. Statistical measures of: GT
LOO with only our alpha seeding method (up-left)

and with our complete method (bottom-left), εLOO with our adaptive εLOO method
(up-right) and ΔeLOO between an adaptive εLOO and a fixed εLOO = 10−3 for stopping
SMO (bottom-right)

GT
LOO min max AVG STD

Au(G) 0.95 119.1 9.67 18.97
He(G) 1.25 81.38 8.24 14.90
Ge(G) 1.34 78.85 7.13 8.32

εLOO min max AVG STD
Au(G) 0.057 1.665 0.164 0.186
He(G) 0.062 1.785 0.178 0.216
Ge(G) 0.056 1.986 0.149 0.218
Ad(G) 0.058 1.854 0.287 0.300

GT
LOO min max AVG STD

Au(G) 12.72 364.44 99.01 60.79
He(G) 25.08 379.59 52.10 63.75
Ge(G) 17.96 224.43 102.43 50.70
Ad(G) 82.30 26580 1587 4159

ΔeLOO min max AVG STD
Au(G) -2.0% +3.67% +0.16% ±0.86%
He(G) -1.67% +5.0% +0.59% ±1.05%
Ge(G) -0.5% +7.5% +1.23% ±1.85%

initialization1. The variation of eLOO with SMO’s classical initialization have
also been measured. Table 2 (bottom-right) gives statistical information for Stat-
log collection datasets. Results show that combining efficient alpha seeding and
adaptive increase of ε stopping criterion permits to speed-up greatly LOO pro-
cedure. Speed-up could be spectacular for some θ models, in particular when
training set size increases. Even with worse θ cases, the speed-up are not negligi-
ble and are in favour of greater training sets again. Moreover, eLOO evaluations
have small perturbations when stopping criterion is increased with our method.
When results of ΔeLOO are examined in more detail, variations close to min or
max values in bottom-right table 2 are almost always located in regions with high
eLOO. Consequently, model selection is very few impacted by those variations
and eLOO value for selected model is very close to values found with ε = 10−3.
Average values in up-right table 2 highlight the global efficiency of Lee’s ε = 0.1
heuristic choice, but also the limit of a fixed value.

Comparaison with previous methods: First experimental comparisons have
for objective to highlight difference between our adaptive εLOO stopping criterion
and fixed εLOO = 10−1. Table 3 resumes results from this comparison. Our
alpha seeding method is used for those experiments. Looking at table 3, it is
obvious that SMO algorithm stopped earlier in average with our method without
important increase of eLOO deviation. Second experimental comparison has for
objective to highlight difference between the three alpha seeding methods (εLOO
adaptive is used for all of them). In table 3, nαS corresponds to the number
of variables α modified to produce α̃. It is a good indicator of G update cost.
Giter

LOO (GT
LOO) is gain between an alpha seeding method and classical (α = 0,

ε = 10−3) SMO initialization. Results in table 3 show that DeCoste et al method
can produce very efficient starting solution (He(G) and Ge(G)), but update
cost of (6) is too high and penalizes GT

LOO. It is particularly obvious with Adult

1 Inspect of experimental results with the three Stalog datasets corroborate this hy-
pothesis (i.e. variation of training times are negligible).
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Table 3. Comparison between: (a) our adaptive or fixed ε value for SMO stopping
criterion and (b) the three alpha seeding methods: AS1, AS2 and AS3 which are re-
spectively our method, Lee et al [5] and DeCoste et al [4] method

(a) SMO’s ε stopping criterion (b) AS-SMO methods
adaptive fixed nαS Giter

LOO GT
LOO

S(K) Giter
LOO ΔeLOO Giter

LOO ΔeLOO AS1 AS2 AS3 AS1 AS2 AS3 AS1 AS2 AS3

Au(G) 100 1.6 ± 0.9 76 1.8 ± 0.6 1.0 2.9 110 100 89 110 99 82 41
Au(P) 166 1.1 ± 1.6 31 0.5 ± 1.3 1.0 4.9 58 166 152 118 96 86 63
He(G) 49 0.6 ± 1.0 39 0.5 ± 0.9 1.1 2.4 82 49 51 112 52 51 28
He(P) 34 0.9 ± 0.9 31 0.9 ± 0.9 1.0 1.6 50 34 36 28 36 38 26
Ge(G) 109 1.2 ± 1.8 102 0.8 ± 1.3 1.1 2.7 223 109 109 341 102 104 38
Ge(P) 64 1.4 ± 1.3 62 1.1 ± 1.2 1.1 5.2 69 64 65 53 62 59 49
Ad(G) 1787 - 467 - 1.0 5.1 789 1787 529 699 1587 460 115
Ad(P) 1561 - 348 - 1.0 7.2 912 1561 421 731 1419 389 167

dataset. Lee method has a lower update cost, although our method has the
lowest, especially when training set size increases.

5 Conclusion and Discussion

We developed an efficient method to speed-up eLOO estimation. Experimental
results show that our method outperforms in average previous proposed meth-
ods [4,5]. Moreover, speed-up of eLOO evaluation increases with training set size.
Our experiments have also highlighted that eLOO deviations, when ε stopping
criterion is increased efficiently, are mainly due to numerical instabilities when
SVM ouptut is not confident. Future works have to extend this method to speed-
up bootstrap and k fold cross-validation (with high k value but lower that m).

References

1. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for
tuning svm hyperparameters. Neurocomputing 51 (2003) 41–59

2. Lee, J., Lin, C.: Automatic model selection for support vector machines. technical
report. http://www.csie.ntu.edu.tw /˜cjlin/papers/modelselect.ps.gz (2000)

3. Platt, J.: Fast training of SVMs using sequential minimal optimization, advances
in kernel methods-support vector learning. MIT Press (1999) 185–208

4. DeCoste, D., Wagstaff, K.: Alpha seeding for support vector machines. In: Int.
Conf. Knowledge Discovery Data Mining. (2000) 345–349

5. Lee, M.M.S., Keerthi, S.S., Ong, C.J., DeCoste, D.: An efficient method for com-
puting leave-one-out error in SVM with gaussian kernels. JAIR 15 (2004) 750–757

6. Vapnik, V.N.: Statistical Learning Theory. Wiley edition (1998)
7. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using the second order

information for training SVM. JMLR 6 (2005) 1889–1918
8. Chang, C.C., Lin, C.J.: Libsvm: a library for Support Vector Machines. Software

Available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm (2001)
9. Burbidge, R.: Stopping criteria for SVMs. Available at http://stats.ma.ic.ac.uk/

rdb/public/˜html/pubs/hermes.pdf (2002)


	Introduction
	SVM and SMO Overview
	Speed-Up LOO-CV
	Experimental Results
	Conclusion and Discussion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


